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ABSTRACT
With the advancement of virtualization technologies and the benefit
of economies of scale, industries are seeking scalable IT solutions,
such as data centers hosted either in-house or by a third party. In
spite of the ubiquity of data centers, little is known about their in-
production performance. This study fills this gap by conducting a
large scale performance survey on several thousands of data cen-
ter servers within a time period that spans two years. We provide
in-depth analysis on the diversity and time evolution of existing
data centers by statistically characterizing typical data center server
workloads, highlighting similarities and differences in the usage of
basic resource components, including CPU, memory, disk, and file
system. In addition, we quantify the time variability and season-
ality of resource demands and how they are changing according
to different geographical locations as well as virtual and physical
operating systems. This survey provides a baseline for workload
calibration, which is critical for the development of scalable and
efficient resource management and capacity planning of future data
centers.

1. INTRODUCTION
Data centers are becoming the standard IT solution to a host of

businesses due to their great potential in reducing operation costs
and management overheads. Data centers have the clear advantage
of economies of scale from the perspective of abundant deployment
of resources. Further powered by virtualization technologies [23,
24,37,38], they enable multiple resources being multiplexed/shared
among a large number of users with diverse time-varying access
patterns [4, 11]. Effectively managing a large amount of resources
under highly dynamic workloads is no mean feat.

Data center management can be divided into two categories: (i)
resource management, that focuses on dynamically controlling work-
loads given a resource pool, and (ii) capacity planning, that focuses
on resource provisioning. In recent years, a large number of studies
[7, 14, 24] aim at leveraging virtualization technologies to improve
data center efficiency by consolidating workloads. The evaluation
of existing consolidation strategies relies heavily on using "repre-
sentative" workloads, which can be further adopted in simulation,
prototypes, and even modeling studies of data centers. Capacity
planning on the other hand often relies on time series methodolo-
gies [12, 14, 20] for workload forecasting in order to dimension re-
source capacity. Evolution of workload resource demands is very
crucial for short, medium, and long term capacity planning.

There have been large scale studies in the literature that focus
on specific workloads or specific resources [4, 5, 28, 30, 35] pro-
viding significant insights, e.g., the discovery of self-similarity in
web traffic, and disk and DRAM failure patterns. In addition, most
detailed workload analysis encompassing major server resources

[22, 25], e.g., CPU, memory, and disk, are based on executing var-
ious benchmark suites on different architectures. To the best of our
knowledge little is known about "real" workloads placing demands
on data centers and how their combined demands on different re-
sources evolve across time.

Motivated by the gap between the needs of data center manage-
ment and the lack of related studies, we conduct a detailed perfor-
mance survey across a random selection of several thousands of
servers hosted in different data centers, located in five continents,
during the period of June 2009 to May 2011. We collect the uti-
lization values of CPU, memory, and disk in different time scales,
i.e., hourly, daily, weekly, and monthly. We first aim at character-
izing the consolidated server workloads in terms of resource de-
mands. In particular, we provide statistics that quantify demands
across different resources and derive implications on the potential
server consolidation strategies. We also characterize the time evo-
lution of resource demands with respect to geographical locations,
time shifts and seasonality, resource interference, and virtual vs.
physical machines.

Due to the nature of data that are available to us, our study suffers
from some unfortunate limitations. First, because of the large scale
and complexity of data, there is no availability of performance met-
rics in fine time granularities. The smallest resolution we present
here is per minute performance but this information is available
only for a short period of observation times. For most of analy-
sis presented in this study, we focus on a coarser time granulari-
ties, i.e., day, week and month, which are obtained by aggregating
performance metrics collected every 15 minutes. A second limita-
tion is that the main metric that is available (either directly or af-
ter trace manipulation) is the utilization of different resources, i.e.,
CPU, memory, disk and file system. CPU utilization describes the
amount of time CPU is actively used; whereas we derive the space
utilization of memory, disk, and file systems from raw data. Our
study sheds no light in the arrival patterns or possible burstiness of
requests into the data center(s). In addition, there are no data on
the distribution of response times of the various data center users
or specific applications.

Despite these limitations, the data presented here can well rep-
resent the performance characteristics in today’s large scale data
centers. Our survey and analysis provide the essential informa-
tion, i.e., workloads and trends of resource utilizations and usage
patterns. Such information can be directly used for resource pro-
visioning and capacity planning or can be used indirectly to guide
the parameterizations of simulation studies such that the workloads
and scenarios are realistic and relevant. Due to the nature of our
data, we are able to present information in different levels of gran-
ularity, i.e., across all data centers, across data centers on specific
continents, countries, industries, and enterprises.



The summary of our contributions and outline of this work are
as follows. In Section 2, we provide an overview of a typical server
workload in data centers. In Sections 3 and 4, we analyze the evo-
lution of resource supplies and demands. In particular:

• We present overall characteristics of main resources, i.e., mean,
standard deviation, and empirical distribution of CPU, mem-
ory, disk, and file system utilization, across all servers (Sec-
tion 3.1).

• We present the correlations of monthly resource utilizations.
We found that CPU, memory, and disk are moderately and
positively correlated, and disk and memory are negatively
correlated (Section 3.2).

• We present the distribution of CPU utilization across servers.
Using elementary fitting, we conclude that surprisingly, a
simple truncated exponential distribution can well capture
the CPU utilization (Section 3.3).

• We present the maximum and median memory paging rate
[KB/s] across all servers. We found that roughly 20 percent
of servers experience a noticeable paging rate for a short pe-
riod of time and that the majority of servers have negligible
paging activities for most of the time (Section 3.4).

2. DATA STATISTICS
We collect resource utilization statistics from several thousands

of heterogeneous servers at in-production data centers from June
2009 till May 2011. The geographic distribution covers all con-
tinents and a wide range of countries, e.g., developed and devel-
oping. These systems are used by different industries, including
banking, pharmaceutical, IT, consulting, and retail, and are based
on various UNIX-like OSs, i.e., AIX, HP-UX, Linux, and Solaris.
In summary, our collected samples contain a huge number of repre-
sentative server statistics reflecting the current practice of resource
management in data centers.

In particular, we collect resource utilization values, e.g. the CPU
and disk, for their multiple implications of current data center per-
formance. Intuitively, resource utilization values show the efficient
use of resources in data center servers. Secondly, resource utiliza-
tion values can be viewed as the work load on the different re-
sources. Finally, the trend of utilization values indicate the growth
of demand and supply of resources in data centers. Since utiliza-
tion values are normalized, it eases comparisons across different
servers. Moreover, the utilization values are used as workload in-
puts to evaluate various power management and capacity plannings
in data centers [10, 24, 29]

We focus on three main physical resources per server: CPU,
memory, and disk, plus the file system. A server can have mul-
tiple disks and the disk utilization is the total over all the attached
disks. The file system includes both local and remote data storage,
which can be on the media of disks and memory. Similar to the
disk, when there are multiple file systems, the utilization is taken
from the total of all file systems. The CPU utilization is defined by
the percentage of time the CPU is active over an observation pe-
riod (we use 1 and 15 minutes as base periods); whereas utilization
values of memory, disk, and file system are defined by the volume
usage, i.e., used space divided by the total available space. The av-
erage utilization values over base periods are collected via prevail-
ing vmstat, iostat and df utilities (or other equivalent tools)
and stored in a round-robin like database so that the space foot-
print of the database (per server) is constant. Essentially, older data
points are aggregated over larger time periods, i.e., days, weeks

and months. Recent data is available at a higher time resolution
than older data. In particular we consider monthly data from June
2009 to May 2011, weekly data from June 2010 to May 2011, and
daily data for May 2011.

The base utilization values are further divided by different shifts
of a day and of a week, i.e., prime working time (8 AM - 5 PM) vs.
off-prime working time, and week days vs. weekends. Note that all
selected servers have all the data points in the observation period
in order to consider a constant server population. As such, we can
rule out the explanations of presented data, due to the fluctuation
of adding or removing servers. Most of our analysis here is based
on the monthly average resource utilizations over a two years span,
computed from data points of a 15 minutes long base period. We
also present daily and weekly in some of the subsections, based on
15 minutes base values.

We present an overview of the data set in Table 1. This table
summarizes the statistics of servers by different categories, i.e.,
countries, physical/virtual, and OS. Due to lack of space, we only
present detailed data for five countries rather than all. We anonymize
and refer to those as country A, B, C, D, and E. Note that this subset
however still covers different geographical areas and developed vs.
developing areas.

We adopt two perspectives to analyze the data set:

• Diversity of server workloads: here we aim to study and
quantify the diversity of server workloads, i.e., how server
workloads at different data centers vary. We capture the statis-
tics of resource demands of servers, i.e., distributions of aver-
age resource utilizations and workload variations, across all
servers, and over the entire observation period. In addition
to in-depth analysis on each resource type, we quantify the
dependency among resources. Future data centers can lever-
age this analysis as a base line of workloads for their system
design and resource management, via mathematical models,
simulation, emulation, prototyping, and implementation.

• Time evolution: here we aim to explore the time series of
data center resource demands over the past two years, by
adopting a temporal perspective. We present time series of
resource utilization at different time scales and categories. To
identify the representative time series model for predicting
resource demands, we analyze the distribution of the auto-
correlation function (ACF) in time units of months and days.
We capture the time variability of CPU workloads at a minute
granularity. In particular, we assess the long term capacity
planning for data center resources.

To ease readability, we first introduce some notation used in this
study. Let Ui,j(t) denote the utilization of resource i at server
j during time t. We use the convention that i is subscript for
resources, i = {c,m, d, f}, j is the subscript for server, j =
{1 . . . J}, and t is the index for the time window defined in units of
months, weeks, or days, t = {1 . . . T}. We specifically compute
the following statistics:

• Ui,j : the mean utilization of resource i at server j over all
time windows t.

• µi: the mean utilization of resource i over all servers, i.e.,
the mean of all Ui,j .

• µi(t): the average utilization of resource i at time window t
for all servers.



Table 1: Overview of resource utilization by different categories

All CPU [%] Memory [%] Disk [%] File system [%]
mean std CoV mean std CoV mean std CoV mean std CoV

All 17.76 18.16 1.02 77.93 23.18 0.30 75.28 24.34 0.32 45.17 19.27 0.43

Country CPU [%] Memory [%] Disk [%] File system [%]
mean std CoV mean std CoV mean std CoV mean std CoV

Country A 24.91 18.30 0.73 80.83 16.09 0.20 81.15 18.37 0.23 55.04 18.35 0.33
Country B 12.89 12.00 0.93 81.73 15.57 0.19 64.10 20.08 0.31 46.33 19.50 0.42
Country C 7.25 9.76 1.35 71.87 25.09 0.35 63.59 27.04 0.43 38.89 18.72 0.48
Country D 14.55 12.93 0.89 84.44 19.02 0.23 70.20 23.98 0.34 48.21 17.95 0.37
Country E 19.28 19.45 1.01 78.57 22.22 0.28 72.33 24.96 0.35 44.13 18.33 0.42

Operating System CPU [%] Memory [%] Disk [%] File system [%]
mean std CoV mean std CoV mean std CoV mean std CoV

AIX 21.05 19.20 0.91 84.48 16.80 0.20 69.37 23.16 0.33 47.25 18.32 0.39
HP-UX 19.34 16.23 0.84 68.16 20.53 0.30 81.49 17.15 0.21 56.15 16.51 0.29
Linux 6.76 9.73 1.44 80.99 21.29 0.26 85.54 27.17 0.32 36.62 20.24 0.55
Solaris 10.13 11.45 1.13 44.52 23.56 0.53 95.10 12.20 0.13 39.53 20.03 0.51

Type CPU [%] Memory [%] Disk [%] File system [%]
mean std CoV mean std CoV mean std CoV mean std CoV

Server 12.15 13.87 1.14 71.93 25.96 0.36 78.66 25.77 0.33 44.91 20.47 0.46
LPAR 49.01 20.10 0.85 85.18 16.23 0.19 71.21 22.17 0.31 45.96 17.76 0.39

Solaris Zones 6.20 8.78 1.42 36.65 20.80 0.57 98.42 7.33 0.07 26.63 16.92 0.64

0
50

100

0

50

100
0

50

100

CPU [%]File system [%]

M
em

or
y 

[%
]

Figure 1: Mean CPU, memory, and file system utilization of all
servers (Ui,j).

3. TYPICAL AND REPRESENTATIVE DATA
CENTER WORKLOADS

To characterize the data center workloads on all resources, we
start from simple visual analysis. We present the mean CPU, mem-
ory, and file system utilization values Ui,j of all servers in Figure
1. Clearly, servers appear very diverse in terms of resource utiliza-
tions, although some clustering behavior is observed. As indicated
by the large number of points along the north west edge in Fig. 1,
there is a significant number of systems with memory that is more
than 80% utilized.

We list in Table 1 the mean, standard deviation, and coefficient
of variation (CoV) of the mean resource utilizations Ui,j over all
servers by different categories. The average values indicate the

typical resource workloads running on today’s servers: CPU, mem-
ory, disk, and file system have mean utilization values at 17.76%,
77.93%, 75.28%, and 45.17% respectively. We observe that all
resources have relatively low standard deviation compared to the
mean value as reflected also in the CoV. This can be partially ex-
plained by the bounded utilization values, i.e., 0−100%. In general
the degree of diversity in server resource utilizations is rather low,
especially for the categorized servers. We combine the in-depth
analysis of the diversity and time evolution of servers for different
categories in Section 4.

Clearly, the average CPU utilization is low for most. However
one has to keep in mind that this data is averaged over the entire
observation period and therefore CPU utilization peaks are hidden.
In contrast to the CPU, disk and memory are both highly utilized.
The high disk utilization can be easily explained by the definition,
i.e., usage of allocated disk spaces, while high memory values by
the fact that some OS, e.g., Linux and AIX, use memory as cache
to speed up IO operations. We provide detailed statistics in Section
4.5. The file system is moderately utilized leaving space to store
new data. Due to the fact that CPU utilization is defined by the per-
centage of "active" time, one can expect CPU utilization of a server
to be the most varying, compared to other resources. Consequently,
the CPU has the highest CoV values (∼ 1), while the most homo-
geneous resources in terms of usage are memory and disk (CoV
∼ 0.3) with the file system somewhere in between (CoV ∼ 0.4).
In the following subsections, we further focus on CPU variability,
presenting results using finer time granularities and/or on smaller
sets of servers.

In summary, statistics listed in Table 1 provide an overview of the
server workload at data centers. Essentially, a typical server work-
load has rather low and varying CPU utilization, medium loaded
file systems, and very highly utilized memory and disk. Such in-
formation could be used as the basis for designing resource man-
agement strategies and workload benchmarks.



3.1 Resource Utilization Distributions
To give more in depth information, we use first and second mo-

ment analysis and obtain an empirical distribution. we plot the cu-
mulative density function (CDF) of mean utilizations of each re-
source, µi, over all servers in Fig. 2. Additionally, we fit the em-
pirical distributions with known statistical distributions:

• CPU can be approximated with a truncated exponential dis-
tribution with µ = 17.64.

• Memory can be approximated with a generalized extreme
value distribution with k = −1.14, σ = 27.85, and µ =
75.66.

• Disk can also be approximated by a generalized extreme value
distribution with k = −1.22, σ = 25.83, and µ = 78.87.

• File system fits quite well to a Weibull distribution with a =
50.74 and b = 2.51.

Overall, we observe that it is nearly trivial to find a statistical
distribution that fits the empirical distribution of CPU and file sys-
tem with negligible errors. Fitting disk and file system data into
distributions results is more challenging.

Results in Figure 2 can be used for for workload verification of
large scale studies, such as those that focus on cloud data centers.
One can use these results to calibrate simulation, prototyping, and
benchmarking. To further clarify how representative the empiri-
cal distributions across all servers are, we further analyze resource
usage variability across severs that serve five different enterprises.

We select five enterprises, anonymized by Ent 1-5, each of which
are in different industries, e.g., banking, communication, e-business,
production, and telecommunication, and use more than 100 servers
each. Furthermore, we use finer-grained statistics, i.e., Ui,j is com-
puted from the weekly average over a year span. Our aim here is to
validate the fitted resource distributions derived from a much larger
server population, when applying to a small number of servers that
serve a specific enterprise. In Figure 3 (a)-(d), we summarize the
empirical CDFs of those selected enterprise. For all enterprises,
one can see that CDFs of memory and file system are very closed to
CDFs computed from all servers, i.e., the fitted distributions close
to the empirical values.1 The variability of server CPU utilization
in enterprises 2-4 can be well captured by exponential distributions;
whereas the empirical CDF of enterprise 1 and 5 can be fitted by a
Weibull distribution. One can easily see that average CPU loads on
enterprise 1 and 5 are much higher.

3.2 Correlation Among Server Resources
We compute the correlation coefficient between different resources,

based on monthly utilization, and summarize results in Fig. 4. In
general all resources are correlated with absolute coefficient val-
ues between 0.26 and 0.1 for the monthly data. As the highest
correlations are between CPU/memory and CPU/file system, one
expects them to depend on each other, i.e., resource demands have
similar peaks and dips. It is surprising to observe that the file sys-
tem is more correlated with the memory than with the disk, and
that the disk is only moderately correlated with CPU and file sys-
tem. Disk appears to be the least correlated with other resources.
Furthermore, all server resources are positively correlated, except
memory and disk. The negative correlation between memory and
disk suggests that servers with a high memory utilization probably
have a low disk space and vice versa. The correlation coefficients
computed over the weekly and daily data follow the same trends
1For the sake of clarity, we do not present fitted data on this graph.

with similar absolute values for the weekly data and smaller abso-
lute values for the daily data. Due to the lack of space, we omit
correlation coefficient figures of weekly and daily data.

Typically, a negative correlation indicates a potential benefit of
consolidation as the peak-times and off-times of resources of server
utilizations are different. Resource management factoring on the
negative dependency among resources can reach a more effective
and economical operation in data centers, e.g., virtual machine con-
solidation [24]. On the contrary, the positive correlation implies
that the correlated resources can be bundled together for capac-
ity planning. Moreover, neglecting the positive dependency easily
leads to under provisioning of resources. From our correlation anal-
ysis, we conclude that resource demands of CPU, memory, and file
system at typical data centers are dependent on each other with cor-
relation coefficients around 0.25, while disk can be approximately
analyzed as an independent resource.

-0.2

-0.1

 0

 0.1

 0.2

 0.3

C-M C-D C-F M-D M-F D-F

Figure 4: Correlation coefficients between CPU (C), memory
(M), disk (D), and file system (F) on all servers.

To better present and validate the correlation coefficients among
resources over a closely "related" set of servers, we select from
our trace data those that correspond to the five different enterprises
presented in Figure 3. We assume that the servers in each enterprise
tend to be similar in terms of workload characteristics. In Figure 5,
we compute the correlation coefficients among resources for each
enterprise. On one hand, one can see that enterprise 1 and 2 have
very similar correlation coefficients among resources as the ones
computed from the all servers, except of the coefficient between
memory and disk utilization. In general, the negative correlation
shown in Figure 4 only appears on Enterprise 3. On the other hand,
enterprise 4 and 5 have quite different correlation coefficient values
from Figure 4. Enterprise 4 even has negative correlation between
(1)disk and file system and (2) disk and CPUs. Combining results
based on all servers and enterprise servers, we conclude that the
correlation coefficient analysis based on all server is valid for some
servers in a particular enterprise, but the correlation among memory
and disk can be very different or unpredictable.

3.3 Temporal Variability of CPU Utilization
The Ui,j presented previously are aggregates over all the servers

and thus overlooks the temporal variabilities. Such an effect is neg-
ligible for the disk, memory, and file system utilizations which rep-
resent rather static space demands. In comparison, the CPU utiliza-
tion is a measure of activity and thus temporal variability is crucial
in evaluating workloads [10]. Here, we take a micro approach to
characterize the server diversity in terms of temporal variability.
Between May 1 and May 7 2011, we present the CPU utilization at
time granularities of a minute.
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Figure 2: CDF of µi over two years monthly averages, across all servers.
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Figure 3: CDF of µi over one year weekly averages, across servers dedicated to selected enterprises.
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3.3.1 Standard Deviation of CPU Utilization
From the minute data we compute for each server the standard

deviation over the entire day in order to quantify the utilization
variability per day. We then plot the empirical CDFs of the standard
deviations across servers in Fig. 6. One can see that the CDFs of
week days overlap with each other, so do the weekend days and the
difference between the two groups is quite small. Moreover we can
fit the data reasonably well with an exponential distribution. We
use parameters µ = 8.75, µ = 8.98, and µ = 8.16, for all, week,
and weekend days, respectively. On the average, the variability
of CPU utilization during the weekend is lower than during the
week. It is a welcome surprise that an exponential distribution can
capture the CPU variability across servers. Combining with the
analysis in Section 3.1, we conclude that a typical data center server
has both average CPU utilization and temporal standard deviation
of CPU utilization following exponential distributions with mean
µ = 17.64 and µ = 8.75 respectively. One can refer to this data to
validate large scale data center studies.
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Figure 6: CDF of CPU utilization standard deviation over dif-
ferent days based on minute utilization data).

3.3.2 CPU Temporal Minimum, Median, and Maxi-
mum

One common practice of system resource provisioning is based
on the the peak usage [35], especially CPU. Therefor, we extend the
study of the minute data also to the minimum, median, and maxi-
mum CPU utilization per day. More in particular, we compute for
each server the 5th, 50th, and 95th percentile of the CPU utiliza-
tion distribution per day, and use them as a representation of the
minimum, median and maximum CPU utilization of a server.

We plot the CDFs of minimum, median, and maximum CPU uti-
lizations in Figure 7. In Section 3.3.1, we already hinted to the fact
that the CPU utilization distributions over week days and weekend
days are very similar. We observed the same overlapping also for
CDFs of the minimum, median and maximum CPU utilizations.
Hence for space reasons, we plot only the distributions related to
Sunday May 1st, 2011 (green/light lines) and Wednesday May 4th,
2011 (pink/dark lines) representing respectively a weekend day and
a week day. The steeper the lines, the more the servers are concen-



trated towards low CPU utilization values, whereas the flatter the
lines the more the servers are concentrated towards high CPU uti-
lization values. One can expect that the minimum utilization CDF
lines to be higher the the median utilization CDF lines which in
turn to be higher then the maximum utilization CDF lines.

In Figure 7(a), we plot the CDFs based on all servers. The dif-
ferences between a weekday and weekend day grows with the per-
centile. For the min CDF, the difference is negligible, whereas the
difference is most noticeable for the max CDF. Also in agreement
with the previous results, week day samples are more spread out
then weekend days. The minimum CPU utilization is concentrated
towards the 0 value. Specifically, one can see that roughly 37 per-
cent of servers have minimum CPU utilization values less then 1%,
and still another roughly 73 percent of servers have minimum CPU
utilization values between 1% and 10%. Similarly from the me-
dian CPU utilization, one can see that roughly 80 percent of servers
have their medium CPU utilization values between 0% and 30%,
i.e. half of the time a majority of servers have their CPU utiliza-
tion between 0% and 30%. Such an observation matches with the
previous analysis listed in Table 1 that the majority of servers are
under-utilized.

However, from the maximum CPU utilizations, one can observe
that servers indeed have some high CPU utilization values. One
can see that more than 15 percent of servers have their maximum
CPU utilization higher than 80%. In other words, there is a non-
negligible share of servers that have a high peak load. Combining
with the observation from minimum and median CDF, we further
infer that there is a big gap between peak and off-peak CPU usage.
As such, when systems are built to satisfy peak loads, the resources
tend to be over-provisioned. A qualitative idea is given by the dis-
tance between the CDF lines. The closer the lines the smaller the
gap, the further the lines the bigger the gap. To give a more precise
idea of this gap we plot in Figure 8 the PDF of the difference be-
tween the per day minimum and maximum CPU utilization across
all servers. The PDF appears similar to the uniform distribution
and implies it is very difficult to have good prediction on the max
and min CPU loads.

Finally we present the same CDFs for enterprise 1 and 2 in Fig-
ure 7(b) and 7(c) to show how well/bad the overall picture can
match the global statistics. Client 1 has higher CPU workloads,
as indicated by the flatter initial slopes of the CDF lines, whereas
Enterprise 2 has a lower CPU workloads, as indicate by the steep
initial slopes of the CDF lines. For a given percentile CDF, the dif-
ference between week days (supposedly high load) and weekend
days (supposedly low load) is bigger for individual Enterprise than
for all servers. This can be explained by the smoothing effect due
to aggregating of a larger number of servers.

3.4 Peek into Memory Activities
Our aim here is to show how servers use memory within a day

and quantify the memory variability across time and across servers.
As such, we present fine-grained memory related statistics in terms
of space utilization and paging activities. Similarly to Section 3.3
we collect the per minute memory statistics on Sunday May 1, 2011
and Wednesday May 4, 2011 and compute the empirical CDFs of
the minimum, median, and maximum.

3.4.1 Memory Space Utilization
In Figure 9(a), we first present the empirical CDFs of the space

memory utilization of all servers. All CDFs have similar shapes and
the differences among a weekday and weekend is negligible. More-
over as indicated by how close the lines are, the differences among
minimum, median and maximum memory utilization values are
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Figure 8: PDF of the difference between max and min CPU
utilization within a day, across all servers.

quite small compared to the CPU utilization in Figure 7(a). Both
indicate that the memory usage of a server indeed varies somewhat,
but overall it is quite static across time.

3.4.2 Memory Paging Rate
Memory space utilization provides only a partial information re-

garding to the memory performance. In addition to memory usage
statistics, we present the memory paging activity in KB/s which
can be a good indicator of memory related problems. We express
this as the sum of the page-in and page-out rates as reported by
vmstat. We plot the CDFs of the memory paging rates across all
servers in Figure 9(b) (maximum) and 9(c) (median). We skip the
minimum since it is always very close to zero. Due to the long tails
of the distributions, we add small inset boxes with a bigger scale.

One can see that the paging rate on Wednesday is slightly higher
than Sunday, as indicated by the lower CDF lines of max and me-
dian. For the max paging rates, roughly 30 percentage of servers
have values at zero. This implies that roughly 30 percent of servers
have no paging activities. Moreover, roughly 50 percent of servers
have their maximum paging rate ranging between 0 to 2000KB/s.
However the distribution clearly shows a long tail and a 20 percent
of servers have the maximum paging rates ranging up to 40000
KB/s or even beyond, as indicated by the small box in Figure 9(b).

Switching to Figure 9(c), one can see that a 70 percent of servers
have their median paging rate at zero. It implies that 70 percent of
servers have no paging activities for half of the time and20 percent
of servers have their median paging rates up to 10KB/s, which is
a fairly low value. In other words, roughly 90 percent of servers
has negligible paging activities for half of their execution. We con-
clude that most of servers do not suffer from paging for most of the
time, and 20 percent of servers experience a non-negligible paging
activities for a very small fraction of execution time.

3.5 Discussion and Summary
The following summarizes the gist of our findings:
1) The representative average workloads in current data cen-

ters are CPU = 18%, memory = 78%, disk = 75%, and
filesystem = 45%. The CoV of utilization across servers is more
pronounced for CPUs, and less for file systems, memory, and disk.

2) Generally speaking, CPU, memory, and file system utiliza-
tions in a data center server are moderately correlated, while disk
utilization is less tightly correlated with the rest of the resources.
Most resources are positively correlated, except memory and disk.
Consolidation should factor in the correlations among resources
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Figure 9: Memory related statistics

and this study provides a qualitative measurement of correlations.
We conclude that the provisioning of CPU, memory, and file sys-
tem should be bundled and that there is a good potential in resource
saving in consolidating servers with heavily loaded memory and
disk.

3) As CPUs are averagely utilized at 15− 20% following a trun-
cated exponential distribution, the theoretical upper bound of data
center system improvement via workload consolidation is roughly
six fold (1/15%), given that the current utilizations are maintained
and other resources are not the bottleneck. However, as there are
more than forty percent of servers having maximum CPU utiliza-
tion greater than 50 % and the system needs to fulfill peak loads,
efficiency gains thanks to consolidation are immediately limited.

4) Roughly a 20 percent of servers experience a higher paging
rate for a short period of time, while most of servers have low mem-
ory paging rates.

4. EVOLUTIONARY VIEW
In this section we analyze the time evolution of resource utiliza-

tions by category, including geographical location, different time
shifts, different seasonality, physical versus virtual machine, and
selected enterprises. In addition to the various statistics, we also
provide a simple economics analysis that becomes important for
capacity planning [13, 31, 36].

4.1 Economics Analysis
The utilization reflects the efficiency as well as the difference be-

tween resource demands and supplies at data centers. The average
utilization of resource i during month t is defined by the ratio of

the demand Di(t) over the supply Si(t):

µi(t) =
Di(t)

Si(t)
. (1)

Let αi be the growth rate of resource i utilization. Assuming linear
growth of resource utilizations, one can write

µi(t+ 1) = (1 + αi)µi(t). (2)

When resource utilizations show increasing trends αi > 0; other-
wise αi < 0. Combining Eq. 1 and Eq. 2, one can obtain:

(1 + αi) =
Di(t+ 1)/Di(t)

Si(t+ 1)/Si(t)
(3)

Essentially, the utilization growth indicates the relative differ-
ence between the demand growth (Di(t + 1)/Di(t)) and the sup-
ply growth (Si(t + 1)/Si(t)). When αi > 0, it implies that the
average demand growth is greater than the supply growth at data
centers. On the contrary, the drop of utilization values implies that
supply growth is greater than demand growth. In real terms, we can
infer that a particular resource has been greatly upgraded. We note
that resource demands and supplies at data centers highly depend
on the regional economic growth.

We plot the evolution of resource utilizations in Fig. 10. Fo-
cusing on the all curve (that does not separate the shifts) CPU,
disk, and file system show increasing trends (αc = 0.22 > αd =
0.14 ≈ αf = 0.15 > 0) indicating that their demand growths
are stronger than their supply growths. One can observe more fre-
quent dips in CPU and memory utilizations and infer that CPU and
memory are upgraded more frequently. Even if in Table 1 CPU uti-
lization is low, the CPU utilization shows a strong increasing trend
(αc = 0.22) over time, justifying an initial partly over provision-
ing of CPU resources. Furthermore this observation matches with



the free market mechanism where the CPU is moving towards the
market equilibrium in terms of provisioning.

Overall, with a small αd = 0.09, memory utilization is rather
constant at about the common upper limit employed by OSs in
managing memory subsystems. As a result, one can infer that the
memory demand is roughly the same as the memory supply and at
equilibrium. The constant values further indicate that the demand
growth is the same as the supply at data centers. Compared to other
resources, memory is upgraded with a higher frequency and this
can point to issues where memory is the bottleneck resource for
many of today’s applications.

4.2 Impact of Time Shifts
We separate monthly utilization values by different shifts, i.e.,

prime, off-prime, weekend, and all in Fig. 10. In general, CPU, file
system, and disk utilizations increased by 4%, 3%, and 2% respec-
tively in the past two years, whereas memory utilization appears
more constant.

One can observe that the differences among shifts are not much
(roughly 1%) especially for memory, disk, and file system utiliza-
tions. For CPUs, the difference between prime and weekend shifts
is roughly 3%, and the difference between prime and off-prime
shifts is roughly 1%. Today’s CPUs during the prime shifts are
loaded with 1.08 and 1.2 times more workload than on off-prime
and weekend respectively. Such an observation leads to the specu-
lation that there might be little resource efficiency to gain by explor-
ing CPU on different shifts, given the criterion of maintaining per-
formance. Similar observations held also for the memory utiliza-
tion, i.e., prime shift has a higher value than off-prime, whose value
is higher than weekend. On the contrary, the shifts have a different
effect on disks, i.e., the utilization order for shifts is: weekend, off-
prime, all, prime. This observation matches with current common
practice of data backup during the off-peak time. Finally, the file
system gives mixed signals, i.e., higher utilization at the weekend
(matching with the higher disk utilization and therefore most prob-
ably related to the backup operations) and lower utilization during
the off-prime shift with respect to the prime shift. This last obser-
vation could be due to temporary files created by programs during
their operation and then deleted.

Considering all shifts, we plot the resource evolutions of the se-
lected enterprises in Figure 11. Compared to the previous subsec-
tion, one can see not only the resource evolutions but also their
variability among enterprises. Using theses specific enterprises, we
illustrate how such time series analysis can facilitate the IT capacity
planning for enterprises. Enterprise 1 has an obvious CPU work-
load increase and rather mild workload increases in other resources.
One can speculate that for the workloads executed on enterprise 1
an upgrade on CPU might be needed in the near future. Similar ob-
servation can be made to the enterprise 5. For enterprises 2 and 3,
all resource utilization values are very flat and this can be possibly
explained by that its demand growth is very similar to its supply
growth. Enterprise 4 has a lot of fluctuations in all resources, espe-
cially the memory. This can be indicated by the frequent upgrades.
In general, one can use such time series analysis to predict the com-
putational and storage demands for those enterprises.

4.3 Seasonality of CPU
Time-varying workloads are the key for short term as well as

long-term capacity planning of computer and communication sys-
tems [4, 8, 20]. A large number of studies [7, 10, 11, 33] have iden-
tified time series of the family of autoregressive moving average
(ARMA) models [12], which can capture well the seasonal effects,
for some specific systems and smaller scale datasets. Here, we aim
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Figure 12: ACF of CPU utilization at different scales:
average±standard deviation across all servers.

to present the representative ACFs from the time series of CPU uti-
lization at different scales, i.e., monthly, and daily, such that one
can obtain the important parameters for ARMA models via our
analysis.

For each server, we compute its ACF from the CPU utilization
Uc,j(t) where t is index for one of 24 months or one of 30 days. For
each lag in the ACFs, we further compute the average and standard
deviation from all servers. Note that the standard deviation repre-
sents the heterogeneity of ACF across different servers. We sum-
marize the curves of the average ACF plus/minus its standard de-
viation in Fig. 12. The region between the upper and lower curves
shows where the majority of data center servers ACF is located.
The shapes of ACFs indicate that the time series of CPUs can be
captured and predicted well by an autoregressive model. Specifi-
cally, the monthly ACF decays faster than than the daily ACF. Fur-
thermore, on the daily ACF it is possible to identify peaks in 7, 14
and 21 days indicating a clear weekly periodicity. One can take
these ACF curves to forecast the CPU workloads for their yearly,
monthly, weekly, and even daily capacity planning.

4.4 Is CPU waiting for I/O?
We use our data sets to verify such a conjecture by breaking

down the CPU utilization into the three modes given by vmstat:
system, user, and I/O wait. For each server, we collect the average
daily percentage of CPU utilization in these three modes during the
whole month of May, 2011. For each day, we compute the mean of
all modes across all servers. In Figure 13, we report the CPU uti-
lization in system, user, and I/O wait modes. One can see that most
of CPU active time is spent in user and system modes; whereas only
a negligible CPU time is spent on I/O wait. Moreover as already
seen previously, there is a clear seasonality effect, i.e., there are pe-
riodic dips during the weekends. However, the seasonality effect is
less visible for the CPU time spent in the system mode than in the
other two modes. This indicates that the bookeeping by the OS is
rather constant over time.

Unfortunately the I/O wait time does not include the time spent
in network I/O other then file I/O over network, e.g., in the case
of network file system. Therefore, we can not directly relate our
observations with many DC studies, e.g., [16], pointing out that
CPU suffers from relatively low utilization due to not-that-great
network performance.

4.5 Memory Breakdown
Similar to CPU breakdown analysis, one can also break down

the memory usage into several categories, depending on its use. In
general, the vmstat command breaks down the used memory space
in buffers, cache, and other, which includes anything which is not
buffers or cache. For each server, we collect these three statistics
during the entire month of May, 2011. Further, we compute the
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Figure 10: Time series of the average resource utilization, µi, on different shifts.
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Figure 11: Time series of the average resource utilization, µi, on selected enterprises.
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average of those values across all servers, and summarize the re-
sults in Figure 14. In contrast to the CPU break down, there is no
temporal variability in the overall memory usages nor in each cat-
egory. The total used memory is roughly 77%, which corresponds
to the values presented in Table 1. As pointed out earlier, many
OSs keep memory roughly utilized around this value to avoid frag-
mented memory space and heavy memory swapping. A very in-
teresting observation is that on average the applications uses only
around of 30% of the total memory, whereas more than half of the
memory space is used for system buffer and cache to speep up I/O
operations. It shows that operating systems well utilize the avail-
able memory space.

4.6 Geographical Locations
Our objective in this subsection is to answer the questions if

servers at different geographical locations are the same and how the
resource demands deviate from the general observations explained
in the previous subsection. We summarize all resource utilizations
of some selected countries in Fig. 15. The corresponding averages
and standard deviations across all time windows are summarized
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Figure 14: Memory usage breakdown across all servers: buffer,
cache, other and free.

in Table 1. One can see that CPU, memory, disk and file system
utilizations lie between 7− 25%, 72− 84%, 64− 81%, 39− 55%
respectively for the selected countries. Nevertheless they show var-
ious trends in different geographic areas.

We observe a significant growth of supply at data centers, i.e., re-
source utilization dips, at developing countries and areas. Instead,
developed countries have rather steady and static utilization trends.
In particular, country C has the lowest CPU, memory, disk and file
system utilizations among all the selected countries, whereas coun-
try A has the highest resource utilizations at almost all the times.
Country E has very steady trends on all resource utilizations, as the
number of servers under survey is significantly large, compared to
the other countries. In the following, we describe some observa-
tions with respect to each resource.

CPU. The CPU evolution, αc, of servers differs at different ge-
ographic locations. From our data set, we observe that most of
the continents have CPU demand growths greater than CPU supply
growths. When we look into selected countries, one can also ob-
serve a high supply growth in country A. Country B, D, and E all
show steady and increasing demand growths and the CPU utiliza-



tions converge to values between 16 − 18%. In general, one can
observe periodical dips in CPU utilizations which reflect seasonal-
ity and irregular dips reflecting possible upgrades.

Memory. Overall, the evolution of memory utilization is rather
flat, but with slightly smaller dips, compared to CPU. One can
observe that the evolution of memory at different countries well
matches with the CPU evolution, though the relative difference of
memory utilization at countries is not the same as for the CPU. The
frequent dips in memory utilization for countries B, C, D, and A
show that memory is probably often upgraded, whereas country E
has a rather steady memory evolution line.

Hard disk. Clearly, one can observe, from the increasing trend
of disk utilizations, that disk demand growth is greater than the
supply growth in all macro regions.

File system. Most countries show an utilization growth, αf ,
around the average value of 0.15 over the 2 years observation pe-
riod. Country D and B show steady decreasing trends in file system
for a short period. We attribute this to innovation in file system
technologies.

4.7 Physical vs. Virtual Machines
In this subsection, we focus on the evolution of physical vs. vir-

tual resource utilizations. Virtualization technologies [7, 34] have
been greatly employed in the past 10 years to increase resource
efficiencies by providing a uniform platform over heterogeneous
software and hardware stacks. Moreover, due to the booming of
cloud computing [1], a large number of studies have focused on
managing virtual resource provisioning [7, 14, 23, 39]. We aim to
qualitatively show the efficiency improvement due to the virtual-
ization technologies.

From our data set, we summarize how resource utilizations dif-
fer among physical and virtual servers in Fig. 16. For CPU and
memory, virtual servers show higher utilizations (with higher in-
creasing trends) than physical ones. The virtual CPU utilization
increases from 19.4% to 27.6% in two years, whereas the physical
CPU utilization increases only from 10.9% to 12.9%. Clearly, vir-
tualization technologies double the CPU utilization. However, the
difference between virtual and physical CPU utilization could be
due to the virtualization overhead. Both virtual and physical memo-
ries bear steady utilizations around 85% and 70% respectively. One
can infer that for both memory demand growth is the same as the
memory supply growth. On the contrary, virtual disks have lower
utilizations (around 70%) than the physical disks (around 76%).
For the file systems, both physical and virtual servers have simi-
lar utilizations around 43% with slightly higher utilization growth
for virtual ones. In summary one can see that, indeed, the virtual
resources show a higher demand growth than the supply growth,
especially for CPU.

5. RELATED WORK
In the past few years there have been a host of research efforts fo-

cusing on improving data center performance. These studies could
be roughly classified at those that focus on power management, ca-
pacity planning and resource provisioning, and traffic engineering.
A detailed survey of the extensive related work is not possible here,
for more details we direct the interested reader in the representative
papers that are surveyed here and references therein.

From the perspective of power/cooling delivery and their respec-
tive costs, there have been efforts on exploiting the platform hetero-
geneity that characterizes cloud data centers. They consider differ-
ences in power management of the various heterogeneous compo-
nents and emphasize is on the effectiveness for an allocation mech-
anism that maps workloads to best fitting platforms [27]. A predic-

tion mechanism that predicts thermal behavior within a data center
is proposed in [26] and is used for improving data center power
effectiveness. The premise of much of the related work regarding
power effectiveness in data centers focuses on either moving work-
loads from under-utilized servers and shutting them down, e.g., [9]
or provide techniques that offer trade-offs on performance with en-
ergy reduction, e.g., [11]. Workload-award statistical multiplexing
has been proposed in [15] and evaluated on a small scale prototype
of a data center. In general, the evaluation of the proposed data cen-
ter power saving mechanisms are not easy, as field evaluations are
rare and there is no clear workloads and demands placed on data
centers. Our evaluation study complements the above works by
providing a baseline for real-world data center utilization behavior
that can be used to drive the evaluation of different power saving
strategies as in [29].

An additional angle of viewing the problem of performance in
data centers is that of resource provisioning via multiplexing. Most
of these studies have focused on how to multiplex applications and
have proposed techniques to best meet service level objectives of
different applications, aiming at automated capacity planning and
workload management. Virtualization and architectures that ef-
fectively support it have been described as key to achieve short-
and long-term loads [40]. The non-stationarity of the workload has
been viewed as a a challenge for allocating server capacity in data
centers. Techniques that use clustering algorithms to automatically
determine the workload mix have been shown effective in data cen-
ters in laboratory settings and have been evaluated experimentally
using benchmark applications [32] The use of online monitoring
that is integrated with virtualization technologies within data cen-
ters has been proposed in [21]. In general, resource provisioning
techniques are evaluated via small scale prototypes at a laboratory
setting or simulation. Our large scale characterization study can
leverage the above works by providing information on realistic as-
sumptions about the workloads served by data centers.

Last but not least, the need to improve on the data center net-
working abilities, especially from the geo-diversity and geo-distributing
perspective, has been identified in an early position paper as crit-
ical [16]. Such work fueled the development of new variants of
TCP that are especially tailored for data centers that need to effi-
ciently serve efficiently a diverse mix of short and long flows [3].
In the past years, there is a host of works focusing on the design
of networks that are most appropriate for data centers. In turn,
such designs focus on certain type of applications, e.g., MapRe-
duce [2, 17, 18] and/or web services [6, 19]. The above works are
motivated by measurements of data center traffic. For a compre-
hensive study on the statistics, topology, and packet-level traffic
characteristics of several types of data centers including university,
enterprise, and cloud data centers, we direct the interested reader
to [6].

To the best of out knowledge, this is the first large scale charac-
terization study that aims to shed some light on the type of real
workloads served by today’s production data centers. The pre-
sented study also offers a glimpse on the performance bottlenecks
faced by data centers. Our findings can be used for better parame-
terization of data center simulation and prototype studies by show-
ing how empirical workloads truly look like.

6. CONCLUSION
In this paper, we surveyed over a period of two years several

thousands servers located at different data centers. Using utiliza-
tion statistics of CPU, memory, disk and file systems, we character-
ize the typical server workloads and the diversity across servers. In
particular, we quantify the average resource utilizations, the tempo-



 5

 10

 15

 20

 25

 30

 35

 40

06/09 12/09 06/10 12/10 05/11

[Months]

Country A
Country B
Country C

Country D
Country E

 55
 60
 65
 70
 75
 80
 85
 90
 95

 100

06/09 12/09 06/10 12/10 05/11

[Months]

Country A
Country B
Country C

Country D
Country E

 60
 65
 70
 75
 80
 85
 90
 95

 100
 105

06/09 12/09 06/10 12/10 05/11

[Months]

Country A
Country B
Country C

Country D
Country E

 30

 35

 40

 45

 50

 55

 60

 65

 70

06/09 12/09 06/10 12/10 05/11

[Months]

Country A
Country B
Country C

Country D
Country E

(a) CPU (b)Memory (c) Disk (d) File System

Figure 15: Resource utilizations at selected countries.
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Figure 16: Physical v.s. Virtual machines.

ral variability across servers and diversity across resource demands.
Moreover, with respect to different categories, e.g., we present the
evolution of server resource demands and their economic interpre-
tations. To quantify seasonality, we characterize the autocorrela-
tion across servers at different time scales, i.e., monthly, weekly,
and daily. Our analysis on the diversity and evolution of servers
provides a basis for resource management and capacity planning at
data centers.
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