
RZ 3818 (# Z1204-004) 04/20/2012
Computer Science 25 pages

Research Report

A Language Framework for Privacy-Preserving Attribute-Based Authen-
tication

Jan Camenisch1, Maria Dubovitskaya1, Anja Lehmann1, Gregory Neven1, Christian Paquin2, and
Franz-Stefan Preiss1

1IBM Research Zurich
8803 Rüschlikon
Switzerland

2Microsoft Research

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Brazil · Cambridge · China · Haifa · India · Tokyo · Watson · Zurich

A Language Framework for Privacy-Preserving
Attribute-Based Authentication

Jan Camenisch1, Maria Dubovitskaya1, Anja Lehmann1,
Gregory Neven1, Christian Paquin2, and Franz-Stefan Preiss1

1 IBM Research – Zurich
2 Microsoft Research

Abstract. Existing cryptographic realizations of privacy-friendly authentication
mechanisms such as anonymous credentials, minimal disclosure tokens, self-
blindable credentials, and group signatures vary largely in the features they offer
and in how these features are realized. Some features such as revocation or de-
anonymization even require the combination of several cryptographic protocols.
These differences and the complexity of the cryptographic protocols hinder the
deployment of these mechanisms for practical applications and also make it al-
most impossible to switch the underlying cryptographic algorithms once the ap-
plication has been designed. In this paper, we aim to bridge this gap and simplify
the design and deployment of privacy-friendly authentication mechanisms. We
unify the different concepts and features and define privacy-preserving attribute-
based credentials (Privacy-ABCs), provide a language framework in XML schema,
and give a semantics to describe the effect of the different transactions in a
privacy-friendly authentication system using Privacy-ABCs. Our language frame-
work enables application developers to use Privacy-ABCs with their different fea-
tures without having to consider the specific cryptographic algorithms under the
hood, similarly as they do today for digital signatures, where they do not need to
worry about the particulars of the RSA and DSA algorithms either.

1 Introduction

More and more transactions in our daily life are performed electronically and the secu-
rity of these transactions is an important concern. Strong authentication and according
authorization based on certified attributes of the requester is paramount for protecting
critical information and infrastructures online.

Most existing techniques for transfering trusted user attributes cause privacy con-
cerns. In systems where an online identity provider creates access tokens on demand,
such as SAML, OpenID, or WS-Federation, the identity provider can impersonate its
users and can track a user’s moves online. Systems with offline token creation, such as
X.509 certificates and some WS-Trust profiles, force the user to reveal more attributes
than strictly needed (as otherwise the issuer’s signature cannot be verified) and make
her online transactions linkable across different websites.

These drawbacks can be overcome with privacy-preserving authentication mech-
anisms based on advanced cryptographic primitives such as anonymous credentials,
minimal disclosure tokens, self-blindable credentials, or group signatures [12, 9, 14,
17, 5, 33]. In these schemes, users obtain certified credentials for their attributes from

trusted issuers and later derive, without further assistance from any issuer, unlinkable
tokens that reveal only the required attribute information yet remain verifiable under the
issuer’s public key. Well-known examples being Brands’ scheme [9] and Camenisch-
Lysyanskaya’s scheme [14], which have been implemented in Microsoft’s U-Prove [32]
and IBM’s Identity Mixer [22], respectively. Both implementations are freely available
and efficient enough for practical use, yet the real-world adoption is slower than one
may hope.

One possible reason for the slow adoption of privacy-preserving authentication tech-
nologies might be that the various schemes described in the literature have a large set of
features where similar features are often called differently or are realized with different
cryptographic mechanisms. Many of the features such as credential revocation, efficient
attribute encoding, or anonymity lifting even require a combination of separate crypto-
graphic protocols. This makes these technologies hard to understand and compare and,
most importantly, very difficult to use.

To overcome this, in this paper we provide unified definitions of the concepts and
features of the different privacy-preserving authentication mechanisms. We will refer to
this unification as privacy-preserving attribute-based credentials or Privacy-ABCs. Our
definitions abstract away from the concrete cryptographic realizations but are carefully
crafted so that they can be instantiated with the different cryptographic protocols—or
a combination of them. To enable the use and integration of Privacy-ABCs in authen-
tication and authorization systems, we further present cryptography-agnostic defini-
tions of all concepts as well as a language framework with data formats for, e.g., poli-
cies and claims. All languages are specified in XML schema and separate the ab-
stract functionality expected from the underlying cryptographic mechanisms from the
opaque containers for the cryptographic data itself. Thus, these languages allow appli-
cation developers to employ Privacy-ABCs without having to think about their crypto-
graphic realization, similarly to how digital signatures or encryption can be used today.
The language described in this paper has been implemented in the ABC4Trust project
(www.abc4trust.eu) and will be made available as part of a reference implementation
of a Privacy-ABC system which will include a number of cryptographic solutions.

Finally, we present a formal semantics that precisely defines the meaning of our
comprehensive language and their expressed features. Such a rigorous mathematical
description, for instance, allows to determine whether a user can fulfill a given authen-
tication policy with her credential portfolio or whether a derived access token satisfies a
policy. As our language covers the entire Privacy-ABC system, we also provide seman-
tics that describe the intended system behaviour, i.e., the effects of state transitions—
which are steered by our language—on the different entities and their knowledge states.

2 Related work

Our work is based on the card-based access control requirements language (CARL)
recently proposed Camenisch et al. [18]. CARL allows a service provider (verifier) to
specify which attributes certified by whom a user needs to present in order to get ac-
cess. Compared to our work, CARL defines only a small part of a Privacy-ABC system,
namely the presentation policy, but does not consider how these attributes are transmit-

ted nor how credentials are issued or revoked. Bichsel et al. [6] have extended CARL
to cover the transmission of certified attributes. The U-Prove token format [32] covers
credential issuance and presentation but only supports selective attribute disclosure. It
does not consider other features such as attribute predicates, inspection, key binding,
(cryptographic) pseudonyms, or revocation.

Privacy-ABCs can be used to realize a privacy-respecting form of attribute-based
access control. Traditional attribute-based access control [7, 36, 34], however, does not
see attributes as grouped together in a credential or token. Thus our framework allows
one to realize more specific and more precise access control policies. Also, role-based
access control [20, 30] can be seen as a special case of our attribute-based setting by
encoding a user’s roles as attributes. Recent work [23] extended RBAC with privacy-
preserving authentication for the particular case of role and location attributes.

Bonatti and Samarati [7] also propose a language for specifying access control rules
based on “credentials”. The language focuses on credential ownership and does not al-
low for more advanced requirements such as for example revealing of attributes, signing
statements, or inspection. The same is true for the languages proposed by Ardagna et
al. [2] and by Winsborough et al. [35]. However, the latter allows one to impose at-
tribute properties on credentials and its extension by Li et al. [25] supports revealing
of attributes. The Auth-SL language [28] focuses on multi-factor authentication and
enables the policy author to specify restrictions on the properties of the authentication
mechanisms themselves, but not on attributes of individual users.

The language by Ardagna et al. [1] can also be considered as a predecessor to our
language in the sense that it focuses on anonymous credential systems and some of
the advanced features. However, it considers only the presentation phase and is less
expressive than ours, for instance, it cannot express statements involving attributes from
different credentials.

VeryIDX [27] is a system to prevent identity theft by permitting the use of certain
identity attributes only in combination with other identity attributes. So-called verifi-
cation policies specify which attributes have to be presented together. However, these
policies are introduced only conceptually without any details on exact expressivity, syn-
tax, or semantics.

Several logic-based, technology-neutral approaches to distributed access control
have been proposed [3, 4, 21, 24]. However, none of these have been designed with
Privacy-ABCs in mind. In particular, they do not support selective disclosure of at-
tributes, proving predicates over attributes, or attribute inspection.

So, our language framework is the first that covers the whole life-cycle of Privacy-
ABCs and also the first one unifying the whole breadth of their features.

3 Concepts and Features

Figure 1 gives an overview of the entities involved in Privacy-ABC systems and the
interactions between them. These entities are users, issuers, verifiers, inspectors and
revocation authorities. Each issuer generates a secret issuance key and publishes the
issuer parameters that include the corresponding public verification key. Similarly, each

Fig. 1. Entities and interactions diagram.

inspector generates a private decryption key and a corresponding public encryption key,
and each revocation authority generates and publishes its revocation parameters.

Pseudonyms. Each user generates a secret key. Unlike traditional public-key authen-
tication schemes, however, there is no single public key corresponding to the secret
key. Rather, the user can generate as many public keys as she wishes. These public keys
are called pseudonyms in Privacy-ABCs. Pseudonyms are cryptographically unlinkable,
meaning that given two different pseudonyms, one cannot tell whether they were gener-
ated from the same or from different secret keys. By generating a different pseudonym
for every verifier, users can thus be known under different unlinkable pseudonyms to
different sites, yet use the same secret key to authenticate to all of them.

While it is sufficient for users to generate a single secret key, they can also have mul-
tiple secret keys. A secret key can be generated by a piece of trusted hardware (e.g., a
smart card) that stores and uses the key in computations (e.g., to generate pseudonyms),
but that never reveals the key. The key is thereby “bound” to the hardware, in the sense
that it can only be used in combination with the hardware.

There are situations, however, where the possibility to generate an unlimited num-
ber of unlinkable pseudonyms is undesirable. For example, in an online opinion poll,
users should not be able to bias the result by entering multiple votes under different
pseudonyms. In such situations, the verifier can request a special pseudonym called a
scope-exclusive pseudonym, which is unique for the user’s secret key and a given scope
string. Scope-exclusive pseudonyms for different scope strings remain unlinkable, just
like normal pseudonyms. By using the URL of the opinion poll as the scope string, for
example, the verifier can ensure that each user can only register a single pseudonym to
vote.

Credentials and Key Binding. A credential is a certified container of attributes is-
sued by an issuer to a user. Formally, an attribute is described by the attribute type
that determines the semantics of the attribute (e.g., first name) and the attribute value
that determines its contents (e.g., “John”). By issuing a credential, the issuer vouches
for the correctness of the contained attributes with respect to the user. The credential
specification lists the attribute types that are encoded in a credential. A credential spec-
ification can be created by the issuer, or by an external authority so that multiple issuers
can issue credentials according to the same specification. The credential specification
must be published and distributed over a trusted channel. How exactly this is done goes

beyond the scope of our language framework; the specification could for example be
digitally signed by its creator.

Optionally, a credential can be “bound” to a user’s secret key, meaning that it cannot
be used without knowing the secret key. We call this option key binding. It is some-
what analogous to traditional public-key certificates, where the certificate contains the
CA’s signature on the user’s public key, but unlike traditional public-key certificates, a
Privacy-ABC is not bound to a unique public key: it is only bound to a unique secret
key. A user can derive as many pseudonyms as she wishes from this secret key and
(optionally) show that they were derived from the same secret key that underlies the
credential.

Presentation. To authenticate to a verifier, the user first obtains the presentation policy
that describes which credentials the user must present and which information from these
credentials she must reveal. If the user possesses the necessary credentials, she can
derive from these credentials a presentation token that satisfies the presentation policy.
The validity of a presentation token can be checked using the issuer parameters of all
credentials underlying the presentation token.

Presentation tokens derived from Privacy-ABCs only reveal the attributes that were
explicitly requested by the presentation policy – all the other attributes contained in the
credentials remain hidden. Moreover, presentation tokens are cryptographically unlink-
able (meaning no collusion of issuers and verifiers can tell whether two presentation
tokens were generated by the same user or by different users) and untraceable (meaning
that no such collusion can correlate a presentation token to the issuance of the underly-
ing credentials). Of course, presentation tokens are only as unlinkable as the information
they intentionally reveal.

Rather than requesting and revealing full attribute values, presentation policies and
tokens can also request and reveal predicates over one or more issued attributes. For
example, a token could reveal that the name on the user’s credit card matches that on
her driver’s license, without revealing the name. As another example, a token could
reveal that the user’s birthdate is before January 1st, 1994, without revealing her exact
birthdate.

Issuance. In the simplest setting, an issuer knows all attribute values to be issued and
simply embeds them into a credential. Privacy-ABCs also support advanced issuance
features where attributes are blindly “carried over” from existing credentials, without
the issuer becoming privy to their values. Similarly, the issuer can blindly issue self-
claimed attribute values (i.e., not certified by an existing credential), carry over the
secret key to which a credential is bound, or assign a uniformly random value to an
attribute such that the issuer cannot see it and the user cannot bias it.

Advanced issuance is an interactive protocol between the user and the issuer. In
the first move, the issuer provides the user with an issuance policy that consists of a
presentation policy specifying which pseudonyms and/or existing credentials the user
must present, and of a credential template specifying which attributes or secret keys of
the newly issued credential will be generated at random or carried over from creden-
tials or pseudonyms in the presentation policy. In response, the user sends an issuance
token containing a presentation token that satisfies the issuance policy. Then the (pos-

sibly multi-round) cryptographic issuance protocol ensues, at the end of which the user
obtains the new credential.

Inspection. Absolute user anonymity in online services easily leads to abuses such
as spam, harassment, or fraud. Privacy-ABCs provide the option to add accountability
for misbehaving users through a feature called inspection. Here, a presentation token
contains one or more credential attributes that are encrypted under the public key of a
trusted inspector. The verifier can check that the correct attribute values were encrypted,
but cannot see their actual values. The inspection grounds describe the circumstances
under which the verifier may call upon the inspector to recover the actual attribute
values. The inspector is trusted to collaborate only when the inspection grounds have
been met; verifiers cannot change the inspection grounds after receiving a presentation
token, as the grounds are cryptographically tied to the token.

The presentation policy specifies which attributes from which credentials have to be
encrypted, together with the inspector public keys and inspection grounds they have to
be encrypted.

Revocation. Credentials may need to be revoked for several reasons: the credential and
the related user secrets may have been compromised, the user may have lost her right
to carry a credential, or some of her attribute values may have changed. In such cases,
credentials need to be revoked globally and we call this issuer-driven revocation. Some-
times credentials may be revoked only for specific contexts. For example, a hooligan
may see his digital identity card revoked for accessing sport stadiums, but may still use
it for all other purposes. We call this verifier-driven revocation.

Revocation for Privacy-ABCs is cryptographically more complicated than for clas-
sical certificates, but many efficient mechanisms exist [16, 29, 8, 13, 26]. Bar a few ex-
ceptions, all of them can be used for both issuer-driven and verifier-driven revocation.

We describe revocation in a generic mechanism-agnostic way and consider creden-
tials to be revoked by dedicated revocation authorities. They are separate entities in
general, but may be under the control of the issuer or verifier in particular settings. The
revocation authority publishes static revocation authority parameters and periodically
publishes the most recent revocation information. When creating presentation tokens,
users prove that their credentials have not been revoked, possibly using non-revocation
evidence that they fetch and update from the revocation authority. The revocation au-
thority to be used is specified in the issuer parameters for issuer-driven revocation and
in the presentation policy for verifier-driven revocation. When a credential is subject
to issuer-driven revocation, a presentation token related to this credential must always
contain a proof that the presented credential has not been revoked. Issuer-driven revoca-
tion is performed based on the revocation handle, which is a dedicated unique attribute
embedded in a credential. Verifier-driven revocation can be performed based on any
combination of attribute values, possibly even from different credentials. This allows
the revocation authority for example to exclude certain combinations of first names and
last names to be used in a presentation token.

4 Language Framework

Given the multitude of distributed entities involved in a full-fledged Privacy-ABC sys-
tem, the communication formats that are used between these entities must be specified
and standardized.

None of the existing format standards for identity management protocols such as
SAML, WS-Trust, or OpenID support all Privacy-ABCs’ features. Although, most of
them can be extended to support a subset of these features, we define for the sake
of simplicity and completeness a dedicated language framework which addresses all
unique Privacy-ABC features. Our languages can be integrated into existing identity
management systems.

In this section we introduce our framework covering the full life-cycle of Privacy-
ABCs, including setup, issuance, presentation, revocation, and inspection. As the main
purpose of our data artifacts is to be processed and generated by automated policy
and credential handling mechanisms, we define all artifacts in XML schema notation,
although one could also create a profile using a different encoding such as ASN.1 or
JSON.

The XML artifacts formally describe and orchestrate the underlying cryptographic
mechanisms and provide opaque containers for carrying the cryptographic data. When-
ever appropriate, our formats also support user-friendly textual names or descriptions
which allow to show a descriptive version of the XML artifacts to a user and to involve
her in the issuance or presentation process if necessary.

For didactic purposes we describe the different artifacts realizing the concepts from
Section 3 by means of examples. The full schema is available in [11]. In what follows,
we explicitly distinguish between user attributes (as contained in a credential) and XML
attributes (as defined by XML schema) whenever they could be confused.

4.1 Credential Specification

Recall that the credential specification describes the common structure and possible
features of credentials. For example, suppose the Republic of Utopia issues electronic
identity cards to its citizens containing their full name, state, and date of birth. Utopia
may issue Privacy-ABCs according to the credential specification shown in Figure 2.

01 <CredentialSpecification KeyBinding="true" Revocable="true">
02 <SpecificationUID>urn:creds:id</SpecificationUID>
03 <AttributeDescriptions MaxLength="32">
04 <AttributeDescription Type="urn:creds:id:name" DataType="xs:string" Encoding="xenc:sha256">
05 <FriendlyAttributeName lang="EN"> Full Name </FriendlyAttributeName>
06 </AttributeDescription>
07 <AttributeDescription Type="urn:creds:id:state" DataType="xs:string" Encoding="xenc:sha256"/>
08 <AttributeDescription Type="urn:creds:id:bdate" DataType="xs:date" Encoding="ASN1:GeneralizedTime"/>
09 </AttributeDescriptions>
10 </CredentialSpecification>

Fig. 2. Credential specification of the electronic identity card.

The XML attribute KeyBinding indicates whether credentials adhering to this speci-
fication must be bound to a secret key. The XML attribute Revocable being set to “true”
indicates that the credentials will be subject to issuer-driven revocation and hence have

a built-in revocation handle. The assigned revocation authority is specified in the issuer
parameters.

To encode user attribute values in a Privacy-ABC, they must be mapped to integers
of a limited length. The maximal length is indicated by the MaxLength XML attribute
(Line 3), here 32 bytes. Electronic identity cards contain a person’s full name, state, and
date of birth. The XML attributes Type, DataType, and Encoding respectively contain
the unique identifier for the user attribute type, for the data type, and for the encoding
algorithm that specifies how the value is to be mapped to an integer of the correct
size (Lines 4,7,8). Attributes that may have values longer than MaxLength have to be
hashed, as is done here for the name using SHA-256. The specification can also define
human-readable names for the user attributes in different languages (Line 5).

4.2 Issuer and Revocation Authority Parameters

The government of Utopia, that acts as issuer and revocation authority for the identity
cards, generates an issuance key pair and publishes the issuer parameters, and gener-
ates and publishes the revocation authority parameters. They are illustrated in Figures
6 and 7 given in Appendix A. The issuer parameters contain a unique identifier, the
cryptographic Privacy-ABC mechanism, the hash algorithm, the credential specifica-
tion for the credentials that will be issued, and the identifier of the revocation authority
parameters that will manage the issuer-driven revocation.

The revocation authority parameters can be used for both issuer- and verifier-driven
revocation. They specify a unique identifier for the parameters, the cryptographic re-
vocation mechanisms, and references to the network endpoints where the most recent
revocation information and non-revocation evidence can be fetched.

4.3 Presentation Policy with Basic Features

Suppose that a user already possesses an identity card from the Republic of Utopia
issued according to the above credential specification. Suppose further that all residents
of Utopia can sign up for one free library card using an online issuance service. To get
a library card the applicant must present her valid identity card and reveal only the state
from it. This results in the presentation policy depicted in Figure 3.

01 <PresentationPolicy PolicyUID="libcard">
02 <Message>
03 <Nonce> bkQydHBQWDR4TUZzbXJKYUM= </Nonce>
04 </Message>
05 <Pseudonym Alias="nym" Scope="urn:library:issuance" Exclusive="true"/>
06 <Credential Alias="id" SameKeyBindingAs="nym">
07 <CredentialSpecAlternatives>
08 <CredentialSpecUID>urn:creds:id</CredentialSpecUID>
09 </CredentialSpecAlternatives>
10 <IssuerAlternatives>
11 <IssuerParametersUID> urn:utopia:id:issuer </IssuerParametersUID>
12 </IssuerAlternatives>
13 <DisclosedAttribute AttributeType= "urn:creds:id:state"/>
14 </Credential>
15 </PresentationPolicy>

Fig. 3. Presentation policy for an identity card.

We now will go through the above presentation policy and describe how the different
features of Privacy-ABCs can be realized with our language. We will first focus on the
basic features and describe extended concepts such as inspection and revocation in our
second example.

Signing messages. A presentation token can optionally sign a message. The message
to be signed is specified in the policy (Fig. 3, Lines 2-4). It can include a nonce (to pre-
vent replay attacks and to use for cryptographic evidence generation), any application-
specific message, and a human-readable name and/or description of the policy.

Pseudonyms. The optional Pseudonym element (Fig. 3, Line 5) indicates that the pre-
sentation token must contain a pseudonym. A pseudonym can be presented by itself or
in relation with a credential if key binding is used (which we discuss later).

The XML attribute Exclusive in the example above indicates that a scope-exclusive
pseudonym must be created, with the scope string given by the XML attribute Scope.
This ensures that each user can create only a single pseudonym satisfying this policy, so
that the registration service can prevent the same user from obtaining multiple library
cards. Setting Exclusive to “false” would allow an ordinary pseudonym to be presented.
The Pseudonym element has an optional boolean XML attribute Established, not illus-
trated in the example, which, when set to “true”, requires the user to re-authenticate
under a previously established pseudonym. The presentation policy can request multi-
ple pseudonyms, e.g., in order to verify that different pseudonyms actually belong to
the same user.

Selective Disclosure. For each credential that the user is requested to present, the pol-
icy contains a Credential element (Fig. 3, Lines 6-14). The XML attribute Alias assigns
an alias by means of which the credential can be referred to from other places in the
policy, e.g., from the attribute predicates. For each credential, a list of accepted creden-
tial specifications and issuer parameters can be specified, as well as the list of attributes
that must be disclosed. The above policy only requests the presentation of an identity
card and the exposure of the state by the DisclosedAttribute element (Fig. 3, Line 13).

Key Binding. If present, the SameKeyBindingAs attribute of a Credential or Pseudonym
element (Fig. 3, Line 6), contains an alias referring either to another Pseudonym ele-
ment within this policy, or to a Credential element for a credential with key binding.
This indicates that the current pseudonym or credential and the referred pseudonym or
credential have to be bound to the same key. In our example above, the policy requests
that the identity card and the presented pseudonym must belong to the same secret key.

4.4 Issuance Policy

To support the advanced features described in Section 3, we propose a dedicated is-
suance policy. A library card contains the applicant’s name and is bound to the same
secret key as the identity card. So the identity card must not only be presented, but also
used as a source to carry over the name and the secret key to the library card, and the
library should learn neither of them during the issuance process. Altogether, to issue
library cards the state library creates an issuance policy depicted in Figure 4. It contains
the presentation policy from Figure 3 and the credential template that we describe in
details below.

01 <IssuancePolicy>
02 <PresentationPolicy PolicyUID="libcard">... </PresentationPolicy>
03 <CredentialTemplate SameKeyBindingAs="id">
04 <CredentialSpecUID> urn:utopia:lib </CredentialSpecUID>
05 <IssuerParametersUID> urn:utopia:lib:issuer </IssuerParametersUID>
06 <UnknownAttributes>
07 <CarriedOverAttribute TargetAttributeType= "urn:utopia:lib:name">
08 <SourceCredentialInfo Alias="id" AttributeType="urn:creds:id:name"/>
09 </CarriedOverAttribute>
10 </UnknownAttributes>
11 </CredentialTemplate>
12 </IssuancePolicy>

Fig. 4. Issuance policy for a library card. The presentation policy on Line 2 is depicted in Figure 3.

Credential Template. A credential template describes the relation of the new creden-
tial to the existing credentials that were requested in the presentation policy. The creden-
tial template (Fig. 4, Lines 3-11) must first state the unique identifier of the credential
specification and issuer parameters of the newly issued credential. The optional XML
attribute SameKeyBindingAs further specifies that the new credential will be bound to
the same secret key as a credential or pseudonym in the presentation policy, in this case
the identity card.

Within the UnknownAttributes (Fig. 4, Lines 6-10) it further specifies which user
attributes of the new credential will be carried over from existing credentials in the
presentation token. The SourceCredentialInfo element (Fig. 4, Line 8) indicates the cre-
dential and the user attribute of which the value will be carried over.

Not illustrated in the above example, an attribute value can also be specified to be
chosen jointly at random by the issuer and the user. This is achieved by setting the
optional XML attribute JointlyRandom to “true”.

4.5 Presentation and Issuance Token

A presentation token consists of the presentation token description, containing the
mechanism-agnostic description of the revealed information, and the cryptographic ev-
idence, containing opaque values from the specific cryptography that “implements” the
token description. The presentation token description roughly uses the same syntax as
the presentation policy above. An issuance token is a special presentation token that
satisfies the stated presentation policy, but that contains additional cryptographic infor-
mation required by the credential template.

The main difference with the presentation and issuance policy is that in the returned
token the Pseudonym and the DisclosedAttribute elements (if requested in the policy)
now also contain the concrete values PseudonymValue and AttributeValue as child ele-
ments. Finally, all data from the cryptographic implementation of the presentation token
and the advanced issuance features are grouped together in the CryptoEvidence element.
The issuance token that would be generated in response to the issuance policy depicted
in Figure 4 is given in Figure 8 in the Appendix A.

4.6 Presentation Policy with Extended Features

Suppose that the state library has a privacy-friendly online interface for borrowing digi-
tal and paper books. Books can be browsed and borrowed anonymously using the digital

library cards based on Privacy-ABCs. Paper books can be delivered in anonymous num-
bered mailboxes at the post office. However, when books are returned late or damaged,
the library must be able to identify the reader to impose an appropriate fine. Recidi-
vist negligence may even lead to exclusion from borrowing further paper books, but
borrowing digital books remains possible.

Moreover, assume that the library has special conditions for young readers that can
be used by anyone below the age of twenty-six. As library cards do not contain a date
of birth, a user must prove to be below that age by combining her library card with her
identity card. Altogether, for borrowing books under the “young-reader”-conditions,
users have to satisfy the presentation policy depicted in Figure 5.

01 <PresentationPolicyAlternatives>
02 <PresentationPolicy PolicyUID= "young-reader">
03 <Message>...</Message>
04 <Credential Alias="libcard" SameKeyBindingAs="id">
05 <CredentialSpecAlternatives>
06 <CredentialSpecUID> urn:utopia:lib </CredentialSpecUID>
07 </CredentialSpecAlternatives>
08 <IssuerAlternatives>
09 <IssuerParametersUID> urn:utopia:lib:issuer </IssuerParametersUID>
10 </IssuerAlternatives>
11 <DisclosedAttribute AttributeType= "urn:utopia:lib:name">
12 <InspectorAlternatives>
13 <InspectorPublicKeyUID> urn:lib:arbitrator </InspectorPublicKeyUID>
14 </InspectorAlternatives>
15 <InspectionGrounds> Late return or damage. </InspectionGrounds>
16 </DisclosedAttribute>
17 </Credential>
18 <Credential Alias="id">
19 <CredentialSpecAlternatives>
20 <CredentialSpecUID> urn:creds:id </CredentialSpecUID>
21 </CredentialSpecAlternatives>
22 <IssuerAlternatives>
23 <IssuerParametersUID> urn:utopia:id:issuer </IssuerParametersUID>
24 </IssuerAlternatives>
25 </Credential>
26 <VerifierDrivenRevocation>
27 <RevocationParametersUID> urn:lib:blacklist </RevocationParametersUID>
28 <Attribute CredentialAlias ="libcard" AttributeType= "urn:utopia:lib:name"/>
29 </VerifierDrivenRevocation>
30 <AttributePredicate Function= "...:date-greater-than" >
31 <Attribute CredentialAlias ="id" AttributeType= "urn:creds:id:bdate"/>
32 <ConstantValue>1986-04-10 </ConstantValue>
33 </AttributePredicate>
34 </PresentationPolicy>
35 <PresentationPolicyAlternatives>

Fig. 5. Presentation policy for borrowing books.

The presentation policy, when used for plain presentation (i.e., not within an is-
suance policy) can consist of multiple policy alternatives, each wrapped in a separate
PresentationPolicy element (Fig. 5, Lines 2-34). The returned presentation token must
satisfy (at least) one of the specified policies.

The example presentation policy contains two Credential elements, for the library
and for the identity card, which must belong to the same secret key as indicated by the
XML attribute SameKeyBindingAs.

Attribute Predicates. No user attributes of the identity card have to be revealed, but
the AttributePredicate element (Fig. 5, Lines 30-33) specifies that the date of birth must

be after April 10th, 1986, i.e., that the reader is younger than twenty-six. Supported
predicate functions include equality, inequality, greater-than and less-than tests for most
basic data types, as well as membership of a list of values. The arguments of the pred-
icate function may be credential attributes (referred to by the credential alias and the
attribute type) or constant values.

Inspection. To be able to nevertheless reveal the name of an anonymous borrower and
to impose a fine when a book is returned late or damaged, the library can make use
of inspection. The DisclosedAttribute element for the user attribute “...:name” contains
InspectorPublicKeyUID and InspectionGrounds child elements, indicating that the at-
tribute value must not be disclosed to the verifier, but to the specified inspector with the
specified inspection grounds. The former child element specifies the inspector’s public
key under which the value must be encrypted, in this case belonging to a designated
arbiter within the library. The latter element specifies the circumstances under which
the attribute value may be revealed by the arbiter. Our language also provides a data
artifact for inspection public keys, which we omit here for space reasons.

Issuer-Driven Revocation. When the presentation policy requests a credential that
is subject to issuer-driven revocation, the credential must be proven to be valid with
respect to the most recent revocation information. However, a policy can also specify
a particular version of the revocation information to use. In the latter case, the element
IssuerParametersUID has an extra XML attribute RevocationInformationUID containing
the identifier of the specific revocation information. The specification of the referenced
RevocationInformation is given in [11].

Verifier-Driven Revocation. If customers return borrowed books late or damaged,
they will be excluded from borrowing further paper books, but they are still allowed to
use the library’s online services. In our example above, this is handled by the Verifier-
DrivenRevocation element (Fig. 5, Lines 26-29), which specifies that the user attribute
“...:name” of the library card must be checked against the most recent revocation infor-
mation from the revocation authority “urn:lib:blacklist”. Revocation can also be based on
a combination of user attributes from different credentials, in which case there will be
multiple Attribute child elements per VerifierDrivenRevocation. The presentation policy
can also contain multiple VerifierDrivenRevocation elements for one or several creden-
tials, the returned presentation token must then prove its non-revoked status for all of
them.

5 Semantics

To precisely specify the meaning of the XML language that we propose, we provide
a formal semantics which mathematically defines the various language features and
thus the intended system behavior. The semantics that we propose is based on the one
shown by Camenisch et al. [18] for the CARL language. Similar to their approach, we
also define our semantics in the context of a state transition system, that assumes state
transitions for credential issuance, credential revocation, token presentation and token
inspection. However, rather than elaborating only on one of the transitions while dis-
regarding the aspects of the other ones, our semantics precisely describes the meaning

for all the possible transitions including the concepts of pseudonyms and key bind-
ing. In our model, users maintain credential portfolios containing the credentials that
were issued to them. Issuers and verifiers maintain knowledge states about their com-
munication partners in the form of logical predicates. These predicates express that a
certain logical expression over the communication partner’s credentials has been suc-
cessfully verified at the time of the transition. For modelling our system, we assume
to have a global view on the credential portfolios and knowledge states of the parties
in the system. We define the semantics in multiple steps. First, we introduce a set of
basic dedicated functions and attributes which are necessary for modeling revocation,
pseudonyms, and inspection. Then, we define the meaning of attribute predicates as
they form the basis of our knowledge states. After doing so, the semantics of credential
revocation and basic credential issuance is defined. On the basis of those concepts, we
elaborate on the meaning of token presentation and policy verification. Having done so,
we close our semantical definition by describing token inspection transitions as well as
advanced issuance scenarios. Similar to the proposal of Camenisch et al. [18], the se-
mantics is given in terms of the effects that the transitions have on the knowledge states
and credential portfolios of the parties involved in the transition, rather than describing
how they are performed. Whenever possible we preserved the notation introduced for
CARL [18].

5.1 Types and Functions

We assume as given an ontology T that defines data types, attributes, credential types,
and functions on the data types, which correspond to the data types, attribute types,
credential specifications and predicate functions from the XML notation. The parties
involved in a certain transaction are assumed to use the same ontology for performing
this transaction. First, the ontology defines a set of data types β1, . . . , βnβ . These in-
clude, e.g., String , Bool , Int , Date and URI . We denote with [[β]] the extension of
a data type β, i.e., the set of constants of type β. Further, the ontology specifies a set
of credential types τ1, . . . , τnτ . Every credential type τ is defined by a set of attributes
with their types Aτ = {a1 :: β1, . . . , al :: βl}, where we denote with a :: β an attribute
a that has data type β. Subsequently, a credential of type τ is represented as a function
from Aτ to values of the respective data type. For example, a credential with attributes
{a1 :: β1, a2 :: β2} is a function f with domain {a1, a2} such that f(a1) ∈ [[β1]] and
f(a2) ∈ [[β2]]. We denote with f :: τ that a credential f has data type τ . Finally, the
ontology defines a set of functions on the data types. We assume to have at least the
equivalence relation ==β on every data type β. We also assume a total order on both
types Int and Date .

5.2 Dedicated Functions and Attributes

In the following, we describe a set of dedicated functions, which are used for specifying
the semantics associated with pseudonyms and inspection, as well as a set of dedicated
attributes used for modeling pseudonyms and revocation. To do so, we assume every
party (issuers, verifiers, etc.) is associated with a private-public key pair, and we assume
a non-deterministic function k ← genKey, which generates a new unique secret key k

every time it is called. We denote the set of keys that user U generated with SU and
assume all user’s key sets are disjoint.

Further, we assume a non-deterministic function p← nym(k), which derives a new
unique pseudonym value p from secret key k every time it is called, a boolean function
verifyNym(p, k) that is true iff p was derived from k. Pseudonyms derived from the
same secret key are in principle unlinkable, i.e., for two pseudonyms p1 = nym(k) and
p2 = nym(k′), it cannot be determined whether k = k′ . Also, we assume a function
d← seNym(k,w), which derives a unique scope-exclusive pseudonym d from a secret
key k for scope w, as well as a boolean function verifySeNym(d,w, k) that is true iff d
was derived from k for w. Scope-exclusive pseudonyms are also unlinkable, i.e. for two
pseudonyms d1 ← seNym(k,w) and d2 ← seNym(k′, w′) with w 6= w′, it cannot be
determined whether k = k′. We denote with NU and DU the pseudonyms and scope-
exclusive pseudonyms that were derived from a key k ∈ SU . Additionally, we assume
a boolean function verifyNyms(n, n′) that takes two—scope-exclusive or non-scope-
exclusive—pseudonyms n and n′ as parameters and that is true iff both pseudonyms
are derived from the same secret key, i.e., iff ∃U,w,w′ · ∃k∈SU ·

(
verifyNym(n,k) ∧

verifyNym(n′,k)
)
∨
(
verifyNym(n,k)∧verifySeNym(n′,w′,k)

)
∨
(
verifySeNym(n,w,k)∧

verifyNym(n′,k)
)
∨
(
verifySeNym(n,w,k) ∧ verifySeNym(n′,w′,k)

)
.

To formalize token inspection, we further assume an encryption function e ←
vEncrypt(S, g, v1, v2, . . .), which encrypts a concatenation of values v1, v2, . . . ∈ [[β1]]∪
· · · ∪ [[βnβ]] under the public key of party S and inspection grounds g, and a function
〈v1, v2, . . .〉 ← vDecrypt(e, sk, g′), which decrypts e with the secret key sk on grounds
g′ to the originally encrypted concatenation 〈v1, v2, . . .〉 iff sk is the secret key of S
and g = g′. Further, we assume a boolean function verifyEnc(e, S, g, v1, v2, . . .), which
evaluates to true iff e = vEncrypt(S, g, v1, v2, . . .).

All credentials have the dedicated attributes type, issuer, and kBound , where the
latter is a boolean attribute that is true for credentials with key binding, i.e., for which
the credential specification has XML attribute KeyBinding=“true”, and false for cre-
dentials without key binding. Credentials with key binding additionally have an attribute
uKey of type String containing the secret key of its owner. Revocable credentials have
a dedicated attribute rHandle of type String representing the revocation handle.

5.3 Attribute Predicate Semantics

An AttributePredicate element represents a logical predicate φ = f(. . .), where f is
a boolean-valued function over attribute variables and constants, which are expressed
by Attribute and ConstantValue XML elements, respectively. We denote attribute vari-
ables with C.a for a credential alias C and an attribute a, which are reflected by the
CredentialAlias and AttributeType XML attributes of the Attribute XML element.

We define the meaning of attribute predicates with respect to a given ontology T and
an interpretation I. An interpretation assigns values to the symbols (e.g., f , C.a, etc.)
in a formula so that the formula can be evaluated. In particular, for a function symbol
f , we denote by fT the ontology-defined meaning of f , i.e., the function defined for
this symbol by ontology T. For terms t1, . . . , tn, where a term is an attribute variable
or a constant, we define f(t1, . . . , tn)I = fT(tI1 , . . . , t

I
n) and (C.a)I = (CI)(a). See

Section 5.6 for more details on CI . If an interpretation I assigns the value true to a
predicate φ, it is called a model of that predicate, which we denote as I |= φ. Multi-
ple predicates φ1, . . . , φn within the same PresentationPolicy element are conjunctively
combined to φ = φ1 ∧ . . . ∧ φn.With respect to logical connectives (e.g., ∧, ∨, ¬,→),
the satisfaction relation |= is defined as:

I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2 ; I |= ¬φ iff I 6|= φ

Other constructs of the predicate are the usual abbreviations, e.g., φ1 ∨ φ2 is short for
¬(¬φ1 ∧ ¬φ2).

5.4 Credential Issuance

We first consider simple issuance policies whose credential template merely specifies a
credential type τ and an issuer I , i.e., issuance policies without a PresentationPolicy part
and without an UnknownAttributes part. After introducing the semantics for token pre-
sentation (cf. Section 5.6), we extend the issuance semantics for unrestricted issuance
policies in Section 5.9. An issuance transaction between a user U and an issuer I has
effects on the user’s credential portfolio as well as the issuer’s knowledge state.

Let PU be the credential portfolio of U , i.e., the set of credentials that U owns,
and P′U the augmented portfolio of U after the issuance transition. The user’s portfolio
is augmented with a new credential N such that P′U = PU ∪ {N} where N has the
following properties: N(type) = τ , N(issuer) = I , and N(ai) = Ai for 1 ≤ i ≤
|Aτ | where the Ai are the attribute values that I certifies for U . If τ is revocable, then
N(rHandle) = r, where r is a globally unique issuer-chosen revocation handle.

Let KI(X) be an attribute predicate expressing the knowledge of issuer I about the
credential portfolio of party X , where X is some issuer-chosen identifier under which
U is currently known to I , and K′I(X) be the knowledge state after the transition. Note
that the same userU may be known to the issuer under multiple different identifiers. The
knowledge of I increases such that: K′I(X) = KI(X)∧N.type == τ ∧N.issuer ==

I ∧ ∧|Aτ |i=1 N.ai == Ai. If τ is revocable, then K′I(X) has the additional conjunct
N.rHandle == r. This models that for simple issuance policies the issuer learns
the values of all the attributes that are certified in the newly issued credential N . For
advanced issuance policies (which we cover in 5.9), however, this is different as then
the issuer’s knowledge after the issuance transition may contain only a subset of the
attributes certified in the new credentials.

5.5 Credential Revocation

As we will specify later, presentation tokens can only be proven if the involved creden-
tials are not revoked. In order to define the semantics of revocation, we first introduce
revocation epochs and revocation logs. Note that these concepts are only part of our
ideal world that is modeled, i.e., typically they do not have counterparts in a real im-
plementation. We assume revocation authorities maintain revocation epochs in the form
of sequence numbers, where a function h ← currEpoch(Y) returns the current epoch
h ∈ Z for authority Y . Revocation authorities advance their current epoch at their own

discretion, e.g., at regular time intervals or whenever a new credential is revoked, from
h ∈ Z to h′ ∈ Z such that h′ > h.

In our model, issuers act as revocation authorities of the credentials they issued.
Every issuer I maintains a local revocation log file RI . Each log file is a (possibly
empty) set of pairs (h, r) of an epoch h ∈ Z and a revocation handle r, representing
that the credential with handle r was revoked in epoch h. An issuer adding an entry
to his revocation log models an issuer-revocation transition in our transition system. A
credential C is not issuer-revoked for epoch h iff @

(
h′, C(rHandle)

)
∈ RC(issuer) ·

h′ ≤ h. A boolean predicate notIssRevoked(I, h, r) reflects this fact by stating whether
issuer I considers a credential with handle r as valid, i.e., not revoked, in epoch h.

Similar to issuer-driven revocation, for modelling verifier-driven revocation we as-
sume every revocation authority V maintains a local revocation log file LV , which is a
(possibly empty) set of tuples (h, v1, v2, . . .) of an epoch h ∈ Z and an arbitrary length
of values v1, v2, . . . ∈ [[β1]]∪· · ·∪[[βnβ]]. The predicate notVerRevoked(V, h, v1, v2, . . .)
reflects whether the tuple (v1, v2, . . .) is not verifier-revoked by revocation authority V
for epoch h, and is true iff @(h′, v1, v2 . . .) ∈ LV · h′ ≤ h.

5.6 Token Presentation

In this section we define the semantics of a token presentation transition, which models
that a user U proves to a verifier S that she fulfills the statements made in a given
presentation token. We first formalize the requirements on the user’s portfolio such that
it can be used to prove a token, and then we specify the knowledge increase of the
verifier to whom the token is proved.

Let T be a presentation token that, from an abstract point of view, i.e. without con-
sidering its form in XML notation, contains the following information3:

− k pseudonym values p
1
, . . . , p

k

− ` scope-excl. pseudonym values d1, . . . , d` for scopes wd1 , . . . ,wd`
− n credentials C1 :: τ1, . . . , Cn :: τn of issuers IC1

, . . . , ICn with reference revoca-
tion epochs hC1

, . . . , hCn
− Attribute predicate φ
− Disclosed values v(i,S) for the attributes C.a(i,S), for 1 ≤ i ≤ nS where nS is the

number of attributes disclosed to S
− Attributes C.a(i,Sj) that are verifiably encrypted for inspector Sj in ciphertext eSj

on grounds g
Sj

for 1 ≤ i ≤ nSj and 1 ≤ j ≤ q, where nSj is the number of
attributes disclosed to Sj and q is the number of different inspectors

− Non-revoked attributes C.a(i,Vj) at revocation authority V j with reference revoca-
tion epochs hVj for 1 ≤ i ≤ nVj and 1 ≤ j ≤ o where nVj is the number of
revocation attributes of V j and o is the number of revocation authorities

− Message m
− Symmetric key binding relation K ⊆ R × R, with R = {C1, . . . , Cn} ∪
{p

1
, . . . , p

k
} ∪ {d1, . . . , d`}, where x 7→ y ∈ K states that x is key-bound to y.

3 Note that we underline variables to express that they are associated with a presentation token.

As a credential’s type and issuer are treated as dedicated attributes, for each creden-
tial C :: τ ∈ {C1, . . . , Cn} issued by I we let the predicate φ contain an additional
conjunct C.type== τ ∧ C.issuer == I . Further, for all pairs of credentials C,C ′ ∈
{C1, . . . , Cn} that are bound to the same key, i.e., C 7→C ′ ∈K, we let the predicate
φ contains a conjunct C.uKey == C ′.uKey. Note that there is only one inspection
ground per inspector in our model, while in the XML notation there is one ground
per attribute to disclose. This is because in our model the attributes disclosed to one
inspector are packaged into one ciphertext to capture their semantic correlation. With-
out preserving this correlation, dishonest verifiers might mix attributes disclosed within
different ciphertexts or across different token presentations.

We say that U can prove the presentation token T iff there exists a credential as-
signment b and an interpretation I such that

1. b is a total mapping from {C1, . . . , Cn} to PU ,

2. I |= φ, with CIi = b(Ci) for 1≤ i≤n,

3. ∀C∈{C1, . . . , Cn} · notIssRevoked
(
IC , hC , (C.rHandle)

I),
4. ∀V∈{V 1, . . . , V o} · notVerRevoked(V, hV ,(C.a(1,V))

I , . . . , (C.a(nV ,V))
I),

5. ∀i ∈ {1, . . . , nS} · (C.a(i,S))I = v(i,S), i.e., the sent values are correct w.r.t. the
credential assignment b,

6. ∀x∈{S1, . . . , Sq} · verifyEnc
(
ex, x, gx, (C.a(1,x))

I , . . . , (C.a(nx,x))
I),

7. ∀i∈{1, . . . , k} · p
i
∈NU ∧

(
e(p

i
) → KS(pi) 6= ε

)
4 ∧
(
∀C ∈{C1, . . . , Cn} · pi 7→

C∈K→verifyNym(p
i
, (C.uKey)I)

)
∧
(
∀j∈{1, . . . , i− 1, i+1, . . . , k} · p

i
7→p

j
∈

K→verifyNyms(p
i
, p
j
)
)
∧
(
∀j ∈ {1, . . . , `} · p

i
7→ dj ∈K→verifyNyms(p

i
, dj)

)
,

where the predicate e(x) denotes that pseudonym x is claimed to be established and
ε denotes an empty predicate, i.e., U knows the secret keys of the pseudonyms, the
pseudonyms are correctly established and all stated key-bindings are correct, and

8. ∀i∈{1, . . . , `} · di∈DU ∧
(
e(di)→KS(di) 6= ε

)
∧
(
∀C∈{C1, . . . , Cn} · di 7→C∈

K→verifySeNym(di, wdi , (C.uKey)
I)
)
∧
(
∀j∈{1, . . . , i− 1, i+ 1, . . . , `} · di 7→

dj ∈K→verifyNyms(di, dj)
)
∧
(
∀j∈{1, . . . , k}·di 7→p

j
∈K→verifyNyms(di, pj)

)
.

When a user can prove a token and convinces the verifier S of this fact by engaging in
a presentation proof protocol, the effect of the token presentation transition is twofold.
First, there is an increase of knowledge of S about the token’s pseudonyms in the form
of a logical predicate. This models that S learns that the corresponding predicate was
true at the time of the transition. Second, the transcript of the proof protocol acts as
transferable signature σT on message m, i.e., S may subsequently use σT to convince
third parties about the fact that the user who proved token T (i.e., who fulfilled all the
properties stated in T) consented to the statement m.

Concerning the knowledge increase, we require that the credential variables in the
verifier’s knowledge state are disjoint with the credential variables C1, . . . , Cn of T . If
this is not the case, the variables of the verifier’s state have to be renamed. Let KC

x =

4 If pseudonym p
i

is claimed to be established, then p
i

must have been used in a previous token
presentation transition with verifier S

{y ∈ {C1, . . . , Cn} | x 7→ y ∈ K} be the set containing all credentials that x is
key-bound to, and let KN

x and KD
x be analog sets for pseudonyms and scope-exclusive

pseudonyms, respectively. The following specifies the knowledge of S after the token
presentation transition about the 1 ≤ i ≤ k pseudonyms:

K′S(pi)=KS(pi) ∧ φ ∧ ∧
nS
j=1C.a(j,S)==v(j,S) ∧

∧nj=1 notIssRevoked(ICj , hCj , Cj .rHandle) ∧
∧oj=1 notVerRevoked(V j , hVj , C.a(1,Vj), . . . , C.a(nVj ,Vj)

) ∧

∧qj=1 verifyEnc(eSj , Sj , gSj , C.a(1,Sj), . . . , C.a(nSj ,Sj)
) ∧

∧x∈KC
p
i

verifyNym(p
i
, x.uKey) ∧

∧x∈KN
p
i
∪KD

p
i

verifyNyms(p
i
, x) ∧

∧i−1j=1

−→
K′S(pj) ∧ ∧

k
j=i+1

−→
K′S(pj) ∧ ∧

`
j=1

−→
K′S(dj)

The analog we require for knowledge states K′S(di) for 1≤i≤`, where the last three lines
of the formula are adapted accordingly. The above formula models that S learns the
values that U discloses, and that the predicate φ over the contained attribute variables
holds, however, S does not learn the values of these attributes. Further, S learns that
the credentials used to prove the token are neither issuer-revoked nor verifier-revoked,
however, S neither learns the revocation handle nor the values of the non-revoked at-
tributes, respectively. Also, S learns that the ciphertext ex for inspector x contains the
values that correspond to the attributes C.a(1,x), . . . , C.a(1,nx), however, he does not
know what the values are. The verifier also learns which credentials and pseudonyms
have the same underlying key, however, he does not learn the key itself. The last line
of above formula models that the knowledge states of all pseudonyms used within the
presentation token are merged. We use the notation

−→· to express that a predicate is not
used by value, but rather by reference. This models that a verifier can transitively link
all pseudonyms that were jointly contained in presentation tokens proved to him. For
example, consider two consecutive token presentations where in the first one the pred-
icate ψ1 for pseudonyms p1 and p2 is proved, and in the second one ψ2 with p1. With
the ’by reference’ semantics, K(p2) is then ψ1 ∧ ψ2, rather than just ψ1 with the ’by
value’ semantics. For the knowledge states that are merged, we require that the states’
variables are disjoint, as otherwise new (and possibly wrong) knowledge about creden-
tials is created by the merge operation itself. In case a token contains no pseudonyms
at all, i.e., k + ` = 0, a new unique identifier X is used to refer to the new knowledge
K′S(X) = φ ∧ · · · (same as above, except the last three formula lines as they contain
references to pseudonyms). Unlinkability of credentials is achieved due to the renam-
ing of the verifier’s variables that was mentioned above, i.e., a verifier does not learn
whether a user used the same or different credentials to prove a particular token.

5.7 Policy Verification

For a server to make an access control decision after a presentation token has been
proved, he verifies that token w.r.t. a presentation policy. In the following, we describe

how such verification is performed in detail. Let P be the presentation policy of S that
U needs to satisfy. Each alternative contains from an abstract point of view, i.e. without
considering its form in XML notation, the following information:

− k pseudonym aliases p1, . . . , pk, optionally established
− ` scope-excl. pseudonym aliases d1, . . . , d` for scopes wd1 , . . . , wd` , optionally es-

tablished
− Message m
− n credentials C1, . . . , Cn with type- and issuer-alternatives, and revocation epochs
hI(i,Cj) for each issuer alternative I(i,Cj) for 1 ≤ i ≤ nCj and 1 ≤ j ≤ n, where
nCj is the number of issuer alternatives for Cj

− Attribute predicate φ
− Attributes C.a(i,S) to disclose for 1 ≤ i ≤ nS where nS is the number of attributes

to disclose to S
− Attributes C.a(i,Sj) to disclose to inspector Sj on grounds gSj for 1 ≤ i ≤ nSj

and 1 ≤ j ≤ q where nSj is the number of attributes to disclose to Sj and q is the
number of different inspectors

− Non-revoked attributesC.a(i,Vj) at revocation authority Vj with reference revocation
epochs hVj for 1 ≤ i ≤ nVj and 1 ≤ j ≤ o where nVj is the number of revocation
attributes of Vj and o is the number of revocation authorities

− Symmetric key binding relation K ⊆ R × R, with R = {C1, . . . , Cn} ∪
{p1, . . . , pk} ∪ {d1, . . . , d`}, where x 7→ y ∈ K states that x is key-bound to y.

For simplicity, we do not consider inspector alternatives. Again, a credential’s type and
issuer are treated as dedicated attributes, and thus are specified as part of the predicate
φ. In particular, specifying alternatives τ1, . . . , τn for a credential C is an abbreviation
for specifying C.type == τ1 ∨ . . . ∨ C.type == τn as additional conjunct of φ.
Issuer alternatives are treated analog. We further assume that for all pairs of credentials
C,C ′ ∈ {C1, . . . , Cn} that are bound to the same key, i.e., C 7→ C ′ ∈ K, φ contains
a conjunct C.uKey==C ′.uKey. Note that the revocation epochs are optional in the
XML notation. For our model we assume hx = currEpoch(x) for revocation authority
x in case hx is not given.

We say that the presentation token T fulfills the presentation policy P iff:

1. k ≥ k and ∀x ∈ {1, . . . , k} · e(x)→
(
KS(px) 6= ε

)
, where the predicate e(x) de-

notes that x-th pseudonym in the policy is required to be established and ε denotes
an empty predicate, i.e., at least k pseudonyms are provided and established, respec-
tively,

2. ` ≥ ` and ∀x ∈ {1, . . . , `} · wdx= wdx ∧
(
e(x)→ (KS(dx) 6= ε)

)
, i.e., at least `

scope-exclusive pseudonyms for the requested scopes are provided and established,
respectively,

3. m = m, i.e., the correct message is signed,
4. {C1, . . . , Cn} ⊆ {C1, . . . , Cn}, i.e., the same credential variables are used in the

policy and the token,

5. φ implies φ, i.e., the proved attribute predicate implies the one requested, which
incorporates verifying the permitted type- and issuer-alternatives,

6. ∀x ∈ {C1, . . . , Cn} · hx ≥ hIx , i.e., all requested credentials were valid w.r.t. the
corresponding epoch required by the policy or a later one,

7. {C.a(1,S), . . . , C.a(nS ,S)} ⊆ {C.a(1,S), . . . , C.a(nS ,S)}, i.e., at least the requested
attributes to disclose are disclosed,

8. ∀x ∈ {S1, . . . , Sq} · gx = g
x
∧ {C.a(1,x), . . . , C.a(nx,S)} ⊆ {C.a(1,x), . . . ,

C.a(nx,x)}, i.e., at least the requested attributes to disclose to the respective inspec-
tors are disclosed,

9. ∀x ∈ {V1, . . . , Vn} · hx ≥ hx ∧ ∀i ∈ {1, . . . , nx} · C.a(i,x) = C.a(i,x), i.e., the
exact requested combination of attribute values is not revoked at the respective re-
quested revocation authorities, and

10. there exists a total injective mapping r from R to R that maps (a) the policy’s
credential aliases to token aliases and (b) the policy’s pseudonym aliases to token
pseudonym values, such that ∀x 7→y ∈ K · ∃x′ 7→y′ ∈ K · x′ = r(x) ∧ y′ = r(y),
i.e., for all key-bindings required by the policy there exists a corresponding key-
binding in the token.

A token T fulfills a presentation policy P = {P1, . . . , PnP } with alternatives P1, . . . ,
PnP iff ∃p∈P such that T fulfills p.

5.8 Token Inspection

During a token presentation transition, a server S may obtain verifiably encrypted val-
ues for attributes C.a(i,I) for 1 ≤ i ≤ nI in the form of a ciphertext eI that is only
decryptable by the designated inspector I on grounds g

I
. To obtain the plaintext values,

S forwards the ciphertext and the decryption grounds to I who first checks whether
these grounds are indeed fulfilled and (only) then decrypts eI with his secret key sk
to the originally encrypted values 〈v1, . . . , vnI 〉 ← vDecrypt(eI , sk, gI). Assuming
that I shares these values with S and that the user who initially provided the ciper-
text was known under identifier X , the knowledge state of S after this transition is:
K′S(X)=KS(X)∧C.a(1,I)==v1 ∧ · · · ∧C.a(nI ,I)==vnI . This models that S learns
the plaintext values of the verifiably encrypted attributes.

5.9 Advanced Credential Issuance

Now we look at issuance transaction between a user and an issuer that are based on
more advanced issuance policies than the one described in Section 5.4. In particular, we
now consider credential templates that may also contain key-binding information and
carried-over attributes.

Let Q = 〈P,M〉 be an issuance policy that consists of a presentation policy P and
credential template M , where P contains the information as specified in Section 5.7,
and M contains, from an abstract point of view, i.e. without considering its form in
XML notation, the following information:

− Type τ to be issued

− Issuer I
− Attributes qi to carry over from C.a(i,I) for 1 ≤ i ≤ nI where nI is the number of

attributes to carry over
− Attributes r1, . . . , rnr to establish with joint random values
− Optional key-binding either (1) to credential B, or (2) to the i-th pseudonym for

1 ≤ i ≤ k, or (3) to the i-th scope-exclusive pseudonym for 1 ≤ i ≤ `
Further, let T be a presentation token containing the information as specified in Section
5.6, that can be fulfilled by U under interpretation I. An advanced issuance transition
between a user U and an issuer I is performed when U proves the presentation token
T to I under interpretation I such that the proved T fulfills the presentation policy P
that is contained in Q. As for basic issuance, the transition has effects on the user’s
credential portfolio as well as the issuer’s knowledge state.

The set of credentials that U owns is augmented in the same way as this is the case
for basic issuance, where the newly issued credential N has the following additional
properties:

− N(qi) =
(
C.a(i,I)

)I
for 1 ≤ i ≤ nI

− N(ri) is a jointly generated random number for 1 ≤ i ≤ nr
− In case of a key-binding with a credential:
N(uKey) = (B.uKey)I

− In case of a key-binding with a (scope-exclusive) pseudonym:
N(uKey) = s, where s is the user key that underlies p

i
or di from the token T ,

respectively

The issuer’s knowledge increase of the advanced issuance transaction is a conjunc-
tion of:

1. the knowledge increase that we specified for token presentation transitions in Section
5.6,

2. the knowledge increase that we specified for basic issuance in Section 5.4,
3. the predicate

∧nI
i=1N.qi == C.a(i,I), which models that I knows that the carried-

over attributes are equal to its source attributes, however, I does not learn the values
of those attributes,

4. the predicate
∧nr
i=1 jointlyRandom(N.ri), which models that I knows which at-

tributes have jointly random generated values (expressed by a dedicated boolean
function jointlyRandom(C.a) for attribute variableC.a), but without I learning these
values,

5. in case of a key-binding with a credential: the predicate
N.uKey == B.uKey, which models that I learns that the user keys of the new
and the source credentials are equal, however, I does not learn the key itself,

6. in case of a key-binding with a pseudonym: the predicate
verifyNym(p

i
, N.uKey), which models that I learns that the new credential is bound

to the same user key that underlies p
i
, however, I does not learn the key itself,

7. in case of a key-binding with a scope-exclusive pseudonym: the predicate
verifySeNym(di, wdi , N.uKey), which models that I learns that the new credential

is bound to the same user key that underlies di for scope wdi , however, I does not
learn the key itself.

5.10 Knowledge-Based Policy Verification

In Section 5.7 we show how a verifier determines whether a given presentation pol-
icy is fulfilled by the information proved in a given presentation token. Rather than
considering merely the information provided in one single token for verifying the pol-
icy, a verifier S may also consider all the accumulated knowledge KS about all known
pseudonyms for the verification. This flexible approach allows a user to prove just parts
of a policy while still being granted access due to prior token presentations. As knowl-
edge states are indirectly time stamped with epochs, verifiers can choose to disregard—
or forget—knowledge before a certain epoch. The presentation policy language can
accordingly be extended with a switch stating whether all of the verifier’s accumulated
knowledge is considered for policy verification or only the information provided in the
current token. However, we leave the formalization of such sophisticated policy verifi-
cation approach for future work.

6 Conclusion

We presented a language framework enabling a unified deployment of Privacy-ABC
technologies, in particular, of U-Prove and Identity Mixer. Our framework improves
upon the state of the art [32, 18] by covering the entire life-cycle of Privacy-ABCs, in-
cluding issuance, presentation, inspection, and revocation, and by supporting advanced
features such as pseudonyms and key binding. The framework offers a set of abstract
concepts that make it possible for application developers to set up a Privacy-ABC in-
frastructure and to author policies without having to deal with the intricacies of the
underlying cryptography. We demonstrate the soundness of our languages by providing
a formal semantics that specifies the effects of issuing, presenting, verifying, inspecting,
and revoking credentials on the user’s credential portfolio and on the knowledge states
of the involved parties.

The proposed language framework has been implemented as part of the ABC4Trust
project, where it will be rolled out in two pilot projects. Preliminary tests indicate that
our language framework adds a noticeable but reasonable overhead to the cryptographic
routines, comparable to the overhead incurred by, for example, XML Signature [31]
with respect to the underlying signing algorithm.

Our language framework supports a number of different authentication mechanisms
including the mentioned privacy-preserving ones but also standard mechanisms such
as X.509. However, most of them will not support the full set of features but we are
currently working on a protocol framework that allows the combination of different
cryptographic mechanisms to address this.

Acknowledgements

The authors thank Bart De Decker for his valuable comments on the formalization of the
language semantics, and Lan Nguyen for his comments on the design of the revocation

framework. The authors further thank Robert Enderlein for his feedback on the XML
language that also led to simplifications of the implementation. The research leading
to these results was supported by the European Commission under the grant for the
ABC4Trust project.

References

1. C. A. Ardagna, J. Camenisch, M. Kohlweiss, R. Leenes, G. Neven, B. Priem, P. Samarati,
D. Sommer, and M. Verdicchio. Exploiting cryptography for privacy-enhanced access con-
trol. J. of Comput. Secur., 18(1), 2010.

2. C. A. Ardagna, M. Cremonini, S. De Capitani di Vimercati, and P. Samarati. A privacy-aware
access control system. J. Comput. Secur., 16(4), 2008.

3. A. W. Appel and E. W. Felten. Proof-carrying authentication. ACM CCS 1999.
4. K. D. Bowers, L. Bauer, D. Garg, F. Pfenning, and M. K. Reiter. Consumable credentials in

linear-logic-based access-control systems. NDSS 2007.
5. M.Belenkiy, J.Camenisch, M. Chase, M.Kohlweiss, A.Lysyanskaya, and H.Shacham. Ran-

domizable proofs and delegatable anonymous credentials. In CRYPTO 2009, vol. 5677 of
LNCS.

6. P.Bichsel, J.Camenisch, and F.-S.Preiss. A comprehensive framework enabling data-
minimizing authentication. In ACM DIM 2011.

7. P. Bonatti and P. Samarati. A unified framework for regulating access and information release
on the web. J. Comput. Secur., 10(3), 2002.

8. S.Brands, L.Demuynck, and B. De Decker. A practical system for globally revoking the
unlinkable pseudonyms of unknown users. In ACISP 07, vol. 4586 of LNCS.

9. S.Brands. Rethinking Public Key Infrastructures and Digital Certificates; Building in Pri-
vacy. MIT Press, 2000.

10. J.Camenisch, M.Dubovitskaya, A.Lehmann, G.Neven, C.Paquin, and F.-S.Preiss. A lan-
guage framework for privacy-preserving attribute-based authentication. IBM Research Tech-
nical Report RZ 3818, 2012.

11. J.Camenisch, I. Krontiris, A.Lehmann, G.Neven, C.Paquin, K. Rannenberg, and H. Zwingel-
berg. Architecture for attribute-based credential technologies. ABC4Trust deliverable D2.1,
2011.

12. D.Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Comm. of
the ACM, 24(2):84–88, 1981.

13. J.Camenisch, M.Kohlweiss, and C.Soriente. An accumulator based on bilinear maps and
efficient revocation for anonymous credentials. In PKC 2009, vol. 5443 of LNCS.

14. J.Camenisch and A.Lysyanskaya. An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In EUROCRYPT 2001, vol. 2045 of LNCS.

15. J.Camenisch and A.Lysyanskaya. An identity escrow scheme with appointed verifiers. In
CRYPTO 2001, vol. 2139 of LNCS.

16. J.Camenisch and A.Lysyanskaya. Dynamic accumulators and application to efficient revo-
cation of anonymous credentials. In CRYPTO 2002, vol. 2442 of LNCS.

17. J.Camenisch and A.Lysyanskaya. Signature schemes and anonymous credentials from bilin-
ear maps. In CRYPTO 2004, vol. 3152 of LNCS.

18. J.Camenisch, S.Mödersheim, G.Neven, F.-S.Preiss, and D.Sommer. A card requirements
language enabling privacy-preserving access control. In SACMAT 2010.

19. J. R. Douceur. The Sybil attack. In IPTPS 2002, vol. 2429 of LNCS.
20. D. Ferraiolo and R. Kuhn. Role-based access control. NIST-NCSC 1992.

21. D. Garg, L. Bauer, K. D. Bowers, F. Pfenning, and M. K. Reiter. A linear logic of authoriza-
tion and knowledge. ESORICS 2006.

22. Identity Mixer. http://idemix.wordpress.com/.
23. M.Kirkpatrick, G.Ghinita, and E.Bertino. Privacy-preserving enforcement of spatially aware

RBAC. In IEEE Transactions on Dependable and Secure Computing, 99(PrePrints), 2011.
24. N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic: A logic-based approach to dis-

tributed authorization. ACM TISSEC, 6(1), 2003.
25. J. Li, N. Li, and W. Winsborough. Automated trust negotiation using cryptographic creden-

tials. ACM CCS 2005.
26. T.Nakanishi, H.Fujii, Y.Hira, and N.Funabiki. Revocable group signature schemes with con-

stant costs for signing and verifying. In PKC 2009, volume 5443 of LNCS.
27. F.Paci, N.Shang, K.Steuer Jr., R.Fernando, E.Bertino. VeryIDX - A privacy preserving digital

identity management system for mobile devices. Mobile Data Management 2009.
28. A.Squicciarini, A.Bhargav-Spantzel, E.Bertino, and A.Czeksis. Auth-SL – A system for the

specification and enforcement of quality-based authentication policies. In ICICS 2007.
29. Lan Nguyen. Accumulators from bilinear pairings and applications. In CT-RSA 2005, vol.

3376 of LNCS.
30. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control

models. IEEE Comput., 29(2), 1996.
31. S.Shirasuna, A.Slominski, L.Fang, and D.Gannon. Performance comparison of security

mechanisms for grid services. GRID 2004.
32. Microsoft U-Prove Community Technology Preview R2. http://www.microsoft.

com/uprove.
33. E.R. Verheul. Self-Blindable Credential Certificates from the Weil Pairing. ASIACRYPT

2001.
34. L. Wang, D. Wijesekera, and S. Jajodia. A logic-based framework for attribute based access

control. ACM FMSE 2004.
35. W. Winsborough, K. Seamons, and V. Jones. Automated trust negotiation. DISCEX 2000.
36. OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0, 2005.

A XML Examples

This section shows XML artifacts for our example described in Section 4. Figures 6
and 7 depicts the issuer and revocation authority parameters for the identity card of the
Republic of Utopia.

<IssuerParameters>
<ParametersUID>urn:utopia:id:issuer</ParametersUID>
<AlgorithmID>urn:com:microsoft:uprove</AlgorithmID>
<SystemParameters>...</SystemParameters>
<CredentialSpecUID>urn:creds:id</CredentialSpecUID>
<HashAlgorithm>xenc:sha256</HashAlgorithm>
<CryptoParams>...</CryptoParams>
<KeyBindingInfo>...</KeyBindingInfo>
<RevocationParametersUID>

urn:utopia:id:ra
</RevocationParametersUID>
</IssuerParameters>

Fig. 6. Issuer parameters.

<RevocationAuthorityParameters>
<ParametersUID>urn:utopia:id:ra</ParametersUID>
<RevocationMechanism>

urn:abc4trust:accumulators:cl
</RevocationMechanism>
<RevocationInfoReference ReferenceType="url">

https:utopia.gov/id/revauth/revinfo
</RevocationInfoReference>
<NonRevocationEvidenceReference ReferenceType="url">

https:utopia.gov/id/revauth/nrevevidence
</NonRevocationEvidenceReference>
<CryptoParams>...</CryptoParams>
</RevocationAuthorityParameters>

Fig. 7. Revocation authority parameters.

The issuance token that would be generated in response to the issuance policy for the
library card as depicted in Figure 4, is shown in the Figure 8 below.

01 <IssuanceToken>
02 <IssuanceTokenDescription>
03 <PresentationTokenDescription PolicyUID="libcard">
04 <Message>...</Message>
05 <Pseudonym Alias="nym" Scope="urn:library:issuance" Exclusive="true"/>
06 <PseudonymValue>MER2VXISHI=</PseudonymValue>
07 </Pseudonym>
08 <Credential Alias="id" SameKeyBindingAs="nym">
09 ...
10 <DisclosedAttribute AttributeType="urn:creds:id:state">
11 <AttributeValue> Nirvana </AttributeValue>
12 </DisclosedAttribute>
13 </Credential>
14 </PresentationTokenDescription>
15 <CredentialTemplate SameKeyBindingAs="id">...</CredentialTemplate>
16 </IssuanceTokenDescription>
17 <CryptoEvidence>...</CryptoEvidence>
18 </IssuanceToken>

Fig. 8. Issuance token for obtaining the library card.

