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Abstract—Typical models for analysis of storage system reli-
ability assume independent and exponentially distributed times
to failure. Also the rebuild time periods are often assumed to
be deterministic or to follow an exponential distribution, or
alternatively a Weibull distribution. As a first step towards a
generalization of these models, we consider more general non-
exponential distributions for failure and rebuild times while still
retaining the independence assumption. It is shown that the mean
time to data loss (MTTDL) of storage systems is practically
insensitive to the actual failure distribution when the storage
nodes are generally reliable, that is, when their mean time to
failure is much larger than their mean time to repair. This
implies that MTTDL results previously obtained in the literature
by assuming exponential node failure distributions may still be
valid despite this unrealistic assumption. In contrast, it is shown
that the MTTDL depends on the characteristics of the rebuild
distribution.

Index Terms—storage system, reliability, non-exponential, fail-
ure distribution, insensitivity

I. INTRODUCTION

In today’s information age, large-scale data storage systems

store a significant proportion of all data in the world. Data

centers are becoming larger not just because of the increase

in the amount of new data generated each year but also because

of agglomeration of many small data centers into massive data

centers for reasons of cost-cutting, energy efficiency, and ease

of management.

Although the individual storage nodes that make up the data

centers are generally reliable, as the number of nodes in a

storage system increases, there is an inevitable increase in the

frequency of node failures in the system. This creates a need

to model such node failures and to design schemes of data

redundancy, placement, and repair, to reduce the chance of

irrecoverable loss of data due to a catastrophic sequence of

node failures in the system.

Models of data storage systems typically assume that the

times to failure of individual storage nodes are independent

and identically distributed. Furthermore, it is typically assumed

that the distribution of the time to failure of a node is expo-

nential as this allows the use of Markov models [1]. However,

all these modeling assumptions have been contested by recent

empirical studies of real world storage systems. It has been

found that real world failures are neither independent nor

exponentially distributed [2]. As a first step toward developing

more realistic models, we extend the reliability modeling and

analysis of storage systems by including more general non-

exponential distributions. This is a non-trivial problem because

non-exponential distributions preclude the use of continuous-

time Markov chain based methods which are typically used

for estimating the system reliability.

Using results from renewal theory and approximations such

as the ones used in [3], we show in this paper that the mean

time to data loss (MTTDL) of a system are essentially insensi-

tive to the actual distribution of the times to failure of storage

nodes as long as the storage nodes are generally reliable. By

generally reliable nodes, we refer to nodes with mean time

to failure being much larger than than their mean time to

repair. The implication of this result is significant because it

suggests that a large class of distributions for the times to

failure of storage nodes essentially yields the same estimate of

the MTTDL of the system. In this sense, this is an insensitivity

result. Moreover, this result implies that the system MTTDL

will not be affected if the failure distribution were changed

to a corresponding exponential one with the same mean. This

observation is also of great importance because it suggests

that MTTDL results obtained previously in the literature by

assuming exponential node failure distributions may still be

valid despite this unrealistic assumption.

In addition, we also study the effect of the distribution of

rebuild times on the reliability of storage nodes. It is shown

that the rebuild distribution does affect the reliability. This is

because of an effect also known as the waiting time paradox.

In essence, failures occurring during rebuild tend to occur

within rebuild intervals with a larger rather than a smaller

duration. This means that the failures tend to occur during

critical times when the rebuilds are slower than average and

so the amount of data not rebuilt is higher. Thus, following a

failure during rebuild, the amount of most-exposed data, that

is, the data with the least number of replicas, is higher. This

in turn implies that the duration required to rebuild the most-

exposed data is also higher. This cascading effect is shown

to have a significant effect on the reliability, especially if the

rebuild distribution exhibits large variability.

II. RELATED WORK

Several of the earliest works on the analysis of reliability of

storage systems [4] have assumed independent and exponen-

tially distributed times to failure. A vast majority of the pub-

lications have also assumed exponentially distributed times to

rebuild as this allows the use of continuous-time Markov chain

models to estimate the reliability of the system [5], [6], [7].

A few works have used other probabilistic methods [8], [9],



TABLE I
PARAMETERS OF A STORAGE SYSTEM

c storage capacity of each node (bytes)
n number of storage nodes

1/λ mean time to failure of a storage node (s)
1/µ mean time to rebuild a storage node (s)
cµ average rebuild bandwidth at each storage node (bytes/s)

however, the probability of data loss in these works is obtained

for the case when there are no rebuild operations performed.

Publications based on real world failure data have shown

that the distribution of failures is neither exponential nor

independent [2]. Failure distributions other than exponential

have been studied extensively through simulations [10], [11],

[12]. In particular, it has been shown that the expected number

of double disk failures in RAID-5 systems within a given time

period can vary depending on the failure distribution [12]. In

contrast, we consider the expected time to the first data loss

event (which is equivalent to a double disk failure in case of

a RAID-5 system) and we show that it is insensitive to the

node failure distribution.

III. SYSTEM MODEL

The parameters of the storage system considered and the

failure and rebuild distributions considered in the paper are

described in this section. Table I lists the parameters used.

A. Storage System

Consider a data storage system with n nodes each with a

storage capacity c. Some form of redundancy such as repli-

cation, RAID-5, RAID-6, or other erasure code, is assumed

to be used to protect data from node failures in the system.

Whenever a node failure occurs, a rebuild process is initiated

to restore the redundancy lost due to that node failure. As more

nodes fail during the rebuild process, some data tend to lose

more of their redundancy until the point where irrecoverable

data loss occurs. In other words, a data loss is said to have

occurred when the rebuild process can no longer restore some

of the data that was initially stored in the system due to

a catastrophic sequence of node failures. Broadly, at any

time, the system can be thought to be in one of two modes:

fully-operational mode and rebuild mode. During the fully-

operational mode, all data in the system has the original

amount of redundancy and there is no active rebuild process.

During the rebuild mode, some data in the system has less

than the original amount of redundancy and there is an active

rebuild process that is trying to restore the lost redundancy. A

transition from fully-operational mode to rebuild mode occurs

when a node fails; we refer to this node failure that causes this

transition as a first-node failure. Following a first-node failure,

a complex sequence of rebuilds and subsequent node failures

may occur which may eventually lead the system either back

to the original fully-operational mode or to irrecoverable data

loss.

B. Failure and Rebuild Distributions

It is known that real world storage nodes are generally

reliable, that is, the mean time to repair a node (which is of the

order of tens of hours) is much smaller than the mean time to

failure of a node (which is at least of the order of thousands of

hours). Let us denote the mean time to rebuild a node by 1/µ
and the mean time to failure of node by 1/λ. It now follows

that generally reliable nodes satisfies the following condition:

1/µ ≪ 1/λ, or λ/µ ≪ 1. (1)

In the subsequent analysis, this condition implies that terms

involving powers of λ/µ greater than one are negligible

compared to λ/µ and can be ignored.

Let the cumulative distribution functions of time to failure

and rebuild time of each node be Fλ with mean 1/λ and

Gµ with mean 1/µ, respectively, satisfying the following

condition:

µ

∫ ∞

0

Fλ(t)(1−Gµ(t))dt ≪ 1, with
λ

µ
≪ 1. (2)

The results of this paper are derived for the class of failure

and rebuild distributions that satisfy the above condition. In

particular, the MTTDL is shown to be insensitive to the

failure distributions within this class. This result is of great

importance because it turns out that this condition holds for a

wide variety of failure and rebuild distributions including, most

importantly, distributions that are seen in real world storage

systems. As an illustration, let us consider the class of failure

distributions that satisfy the above conditions, when the rebuild

times are deterministic, that is,

Gµ(t) =

{
0, when t < 1/µ,
1, when t ≥ 1/µ.

(3)

Recognizing that Fλ is a monotonically non-decreasing func-

tion such that Fλ(t) ≤ Fλ(1/µ) for t ≤ 1/µ, the left hand

side of (2) reduces to

µ

∫ 1/µ

0

Fλ(t)dt ≤ Fλ(1/µ). (4)

When λ/µ ≪ 1, it can be seen that Fλ(1/µ) ≪ 1 for a

wide variety of distributions including exponential, Weibull

(with shape parameter greater than 1), and gamma (with shape

parameter greater than 1). For instance, consider a Weibull

distribution with shape parameter k and scale parameter β
having the cumulative distribution function

FWeibull
λ (t) = 1− e−(t/β)k . (5)

The mean of the Weibull distribution, 1/λ, is equal to βΓ(1+
1/k), where Γ(·) denotes the gamma function. Therefore, the

scale parameter β can be written in terms of the mean 1/λ as

β = 1/(λΓ(1 + 1/k)). (6)

Substituting (6) in (5) for t = 1/µ we get

FWeibull
λ (1/µ) = 1− e−(λΓ(1+1/k)/µ)k ≪ 1, (7)

when λ/µ ≪ 1 and k ≥ 1. However, if k < 1, the above

inequality may not hold. Note that nodes that have Weibull

lifetime distributions with k < 1 have high infant mortality



rate, whereas those with Weibull lifetime distributions with

k > 1 gracefully age over time.

In general, it can be observed that failure distributions

with high infant mortality rates do not satisfy condition (2).

However, it has been observed that infant mortality is not

present in real world storage nodes [2]. Furthermore, the

effects of infant mortality can be eliminated from the system

by stressing new nodes before adding them to the system. It

can also be observed that (2) is satisfied by a wide variety of

distributions for rebuild times, in particular, distributions with

bounded support. Therefore, condition (2) is realistic as it is

satisfied by practical storage systems.

Condition (2) can also be stated in the following alternate

way: if Fλ and Gµ belong to a family of distributions charac-

terized by λ and µ, respectively, then (2) is equivalent to

lim
λ/µ→0

µ

∫ ∞

0

Fλ(t)(1−Gµ(t))dt = 0. (8)

For a fixed µ, this implies that

lim
1/λ→∞

µ

∫ ∞

0

Fλ(t)(1−Gµ(t))dt = 0. (9)

As Fλ(t)(1−Gµ(t)) ≤ 1−Gµ(t) and 1−Gµ(t) is integrable,

by the dominated convergence theorem the order of limit and

integral can be exchanged. Therefore,

lim
1/λ→∞

µ

∫ ∞

0

Fλ(t)(1−Gµ(t))dt

= µ

∫ ∞

0

lim
1/λ→∞

Fλ(t)(1−Gµ(t))dt. (10)

Therefore, for a fixed µ, (9) holds only when

lim
1/λ→∞

Fλ(t) = 0, ∀ t where Gµ(t) < 1, (11)

and the convergence of Fλ is pointwise. Similarly, it can be

shown that, for a fixed λ, (8) holds only when

lim
1/µ→0

µ(1−Gµ(t)) = 0, ∀ t where Fλ(t) > 0, (12)

and the convergence is pointwise. Note that (11) and (12) can

be equivalently written as

Fλ(t) ≪ 1 when Gµ(t) < 1 and λ ≪ µ, (13)

µ(1−Gµ(t)) ≪ 1 when Fλ(t) > 0 and µ ≫ λ. (14)

The next section provides known results from renewal

theory that will be used later in our analysis.

IV. PRELIMINARIES

A. Node Availability

A node i operates for a certain period of time with distri-

bution Fλ before failing. Following the failure of a node, the

node and all of its data is restored after a period of time with

distribution Gµ. Therefore, the timeline of the node consists

of successive periods of operation and repair. For t ≥ 0, let

us define

ν
(i)
t :=

{
1, if node is operational at time t,
0, if node is under repair at time t.

(15)

Then the node availability at time t is given by the probability

a
(i)
t := Pr{ν

(i)
t = 1}. (16)

The following result is well known in renewal theory [13,

Chap. 2, pp. 109–114]:

Lemma 1: The steady-state node availability a is given by

a := lim
t→∞

a
(i)
t =

1/λ

1/λ+ 1/µ
. (17)

Note that the above result indicated that the steady-state node

availability only depends on the means of the distributions Fλ

and Gµ.

B. Age and Excess

Consider the timeline constructed by concatenating only the

periods of operation of the node. In this timeline, let N
(i)
t be

the number of replacements of the node up to time t, and Sk

be the time of the kth failure, for k = 1, 2, · · · . Define the age

A
(i)
t and the excess E

(i)
t of the node as

A
(i)
t := t− S

N
(i)
t

, (18)

E
(i)
t := S

N
(i)
t

+1
− t. (19)

node i
timeline

-X
S
N

(i)
t

t
X
S
N

(i)
t

+1

X
A

(i)
t E

(i)
t

As can be seen in the above picture, at a given time t, the

age A
(i)
t is equal to the time that has passed since the last

replacement of the node, and the excess E
(i)
t is equal to the

time until the next failure of the node. A well known result in

renewal theory is the following [13, Chap. 2, pp. 109–114]:

Lemma 2:

lim
t→∞

Pr{A
(i)
t ≤ τ} = lim

t→∞
Pr{E

(i)
t ≤ τ} = F̃λ(τ), (20)

where

F̃λ(τ) := λ

∫ τ

0

(1− Fλ(x))dx. (21)

In other words, the cumulative distribution functions of A
(i)
t

and E
(i)
t tend to F̃λ as t tends to infinity. In fact, it can

be shown that, if the density function corresponding to Fλ

approaches zero exponentially fast, then the distributions of

A
(i)
t and E

(i)
t also approach F̃λ exponentially fast [13].

V. SYSTEM RELIABILITY

We model the system’s behavior as a series of first-node-

failure events each of which is followed by a potentially

complex sequence of failure and rebuild events that either lead

to data loss with probability PDL, or back to the original fully-

operational state of the system by restoring all replicas. As the

rebuild times are much shorter than the times to failure, the

time taken for these complex sequence of events is negligible

compared to the time to first-node-failure, and therefore can

be ignored.

Let E(t,∆t) represent the event that the system was re-

newed to its original state in the interval (t−∆t, t). Also, let



E(t,∆t, τ) represent the event that the system was renewed

to its fully-operational state in the interval (t−∆t, t) and con-

tinues to operate without any failures in the interval (t, t+ τ).

system
timeline

-XX X
tt−∆t t+ τ

We are interested in the reliability (or survival) function of

the system, that is, the probability pt(τ) defined as:

pt(τ) := lim
∆t→0

Pr{E(t,∆t, τ)|E(t,∆t)}

= lim
∆t→0

Pr{E(t,∆t, τ)}

Pr{E(t,∆t)}
. (22)

Using this probability, the mean fully-operational period of the

system, Tt, can be computed as

Tt =

∫ ∞

0

pt(τ)dτ. (23)

In other words, Tt is the mean time period between the first-

node failure at time t and the subsequent first-node-failure

event. As the system becomes stationary, pt(τ) converges to

p(τ) and Tt converges to T . By computing p(τ), it is shown

in Appendix A that

T := lim
t→∞

Tt =
1

nλ
. (24)

As each first-node-failure can result in data loss with

probability PDL, the expected number of first-node-failures

until data loss occurs is 1/PDL. By neglecting the effect of

the relatively short transient period of the system, the MTTDL

is essentially the product of the expected time between two

first-node-failure events, T , and the expected number of first-

node-failure events, 1/PDL, that is,

MTTDL ≈
T

PDL
=

1

nλPDL
. (25)

VI. REPLICATION BASED SYSTEMS

As an application, we will showcase in detail the analysis of

the reliability of storage systems that use replication to protect

data from node failures. Such systems with different replica

placement schemes have been analyzed with exponentially

distributed times to node failures and deterministic rebuild

times [3]. Here we extend that analysis to more general

distributions of times to failure and rebuild completion.

A. System Model

Consider a block-based storage system comprising n storage

nodes each with capacity c. Every user data block is replicated

r times to protect the data from node failures. These r copies

(replicas) are stored in the system such that no two replicas

of a data block are in the same node. The way in which the

r replicas of each data block are stored across the n nodes is

determined by the placement scheme used. We will analyze

the two schemes previously studied in [3], namely, declustered

and clustered placement schemes, and we will compare the

analyses and the respective results.

B. Replica Placement Schemes

We will now briefly describe the two placements schemes,

namely, declustered and clustered.

Declustered Placement: In this placement scheme, all
(
n
r

)

possible ways of placing r replicas across n nodes are equally

used to store the data in the system. This way, the r − 1
replicas of the data on each node are equally spread across the

remaining n− 1 nodes. It can be seen that, in this placement,

any set of two nodes share replicas of exactly r−1
n−1c amount

of data. In general, any set of k nodes (k ≤ r) share copies

of exactly c
∏k−1

i=1

(
r−i
n−i

)
amount of data.

Clustered Placement: In this placement scheme, the n nodes

are divided into disjoint sets of r nodes and all nodes in each

set are mirrors of each other, that is, they store replicas of the

same data.

One major way in which these two placement schemes

affect the reliability of the system is through the rebuild

process. In declustered placement, when a node fails, as the

replicas of the data lost are spread across all n − 1 nodes, a

parallel rebuild process can be used to take advantage of the

rebuild bandwidth available at all n − 1 nodes. On the other

hand, in clustered placement, when a node fails, the replicas

of the data lost are available only on the remaining r−1 node

of the cluster and therefore, the rebuild bandwidth available

does not scale with n, the number of nodes in the system.

C. Rebuild Model

When nodes fail, data blocks lose one or more of their r
replicas. The purpose of the rebuild process is to recover all

replicas lost so that all data have r replicas. A good rebuild

process needs to be both intelligent and distributed.

By an intelligent rebuild process, we mean that the system

always attempts to first recover the copies (replicas) of the

blocks that have the least number of replicas left. In contrast

to the intelligent rebuild, one may consider an unintelligent

rebuild, where lost replicas are being recovered in an order

that is not specifically aimed at recovering the data blocks

with the least number of replicas first. Clearly, an unintelligent

rebuild is more vulnerable to data loss, but may have a lower

implementation complexity than an intelligent rebuild. In the

remainder of the paper we consider only intelligent rebuild.

In placement schemes such as the declustered scheme, the

surviving replicas that the system needs to read to recover

the lost replicas may be spread across several, or even all,

surviving nodes. Broadly speaking, two approaches can be

taken when recovering the lost replicas: the data blocks to

be rebuilt can be read from all the nodes in which they are

present, and either (i) copied directly to a new node, or (ii)

copied to (reserved) spare space in all surviving nodes first

and then to a new node. The latter method is referred to as

distributed rebuild and has a clear advantage in terms of time

to rebuild because it exploits parallelism when writing to many

(surviving) nodes versus writing to only one (new) node.

During the rebuild process, an average read-write bandwidth

of cµ bytes/s is assumed to be reserved at each node exclu-

sively for the rebuild. This is usually only a fraction of the total



bandwidth available at each node; the remainder is being used

to serve user requests. In clustered placement, it is assumed

that there are spare nodes, and when a node fails, data is read

from any one of the surviving nodes of the cluster to which the

failed node belonged and written to a spare node at an average

rate cµ. Let Gµclus.
α

denote the cumulative distribution function

of the time taken to rebuild a fraction α of the node which has

a mean 1/µclus.
α = α/µ. In declustered placement, it is assumed

that sufficient spare space is reserved in each node for rebuild.

During rebuild, the data to be rebuilt is read from all surviving

nodes and copied to the spare space reserved in these nodes

in such a way that no data block is copied to the spare space

of a node in which a copy is already present. As data is being

read from and written to each surviving node, the total average

read-write rebuild bandwidth cµ of each node is equally split

between the reads and the writes. So if there are ñ surviving

nodes, the total average speed of rebuild in the system is

(ñcµ)/2. Therefore, the cumulative distribution function of

the time taken to rebuild a fraction α of the node is Gµdeclus.
α

with 1/µdeclus.
α = α/(ñµ/2). We assume that the distributions

Gµclus.
α

and Gµdeclus.
α

satisfy (2). In addition, sufficient network

bandwidth is assumed to be available to exploit parallelism

when rebuilding from all nodes of the system.

D. Estimation of PDL

We estimate PDL by modeling the system using exposure

levels [3].

1) Exposure Levels: At time t, let Dl(t) be the number of

distinct data blocks that have lost l replicas, with 0 ≤ l ≤ r.

The system is said to be in exposure level e at time t, 0 ≤
e ≤ r, if

e = max
Dl(t)>0

l. (26)

In other words, the system is in exposure level e if there exists

at least one block with r− e copies and no blocks with fewer

than r−e copies in the system, that is, De(t) > 0, and Dl(t) =
0 for all l > e. At t = 0, Dl(0) = 0 for all l > 0 and

D0(0) is the total number of distinct data blocks stored in the

system. Node failures and rebuild processes cause the values

of D1(t), · · · , Dr(t) to change over time, and when data loss

occurs, Dr(t) > 0.

2) Direct Path to Data Loss: Consider the direct path of

successive transitions from exposure level 1 to r. In [3] it was

shown that PDL can be approximated by the probability of the

direct path to data loss, PDL,direct, when nodes are generally

reliable, that is,

PDL ≈ PDL,direct =
r−1∏

e=1

Pe→e+1, (27)

where Pe→e+1 denotes the probability of transition from

exposure level e to e+ 1.

3) Rebuild Times at Each Exposure Level: Consider the

direct path to data loss and let the rebuild times of the most-

exposed data at each exposure level in this path be denoted by

Re, e = 1, · · · , r−1 with means 1/µe, e = 1, · · · , r−1. Next,

we will derive the conditional distributions of these rebuild

times given that the system goes through this direct path to

data loss, and then we will compute probabilities Pe→e+1.

Let αe be the fraction of the rebuild time Re still left when

a node failure occurs causing an exposure level transition. In

Appendix B, it is shown that αe is uniformly distributed, that

is,

αe ∼ U(0, 1), e = 1, · · · , r − 2. (28)

a) Clustered Placement: Following the first-node-failure

event, the system enters exposure level 1. As the amount of

data to be rebuilt at this exposure level is equal to the capacity

of the failed node, c, it holds that

1

µ1
= E[R1] =

1

µ
, R1 ∼ Gµ1

= Gµ. (29)

Given α1 and R1, the remaining time to complete rebuild

is α1R1. As the the average rebuild bandwidth is cµ, it now

follows that the expected amount of the most-exposed data not

rebuilt when the exposure level transition occurred is α1R1cµ.

At this instant, this data has lost 2 copies and is thus the

most-exposed data in exposure level 2. As the average rebuild

bandwidth remains unaffected, the expected rebuild time 1/µ2

in the second exposure level is

1

µ2
= E[R2|R1, α1] =

α1R1cµ

cµ
= α1R1. (30)

However the distribution of R2 given R1 and α1 could be

modeled in several ways. We propose two models, namely,

R2|R1, α1 ∼ Gµ2
(model A) (31)

R2|R1, α1 = 1/µ2 (model B) (32)

In model A, we assume that, following a node failure, the

system has to reconfigure its rebuild process entirely to rebuild

the most-exposed data blocks in the new exposure level. This

model may be applicable for instance in the case of a clustered

placement scheme, where the node from which data was being

rebuilt failed and hence the system has to rebuild from another

node in the cluster (if there is one). In this case, the rebuild

time R2 would be different from α1R1. In model B, we

assume that, following a node failure, the system has to do

little or no reconfiguration of the rebuild process to rebuild

the most-exposed data in the new exposure level. This is the

case where the newly failed node is different from the node

from which data is being rebuilt. Similarly, for higher exposure

levels, we have

1

µe
= E[Re|Re−1, αe−1] = αe−1Re−1 (33)

Re|Re−1, αe−1 ∼ Gµe
(model A) (34)

Re|Re−1, αe−1 = 1/µe (model B) (35)



b) Declustered Placement: In exposure level 1, the

amount of data to be rebuilt is c, just like in clustered place-

ment. However, the average rebuild bandwidth is (n−1)cµ/2
because of the parallel rebuild process. Therefore

1

µ1
= E[R1] =

c

(n− 1)cµ/2
=

1

(n− 1)µ/2
, R1 ∼ Gµ1

. (36)

Note however that, although E[R1] is lower for declustered

than clustered placement, this does not necessarily mean that

the probability of exposure level transition P1→2 is also

lower for declustered placement. This is because, in clustered

placement, there are only r − 1 nodes that can cause the

system to go to exposure level 2, whereas in declustered

placement, there are n − 1 nodes that can cause the system

to go to the next exposure level. Given α1 and R1, the

remaining time to complete rebuild is α1R1. As the average

rebuild bandwidth is (n − 1)cµ/2, it now follows that the

expected amount of data not rebuilt in exposure level 1 is

α1R1(n− 1)cµ/2. However, copies of only a fraction of this

data, r−1
n−1α1R1(n − 1)cµ/2 were shared by the newly failed

node due to the nature of the declustered placement scheme.

This implies that, in exposure level 2, the amount of most-

exposed data, that is, the data which have lost 2 copies, is

(r− 1)α1R1cµ/2. As the system performs intelligent rebuild,

that is, rebuilding the most-exposed data first, and as the total

average rebuild bandwidth is (n−2)cµ/2, the expected rebuild

time in exposure level 2 is

1

µ2
= E[R2|R1, α1] =

(r − 1)α1R1cµ/2

(n− 2)cµ/2
=

r − 1

n− 2
α1R1. (37)

Following similar arguments as in clustered placement, the

distribution of R2|R1, α1 could follow (31) or (32). Model

B may be applicable here as the system has to adapt from

rebuilding using, say ñ nodes, to using ñ− 1 nodes following

a node failure and so there is not much change in the

randomness associated with the rebuild process. Similarly, for

higher exposure levels, we get

1

µe
= E[Re|Re−1, αe−1] =

r − e+ 1

n− e
αe−1Re−1 (38)

Re|Re−1, αe−1 ∼ Gµe
(model A) (39)

Re|Re−1, αe−1 = 1/µe (model B) (40)

4) Conditional Probability of Exposure Level Transition:

Suppose there are ñ(e) nodes in exposure level e whose failure

before rebuild can cause the system to go to exposure level

e + 1. Denote the times to failure of these nodes by E
(i)
t ,

i = 1, · · · , ñ(e). According to Lemma 2, the distribution of

these times is F̃λ given by (21). Denote by Pe→e+1(Re) the

conditional probability of transition to exposure level e + 1
given that the rebuild time is Re. Then,

Pe→e+1(Re) = Pr{min
i

E
(i)
t ≤ Re}

= 1− (1− Pr{E
(i)
t ≤ Re})

ñ(e). (41)

Using (21) and (13), we have

Pr{E
(i)
t ≤ Re} = λ

∫ Re

0

(1− Fλ(t))dt ≈ λRe. (42)

Substituting the above equation in (41), and ignoring higher

powers of λRe, we get

Pe→e+1(Re) ≈ ñ(e)λRe. (43)

For clustered placement, the number of nodes whose failure

can cause an exposure level transition e → e + 1 is ñ(e) =
r − e. Thus,

P clus.
e→e+1(Re) ≈ (r − e)λRe. (44)

For declustered placement, ñ(e) = n− e. Thus,

P declus.
e→e+1(Re) ≈ (n− e)λRe. (45)

5) Expression for PDL: Consider a realization of the direct

path to data loss with fractions αe, e = 1, · · · , r − 2, and

Re, e = 1, · · · , r − 1, the rebuild times. Denote the vector

(α1, · · · , αr−2) by ~α and (R1, · · · , Rr−1) by ~R for notational

convenience, and denote the conditional probability of this

direct path by PDL,direct(~α, ~R). Then, using (43),

PDL,direct(~α, ~R) =

r−1∏

e=1

Pe→e+1(Re) ≈ λr−1
r−1∏

e=1

ñ(e)Re. (46)

By unconditioning on ~α and ~R, we now obtain

PDL,direct = E
[
PDL,direct(~α, ~R)

]
(47)

≈ λr−1E[R1R2 · · ·Rr−1]
r−1∏

e=1

ñ(e). (48)

Then by the direct path approximation (27), the probability

PDL is given by

PDL ≈ PDL,direct ≈ λr−1E[R1R2 · · ·Rr−1]

r−1∏

e=1

ñ(e), (49)

where ñ(e) = r− e for clustered placement and ñ(e) = n− e
for declustered placement.

E. Clustered vs. Declustered

As discussed in Section VI-D3, there are two models for

the times to rebuild in higher exposure levels. As it turns

out, closed form expressions of MTTDL under model A

can be obtained for certain families of rebuild distributions

Gµ including Weibull and exponential distributions. On the

other hand, closed form expressions of MTTDL are available

under model B for arbitrary rebuild distributions. Owing to

space limitation, we now proceed to obtain the expressions

for MTTDL under model B.

1) Clustered Placement: For clustered placement, substi-

tuting ñ(e) = r − e in (49), we get

P clus.
DL ≈ λr−1(r − 1)!E[

r−1∏

e=1

Re]

= λr−1(r − 1)!E[

r−2∏

e=1

Re · E[Rr−1|R1, · · · , Rr−2]].



Given Rr−2, Rr−1 is independent of R1, · · · , Rr−3. There-

fore, E[Rr−1|R1, · · · , Rr−2] = E[Rr−1|Rr−2]. Thus,

P clus.
DL ≈ λr−1(r − 1)!E[

r−2∏

e=1

Re · E[Rr−1|Rr−2]]

= λr−1(r − 1)!E[
r−2∏

e=1

Re · E[E[Rr−1|Rr−2, αr−2]]].

Substituting for E[Rr−1|Rr−2, αr−2], using (33), and given

that αr−2 is independent of R1, · · · , Rr−2 with αr−2 ∼
U(0, 1), we get

P clus.
DL ≈ λr−1(r − 1)!E[

r−2∏

e=1

Re · E[αr−2Rr−2|Rr−2]]

= λr−1(r − 1)!E[
R2

r−2

2

r−3∏

e=1

Re]. (50)

Similarly, using the assumption of model B from (35), and the

fact that αe ∼ U(0, 1) such that E[αk
e ] = 1/(k + 1), we get

E

[
Rk

e

e−1∏

i=1

Ri

]
= E

[
Rk+1

e−1

k + 1

e−2∏

i=1

Ri

]
(for model B) (51)

Using the above recursion, we get

P clus.
DL ≈ λr−1(r − 1)!E[Rr−1

1 ]
1

(r − 1)!
. (52)

Multiplying and dividing by E[R1]
r−1 and noting that

E[R1] = 1/µ from (29), we get

P clus.
DL ≈

(
λ

µ

)r−1
E[Rr−1

1 ]

E[R1]r−1
. (53)

According to (29), R1 ∼ Gµ, and by denoting the kth moment

of Gµ by mk(µ),

P clus.
DL ≈

(
λ

µ

)r−1
mr−1(µ)

m1(µ)r−1
. (54)

An estimate for the MTTDL then follows from (25):

MTTDLclus. ≈
µr−1

nλr

m1(µ)
r−1

mr−1(µ)
. (55)

Note that the above expressions (54) and (55) are valid under

rebuild model B as described in Section VI-D3.

Note that all calculations until (50) are also valid for

model A. However, after that, expressions of the form

E[Rk
e |Re−1, αe−1] need to be evaluated. From (33) and

(34), it follows that Re|Re−1, αe−1 ∼ Gµe
, where µe =

1/(αe−1Re−1). Therefore, E[Rk
e |Re−1, αe−1] = mk(µe) =

mk(1/(αe−1Re−1)). From this point on, it is difficult to carry

forward without a closed form expression of the function

mk(·) as we would then be requiring expectations of the form

E[Re−1m(1/(αe−1Re−1))]. However, one point worth noting

is that the above mentioned difficulties in model A do not

arise for r ≤ 3. In fact, model A and model B start to differ

in the MTTDL estimates only for r > 3. Therefore, in fact the

expression (55) is valid under both models for r ≤ 3. As an

example under model A, if Gµ is exponential, the expression

for MTTDL is

MTTDLclus. ≈
µr−1

nλr

m1(µ)
r−1

mr−1(µ)

r−3∏

e=1

1

(r − e− 1)e
(56)

2) Declustered Placement: For declustered placement, sub-

stituting ñ(e) = n− e into (49), we get

P declus.
DL ≈ λr−1E[

r−1∏

e=1

Re]
r−1∏

e=1

(n− e)

= λr−1E[

r−2∏

e=1

Re · E[Rr−1|R1, · · · , Rr−2]]

×

r−1∏

e=1

(n− e). (57)

Given Rr−2, Rr−1 is independent of R1, · · · , Rr−3. There-

fore, E[Rr−1|R1, · · · , Rr−2] = E[Rr−1|Rr−2]. Substituting

this above,

P declus.
DL ≈ λr−1(r − 1)!E[

r−2∏

e=1

Re · E[Rr−1|Rr−2]]

×

r−1∏

e=1

(n− e) (58)

= λr−1E[

r−2∏

e=1

Re · E[E[Rr−1|Rr−2, αr−2]]]

×

r−1∏

e=1

(n− e) (59)

Substituting for E[Rr−1|Rr−2, αr−2], using (38), and recall-

ing that αr−2 ∼ U(0, 1), we get

P declus.
DL ≈ λr−1E[

r−2∏

e=1

Re · E[αr−2Rr−2|Rr−2]]

×
r − (r − 1) + 1

n− (r − 1)

r−1∏

e=1

(n− e) (60)

= λr−1E[R2
r−2

r−3∏

e=1

Re]
1

2

r − (r − 1) + 1

n− (r − 1)

×
r−1∏

e=1

(n− e). (61)

Similarly, using the assumption of model B from (40), and

given that αe ∼ U(0, 1] such that E[αk
e ] = 1/(k + 1), we get

E

[
Rk

e

e−1∏

i=1

Ri

]
= E

[
Rk+1

e−1

k + 1

e−2∏

i=1

Ri

](
r − e+ 1

n− e

)k

(for model B) (62)

Using the above recursion and rewriting the product, we get

P declus.
DL ≈ λr−1E[Rr−1

1 ]
(n− 1)r−1

(r − 1)!

r−2∏

e=1

(
r − e

n− e

)r−e−1

(63)



Multiplying and dividing by E[R1]
r−1 and noting that

E[R1] = 2/((n− 1)µ) from (36), we get

P declus.
DL ≈

(
λ

µ

)r−1
2r−1

(r − 1)!

E[Rr−1
1 ]

E[R1]r−1

r−2∏

e=1

(
r − e

n− e

)r−e−1

(64)

Recognizing from (36) that R1 ∼ G(n−1)µ/2,

P declus.
DL ≈

(
λ

µ

)r−1
2r−1

(r − 1)!

r−2∏

e=1

(
r − e

n− e

)r−e−1

×
mr−1(

(n−1)µ
2 )

m1(
(n−1)µ

2 )r−1
. (65)

An estimate for the MTTDL then follows from (25):

MTTDLclus. ≈

(
λ

µ

)r−1
(r − 1)!

2r−1

r−2∏

e=1

(
n− e

r − e

)r−e−1

×
m1(

(n−1)µ
2 )r−1

mr−1(
(n−1)µ

2 )
. (66)

Note that the above expressions (65) and (66) are valid under

rebuild model B as described in Section VI-D3. It is also valid

under model A for r ≤ 3 as discussed in Section VI-E1.

F. Insensitivity to Failure Distributions

It can be observed by comparing the results of the analysis

in (55) and (66) with that done in [3] using exponential

distribution for times to node failure and deterministic rebuild

times, that the results are indeed insensitive to the actual

distributions of the times to failure as long as the nodes

are generally reliable. It must however be noted that, we

have an additional level of approximation in this paper when

compared to [3] by neglecting the effect of the transient period

of the system. In essence, the approximation lies in using

the stationary node-excess-time distribution F̃λ for the entire

lifetime of the system. Note that, for an exponential failure

distribution F̃λ is the same as Fλ.

G. Sensitivity to Rebuild Distributions

Distribution of rebuilds affect the reliability of the system

by a varying degree that depends on the replication factor. For

replication factor two, the distribution of rebuild does not have

any effect at all. For higher replication factors, randomness in

rebuild times affects the reliability by a factor equal to the

ratio of the (r − 1)th moment to the (r − 1)th power of the

first moment. This is because of the effect commonly known

as waiting time paradox. In this context, node failures tend to

occur in longer rebuild intervals, which in turn translates to

larger amounts of exposed data.

The modeling assumptions as discussed in Section VI-D3

also have an effect on the reliability. We considered two

main modeling assumptions: 1) Under the so-called model

A, we assume that the randomness in the rebuild process is

completely refreshed every time an exposure level transition

occurs. This has an effect of further increasing the randomness

of the rebuild times as the system goes to higher exposure

levels, and therefore results in lower reliability; 2) Under the

so-called model B, we assume that the randomness in the

rebuild process is not affected at all (or is affected negligibly)

when an exposure level transition occurs. This model results

in higher reliability than model A. It was also found that these

two models agree on the reliability for r ≤ 3 and start to differ

only for r > 3.

VII. SIMULATION

The storage system is simulated using an event-driven

simulator with three types of events that drive the simulation

time forward: (a) failure events, (b) rebuild-complete events,

and (c) node-restore events. The state of the system is main-

tained by the following variables: time, the simulated time,

failTimes, a list of times to next failure of each node drawn

according to the chosen failure distribution, failedNodes,

the list of nodes that have failed in the system and are being

rebuilt, exposureLevel, the exposure level, and a vector of

length (r+ 1) dataExposure = (D0, · · · , Dr), where Dl is

the number of distinct data blocks that have lost l replicas.

The values of these variables are updated at each event, and

when Dr > 0, data loss is said to have occurred and the

simulation ends. For each set of parameters, the simulation

is run 100 times, and the MTTDL and its bootstrap 95%
confidence intervals are computed.

A. Theory vs. Simulation

Although some of the assumptions used in the theoretical

analysis, such as independence of node failures, are also used

in the simulation, the simulation results reflect a more realistic

picture of the systems’s reliability. This is because of the

following key differences between the theoretical analysis and

the simulations. The theoretical estimate of MTTDL in (25)

takes into account only the time spent by the system in the

failure-free state and ignores the rebuild times, whereas the

simulations do not ignore the rebuild times when calculat-

ing the times to data loss. Furthermore, in (27), PDL is

approximated by the probability of the direct path to data

loss, thereby implicitly assuming that this is the only path

following a first-node-failure event that would lead to data

loss. In simulations however, all the complex trajectories of the

system through the different exposure levels are simulated by

simulating random node failure events and updating the data

exposure vector by taking partial rebuilds into account. In the

theoretical analysis, the time required to restore new nodes in a

declustered placement scheme (following successful rebuild of

lost replicas in the spare space of surviving nodes) is ignored,

whereas in the simulations, the time to restore new nodes

is simulated as well. In addition, other approximations made

in the analysis, such as neglecting the effect of the transient

period of the system, are implicitly avoided in the simulations.

Therefore, the simulations reflect a more complex picture of

the system behavior than what is assumed in theory.

B. Simulation Results

Table II shows the range of parameters used for the simu-

lations. Typical values for practical systems are used for all



TABLE II
RANGE OF VALUES OF DIFFERENT SIMULATION PARAMETERS

Parameter Meaning Range

c storage capacity of each node 12 TB
n number of storage nodes 4 to 50

r replication factor 2, 3
cµ rebuild bandwidth available at each node 96 MB/s

1/λ mean time to failure of a node 10
3 to 10

4 h

parameters, except for the mean times to failure of a node,

which have been chosen artificially low (10000 h and 1000
h for replication factors 2 and 3, respectively) to shorten

the simulation times. The running times of simulations with

practical values of the mean times to node failure, which are

of the order of 10000 h or higher, are prohibitively high; this

is due to the fact that PDL becomes extremely low thereby

making the number of first-node-failure events that need to

be simulated (along with the other complex set of events that

restore all lost replicas following each first-node-failure event)

extremely high for each run of the simulation. Although this

approach scales down the MTTDL by making failure events

more frequent, its use is justified because it preserves the ratios

of MTTDLs of the various schemes [6].

Replication Factor 2: Fig. 1 shows the comparison of theo-

retically predicted and simulation-based MTTDL values for a

system with replication factor 2 and mean time to failure of a

node, 1/λ, equal to 10000 h as the number of nodes n in the

system is varied. From (55) and (66), for r = 2, the MTTDL

of a system with deterministic rebuild times is given by

MTTDLclus. ≈ µ/(nλ2), (67)

MTTDLdeclus. ≈ µ/(2nλ2), (68)

irrespective of the underlying failure distribution. It is observed

that the theoretically predicted values, although approximate,

match well the simulation-based values as they typically lie

within the 95% confidence intervals. This also holds when the

failure distribution is varied from exponential to Weibull and

when the shape parameter of the Weibull distribution is altered.

We notice however that, there is a slight deviation from the

theoretical value for Weibull distribution with shape parameter

0.7 as the number of nodes increases. This is however expected

as Weibull shape parameters less than one represent nodes with

high infant mortality and do not necessarily satisfy condition

(2) as discussed in Section III. Note that, for replication

factor 2, the MTTDL is also invariant with respect to the

rebuild distribution. This is because the terms involving higher

moments of the rebuild distribution do not appear in the

expressions for MTTDL (55) and (66).

Although the mean of the times to data loss, that is the

MTTDLs, are invariant with respect to the node failure dis-

tribution, the cumulative distribution functions of the times to

data loss depends on the underlying node failure distribution.

This is shown in Fig. 2 by the empirical distributions of the

time to data loss for two cases of node failure distribution,

namely, exponential and Weibull (with shape 1.2). Although

the MTTDL is the same for both distributions (29314 days),
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Fig. 1. Comparison of theoretically predicted and simulated values of
MTTDL for a replication factor of two with mean time to failure of
a node equal to 10000 h. Simulations are done with deterministic
rebuild times and exponential or Weibull distributions for failure
times. For the simulated results, 95% bootstrap confidence intervals
are shown.
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Fig. 2. Comparison of empirical cumulative distribution functions of
the time to data loss for exponential and Weibull failure distributions.
The above graph is for a system with a replication factor of two,
six nodes, each with mean time to failure of 10000 h, clustered
placement, and deterministic rebuilds.

the probability that data loss occurs within shorter durations

(of the order of 1000 days) is much higher for Weibull

distribution than for exponential distribution.

Replication Factor 3: From (55) and (66), for replication

factor r = 3, the MTTDL of a system with deterministic

rebuilds is given by

MTTDLclus. ≈ µ2/(nλ3), (69)

MTTDLdeclus. ≈ (n− 1)µ2/(4nλ3), (70)
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Fig. 3. Comparison of theoretically predicted and simulated values of
MTTDL for a replication factor of three with mean time to failure of a
node equal to 1000 h. Simulations are done with deterministic rebuild
times and exponential or Weibull distributions for failure times. For
the simulated results, 95% bootstrap confidence intervals are shown.

irrespective of the underlying failure distribution. Theoretical

estimates of MTTDL match well with the simulation-based

values as seen in Fig. 3 as the underlying failure distribution

is varied. In contrast, the MTTDL depends on the second

moment of the rebuild distribution as seen in (55) and (66).

For instance, for an exponential rebuild distribution, MTTDL

expressions (55) and (66) reduce to

MTTDLclus. ≈ µ2/(2nλ3), (71)

MTTDLdeclus. ≈ (n− 1)µ2/(8nλ3). (72)

irrespective of the underlying failure distribution. In essence,

the MTTDLs are half of those corresponding to deterministic

rebuilds. This is confirmed by simulations as shown in Fig. 4,

where the failure distribution is kept the same (exponential)

while the rebuild times are chosen to be either deterministic

or exponentially distributed.

C. Summary of Findings

The following lists the findings of this paper:

• The MTTDL expressions (55) and (66) are invariant with

respect to the distribution of times to node failures as

long as the distribution satisfies (2). This implies that

the results obtained in literature assuming exponential

distributions may be applicable to other distributions as

well.

• Condition (2) is satisfied by a wide variety of failure

and rebuild distributions, including most importantly, real

world distributions.

• Although, the MTTDL is invariant with respect to the

failure time distribution, the actual distribution of the

time to data loss may in fact depend on the failure time

distribution.
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Fig. 4. Comparison of theoretically predicted and simulated values of
MTTDL for a replication factor of three with mean time to failure of
a node equal to 1000 h. Simulations are done with exponential distri-
bution for failure times and deterministic or exponentially distributed
rebuild times. For the simulated results, 95% bootstrap confidence
intervals are shown.

• The MTTDL expressions (55) and (66) depend on the

rebuild time distribution. More specifically, the MTTDL

is inversely proportional to the (r − 1)th moment of

the rebuild time distribution, where r is the replication

factor used. Therefore, rebuild distributions with higher

variability lead to lower MTTDL.

• The dependence of MTTDL on rebuild distributions

arises because of a phenomenon commonly referred to as

the waiting time paradox. Essentially, given that a failure

occurred during rebuild, it is more likely that the rebuild

period was lengthier, and therefore a larger proportion

of data not rebuilt becomes exposed. This leads to a

cascading effect of a larger expected rebuild time for

most-exposed data blocks.

VIII. CONCLUSIONS

In this paper, we presented a general reliability model for

data storage systems that includes a wide-variety of failure

and rebuild distributions, including, most importantly, those

observed in real world systems. For systems with generally

reliable nodes, our analysis demonstrated that the expressions

for MTTDL are essentially invariant within a large class of

failure distributions. This result is significant because this class

includes both real world distributions, such as Weibull which

are difficult to analyze theoretically, as well as the exponential

distribution, which is amenable to theoretical analysis. This

implies that many MTTDL results derived in the literature

assuming exponential failure distributions may hold even un-

der other more realistic distributions. We also showed that the

MTTDL is affected by the variability of rebuild distributions;

rebuild distributions having higher variability are shown to

have lower MTTDL values. How the relative values of the



MTTDLs relate to the relative values of their corresponding

reliability functions is a subject of further investigation.
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APPENDIX A

MEAN OPERATIONAL PERIOD OF THE SYSTEM

The following derivation of the mean operational period of

a system has been adapted from [13, Chap. 2, pp. 139–140].

Let

F̃
(i)
λ,At

(τ) := Pr{A
(i)
t ≤ τ |ν

(i)
t = 1}, (73)

F̃
(i)
λ,Et

(τ) := Pr{E
(i)
t ≤ τ |ν

(i)
t = 1}. (74)

According to Lemma 2, the above sequences, F̃
(i)
λ,At

and F̃
(i)
λ,Et

,

converge pointwise to F̃λ:

lim
t→∞

F̃
(i)
λ,At

(τ) = lim
t→∞

F̃
(i)
λ,Et

(τ) = F̃λ(τ), (75)

for i = 1, · · · , n, where F̃λ is given by (21). If E(i)(t,∆t, τ)
denotes the event that the node i was renewed in the interval

(t − ∆t, t), that it operates without failure in (t, t + τ), and

that the remaining nodes operate without failure in (t, t+ τ),
then the event E(t,∆t, τ) can be written as the disjoint union

E(t,∆t, τ) = E(1)(t,∆t, τ) ∪ · · · ∪ E(n)(t,∆t, τ), (76)

by ignoring events that have probabilities of higher order in

∆t such as more than one rebuild event within a ∆t time

period. Therefore,

Pr{E(t,∆t, τ)} =

n∑

i=1

Pr{E(i)(t,∆t, τ)}

=

n∑

i=1

[
Pr{A

(i)
t ≤ ∆t, E

(i)
t > τ, ν

(i)
t = 1}

×

n∏

j=1
j 6=i

Pr{E
(j)
t > τ, ν

(j)
t = 1}

]
.(77)

The first term in the summation above can be expanded as

Pr{A
(i)
t ≤ ∆t, E

(i)
t > τ, ν

(i)
t = 1} (78)

= Pr{ν
(i)
t = 1}Pr{A

(i)
t ≤ ∆t|ν

(i)
t = 1}

·Pr{E
(i)
t > τ |A

(i)
t ≤ ∆t, ν

(i)
t = 1}

= a
(i)
t F̃

(i)
λ,At

(∆t)(1− Fλ,∆t(τ)) (79)

Here, (79) follows from (16), (73), and (74) and Fλ,∆t(τ)
converges to Fλ(τ) as ∆t tends to zero. Furthermore, as

F̃
(i)
λ,At

(∆t) converges to F̃λ(∆t) by Lemma 2, using (21), we

can write F̃
(i)
λ,At

(∆t) as

F̃
(i)
λ,At

(∆t) = λ∆t+ o(∆t), (80)

where the small-‘o’ notation is used to denote that the term

o(∆t) tends to zero faster than ∆t as ∆t tends to zero.

Therefore, (79) reduces to

Pr{A
(i)
t ≤ ∆t, E

(i)
t > τ, ν

(i)
t = 1}

= a
(i)
t λ∆t(1− Fλ,∆t(τ)) + o(∆t). (81)

Using (16) and (74), the product term in (77) can be expanded

as follows:

n∏

j=1
j 6=i

Pr{E
(j)
t > τ, ν

(j)
t = 1}

=

n∏

j=1
j 6=i

Pr{ν
(j)
t = 1}Pr{E

(j)
t > τ |ν

(j)
t = 1}

=
n∏

j=1
j 6=i

a
(j)
t (1− F̃

(j)
λ,Et

(τ)). (82)

Substituting (81) and (82) into (77), we get

Pr{E(t,∆t, τ)} = λ∆t(1− Fλ,∆t(τ))

×

n∑

i=1

[
a
(i)
t

n∏

j=1
j 6=i

a
(j)
t (1− F̃

(j)
λ,Et

(τ))

]
+ o(∆t). (83)

Similar to the calculations above for Pr{E(t,∆t, τ},

the probability Pr{E(t,∆t)} can be computed by writing

E(t,∆t) as a disjoint union of events. The result is:

Pr{E(t,∆t)} = λ∆t

n∑

i=1

[
a
(i)
t

n∏

j=1
j 6=i

a
(j)
t

]
+ o(∆t). (84)

Substituting (83) and (84) into (22) and computing the limit

as ∆t tends to zero, we get

pt(τ) = lim
∆t→0

Pr{E(t,∆t, τ)}

Pr{E(t,∆t)}

= (1− Fλ(τ))

×

∑n
i=1

[
a
(i)
t

∏n
j=1
j 6=i

a
(j)
t (1− F̃

(j)
λ,Et

(τ))
]

∑n
i=1

[
a
(i)
t

∏n
j=1
j 6=i

a
(j)
t

] .(85)

Using (17), (75), and (21), (85) yields

lim
t→∞

pt(τ) = (1− Fλ(τ))(1− F̃λ(τ))
(n−1)

= −
1

nλ

d

dτ
(1− F̃λ(τ))

n, (86)

Thus,

T = lim
t→∞

Tt = lim
t→∞

∫ ∞

0

pt(τ)dτ. (87)

From (85), it can be seen that pt(τ) ≤ 1 − F (τ). As 1 −
F (τ) is integrable, by the dominated convergence theorem, the



limit and the integral can be exchanged in the above equation.

Therefore,

T =

∫ ∞

0

lim
t→∞

pt(τ)dτ

=

∫ ∞

0

−
1

nλ

d

dτ
(1− F̃λ(τ))

n =
1

nλ
.

APPENDIX B

FRACTION OF DATA REBUILT

Suppose there are ñ nodes whose failure during rebuild

can cause an exposure level transition. Denote the times to

failures of these nodes by E
(i)
t , i = 1, · · · , ñ. According to

Lemma 2 and the node-failure independence assumption, in

the stationary period of the system, E
(i)
t are independent and

identically distributed according to F̃λ.

We are interested in the fraction α of rebuild time left when

a node failure occurs, given that this failure occurred before

rebuild completes, that is,

α = (R−min
i

E
(i)
t )/R, given that min

i
E

(i)
t < R.

The distribution function of α for x ∈ (0, 1] is

Pr{α ≤ x} = Pr

{
R−mini E

(i)
t

R
≤ x

∣∣∣∣∣min
i

E
(i)
t < R

}

=
Pr{R(1− x) ≤ mini E

(i)
t < R}

Pr{mini E
(i)
t < R}

= 1−
Pr{mini E

(i)
t < R(1− x)}

Pr{mini E
(i)
t < R}

= 1−
1− (1− Pr{Et < R(1− x)})ñ

1− (1− Pr{Et < R})ñ
. (88)

It is shown in Appendix C that

Pr{Et < R} = λ/µ+ o(λ/µ),

Pr{Et < R(1− x)} = (1− x)λ/µ+ o((1− x)λ/µ).

Therefore,

Pr{α ≤ x} = 1−
ñ(1− x)λ/µ+ o((1− x)λ/µ)

ñλ/µ+ o(λ/µ)
≈ x. (89)

This means that, for highly reliable systems, α is uniformly

distributed between zero and one.

APPENDIX C

PROBABILITY OF FAILURE BEFORE REBUILD COMPLETION

According to (20) and (21), it holds that

Pr{Et < R} =

∫ ∞

τ=0

F̃λ(τ)dGµ(τ)

=

∫ ∞

τ=0

λ

∫ τ

t=0

(1− Fλ(t))dtdGµ(τ).

Changing the order of integrals, yields after some manipula-

tions

Pr{Et < R} =
λ

µ

(
1− µ

∫ ∞

t=0

Fλ(t)(1−Gµ(t))dt

)
.

In the last step above, we used the fact that integrating the

complementary cumulative distribution function 1 − Gµ(t)
gives the mean 1/µ. As the functions Fλ and Gµ satisfy (13)

and (14) respectively, it can be seen that the second term inside

the parantheses is o(1). Therefore,

Pr{Et < R} = λ/µ+ o(λ/µ).

Similarly the following can also be shown for any x ∈ (0, 1):

Pr{Et < Rx} = xλ/µ+ o(xλ/µ).
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