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Abstract—To improve the reliability of data storage systems,
certain data placement schemes spread replicas across several
nodes. This enables parallelizing the rebuild process which in turn
results in reducing the rebuild times. However, the underlying
assumption is that the parallel rebuild process is facilitated by
sufficient availability of network bandwidth to transfer data
across nodes. In a large-scale data storage system where the
network bandwidth for rebuild is constrained, such placement
schemes will not be as effective. In this paper, it is shown through
analysis and simulation how the spread of replicas across nodes
affects system reliability under a system network bandwidth
constraint. Efficient placement schemes that can achieve high
reliability in the presence of bandwidth constraints are proposed.
Furthermore, in a dynamically changing storage system, in which
the number of nodes and the network rebuild bandwidth can
change over time, the data placement can be accordingly adapted
to maintain the highest level of reliability.

I. INTRODUCTION

Redundancy is used to protect data from node failures

in today’s large-scale data storage systems. When a storage

node fails, the lost redundancy is restored as fast as possible

through a rebuild process. This restoration is done by reading

the redundancies corresponding to the lost data from other

surviving nodes, reconstructing the lost data (which could

either involve some computation if complex erasure codes are

used for redundancy, or simple copying if replication is used),

and storing the reconstructed data either in the spare space of

surviving nodes or in spare nodes. The reliability of a system,

in terms of the chances of this rebuild process failing due

to further node failures resulting in irrecoverable data loss,

depends significantly on this rebuild process.

The manner in which the redundant data are placed across

the nodes in the system, that is, data placement, affects both

how fast and how effective the rebuild process can be. There

are two main ways in which the data placement, and hence

the rebuild process, affects the reliability of the system. Firstly,

if the redundant data are placed across several nodes in the

system, the rebuild process can benefit by parallelizing the

data restoration process. The restoration time can be minimal

provided there is sufficient network bandwidth available. Min-

imal restoration time implies that there is a shorter window

of time during which additional node failures can hinder the

rebuild. Secondly, spreading the replicas of data across several

nodes also exposes these replicas to the failure of any of

these nodes, thereby increasing the probability of failure of the

rebuild process. Interestingly, for two-way replicated systems,

these two effects cancel each other out resulting in similar

reliability [1]. For higher replication factors, however, the

first effect is more dominant as the second effect tends to

expose less amount of data to the danger of irrecoverable loss

because of the spreading of replicas across several nodes [2].

When the network bandwidth is limited though, the rebuild

times may be longer and therefore the former factor may be

affected. This imbalance leads to interesting results in terms

of the mean time to data loss (MTTDL) of the system. In

this paper, we explore this effect and show how the network

bandwidth constraint affects the system MTTDL and how we

can design schemes that can achieve high reliability under

these conditions. The results of this paper can also be used to

adapt the data placement schemes when the available network

rebuild bandwidth or the number of nodes in the system

changes so that system reliability is maintained at the highest

level.

The remainder of this paper is organized as follows. Sec-

tion II briefly reviews related work in the literature. Section III

lists the system parameters, and describes the node failure

and rebuild models used. Section IV presents the method of

reliability estimation. Section V contains the main results of

this paper on the effect of network rebuild bandwidth and

the data placement scheme used on the system reliability.

Section VI lists the findings based on simulations and theory,

and Section VII concludes this paper.

II. RELATED WORK

Dependence of system reliability on the data placement

scheme without any network rebuild bandwidth limitations

has been studied extensively in the literature [1], [2], [3], [4],

[5], [6]. Effect of network rebuild bandwidth constraints on

system reliability has been studied in [5]. That work considers

and assesses the reliability of two placement schemes, namely,

sequential and random. In sequential placement, for any data

block there is one unique node that acts as a lead node,

and the r replicas of this data block are stored on the lead

node and its r − 1 following nodes. This implies that the

replicas corresponding to the data on any given storage node

are spread over its r−1 preceding nodes and its r−1 following

nodes. This is equivalent to a placement scheme with replica

spread factor equal to 2r + 1 (see Section III-B). In random

placement, the r replicas of a data block are placed randomly

across n nodes. If the size of the data block is small enough,



TABLE I
PARAMETERS OF A STORAGE SYSTEM

c storage capacity of each node (bytes)
n number of storage nodes

1/λ mean time to failure of a storage node (s)
b rebuild bandwidth at each storage node (bytes/s)
r replication factor
k spread factor of the data placement scheme

Bmax maximum network rebuild bandwidth (bytes/s)

1/µ time to rebuild a node in clustered placement (1/µ = c/b)
N maximum number of nodes from which rebuild can occur at

full speed in parallel (N = Bmax/b)

Beff(k̃) effective distributed rebuild bandwidth involving k̃ nodes

(Beff(k̃) = min(k̃b, B))

Seff(k̃) effective speed of distributed rebuild involving k̃ nodes

(Seff(k̃) = Beff(k̃)/2)

then all possible placement choices of r out of n nodes will

be used and this is equivalent to declustered placement with

replica spread factor equal to n (see Section III-B). However,

if the size of data blocks is large, then all possible placement

choices of r out of n nodes may not be used by the random

placement scheme and the spread factor may be smaller than

n. In addition, [5] proposes a new placement scheme called

stripe placement which essentially limits the spread factor

to the maximum number of nodes that the network rebuild

bandwidth can support during a parallel rebuild process at full

speed. Our results closely match the mean time to data loss

(MTTDL) results of [5]. In addition, we derive closed form

expressions for the MTTDL and provide further insight into

the effect of placement schemes on the reliability behavior of

systems under network rebuild bandwidth constraints.

III. SYSTEM MODEL

The parameters of the storage system considered and the

failure and rebuild models used in the paper are described

in this section. Table I lists the parameters used. The upper

and lower parts of the table list the set of independent and

dependent parameters.

A. Storage System

Consider a storage system with n nodes each with capacity

c. Data redundancy across nodes is used to protect data from

node failures in the system. In this paper, we consider a simple

form of redundancy, namely, replication, although many of

the results in this paper can be extended to other forms of

redundancy such as erasure codes as well. When a node failure

occurs, a rebuild process is initiated to restore the lost data

from the surviving replicas. Data loss occurs when a series of

node failures occur that eventually makes some data lose all

its r replicas.

B. Data Placement Schemes

For each node in the system, let its redundancy spread

factor denote the number of nodes over which the data on

that node and its corresponding redundant data are spread. In

a replication-based system, when a node fails, its spread factor

determines the number of nodes which have replicas of the

data in the failed node, and this in turn determines the degree

of parallelism that can be used in rebuilding the data lost by

that node. In this paper, we will consider symmetric placement

schemes in which the spread factor of each node is the same,

denoted by k. In a symmetric placement scheme, the r − 1
replicas of the data on each node are equally spread across

k−1 other nodes, the r−2 replicas of the data shared by any

two nodes are equally spread across k − 2 other nodes, and

so on. One example of such a symmetric placement scheme

is the so-called clustered placement scheme for which the

spread factor k is equal to r. In this scheme, the system is

divided into disjoint sets of r nodes, called clusters, and the

nodes in each cluster store replicas of the same data. Another

example of a symmetric placement scheme is the so-called

declustered placement scheme for which the spread factor k
is equal to n. In this scheme, all

(

n

r

)

possible ways of placing

r replicas in n nodes are equally used to store data. A number

of different placement schemes can be generated by varying

the spread factor k. The spread factor of a placement scheme is

important in two ways: (a) it determines the number of nodes

over which data of a failed node is spread and therefore, the

degree of parallelism that can be used in the rebuild process

of that node, and (b) it determines the amount of data that

becomes critical and needs to be rebuilt first when additional

node failures occur. It can be seen that any two nodes sharing

replicas of some data share exactly r−1
k−1c amount of data. In

general, any set of m nodes (m < r) sharing replicas of some

data, share exactly c
∏m−1

i=1

(

r−i
k−i

)

amount of data.

C. Failure Model

Times to node failures are assumed to be independent

and exponentially distributed with mean time to failure 1/λ.

It can be shown that the MTTDL estimates are practically

insensitive to a large class of failure distributions, including

most importantly, real world distributions [7]. Therefore, the

MTTDL results derived in this paper using exponential dis-

tributions also apply to real world failure time distributions.

The independence assumption may not apply to node failures

that are caused by software bugs, DDoS attacks, virus/worm

infections, node overloads, and human error, as these factors

may result in correlated node failures [8]. Recent work [9]

has shown that node unavailability can be strongly correlated;

however, there is no specific characterization of the extent of

correlation among permanently failing nodes.

D. Rebuild Model

The rebuild process used to restore the data lost by failed

nodes is assumed to be both intelligent and distributed. By an

intelligent rebuild process, we mean that the system always

attempts to first recover the copies (replicas) of the most

critical data, that is, data that has the least number, say r̃,

of replicas left in the system. In a distributed rebuild process,

the data lost by a failed node is restored by reading surviving

replicas and creating a new replica of the data in reserved

spare space on surviving nodes as illustrated in Fig. 1. More

specifically, if the r̃ surviving replicas of the most critical data



Beff = min(k̃b, B)

b b b

c̃

c̃/k̃ c̃/k̃ c̃/k̃

distributed rebuild from k̃ nodes

– critical data blocks

– non-critical data blocks

– spare space

Fig. 1. Example of the distributed rebuild model for a two-way replicated
system. When one node fails, the critical data blocks are present in the
surviving nodes. The distributed rebuild process creates replicas of these
critical blocks by copying them from one surviving node to another in parallel.

are stored across k̃ nodes (k̃ > r̃), these replicas are used

to rebuild the lost data in the spare space on those k̃ nodes

such that no two copies of the same data are stored on the

same node. This is done so that the rebuild process can make

use of the node rebuild bandwidth available at all k̃ nodes in

parallel. Once all lost data is recovered, this newly recovered

data is transferred to new nodes. For clustered placement, the

surviving r̃ replicas of the most critical data of a cluster are

present on exactly the r̃ surviving nodes of that cluster, that

is, k̃ = r̃. Therefore, the replicas of this data are read from

one of the surviving nodes and written to a new spare node

as it is not possible to do a distributed rebuild as described

earlier without creating two replicas of the same data on the

same node.

During the rebuild process, a read-write bandwidth of b
bytes/s is assumed to be reserved at each node exclusively

for the rebuild. This is usually only a fraction of the total

bandwidth available at each node; the remainder is being used

to serve user requests. If 1/µ is the time to rebuild a storage

node in clustered placement, that is, the time required to read

all contents of a node and write to a new spare node, then

1/µ = c/b or b = cµ.

In a distributed rebuild process, if the r̃ surviving replicas

of the most critical data are stored across k̃ nodes, then the

total network bandwidth required to perform rebuild at full

speed is k̃b. Let the maximum available network bandwidth

for rebuilds be denoted by Bmax. We will assume that Bmax ≥ b
as Bmax < b is a degenerate case. So, if the available network

rebuild bandwidth is Bmax, the total bandwidth that can be

used by rebuilds cannot exceed Bmax. Therefore, the effective

network rebuild bandwidth used by rebuilds, Beff(k̃), is given

by

Beff(k̃) = min(k̃b, Bmax) = min(k̃, N)b, (1)

where N specifies the effective maximum number of nodes

from which rebuild can occur in parallel at full speed and is

given by

N =
Bmax

b
. (2)

Note that N may not be an integer; it only represents the

effective maximum number of nodes from which distributed

rebuild can occur at full speed. Substituting b = cµ into (1),

we get

Beff = min(k̃, N)cµ. (3)

Suppose that the total amount of critical data to be rebuilt is

c̃. Owing to the nature of the symmetric placement and the

nature of the distributed rebuild process, the amounts of data

to be read from and to be written to each of the k̃ nodes are

equal to c̃/k̃. As the effective rebuild bandwidth Beff(k̃) is

equally used for both reads and writes, the required rebuild

time, R̃, is given by

R̃ = c̃/(Beff(k̃)/2) = c̃/Seff(k̃), (4)

where Seff(k̃) is the effective speed (rate) of distributed rebuild

involving k̃ nodes and is given by

Seff(k̃) = Beff(k̃)/2. (5)

For the sake of clarity and consistency with earlier works, we

will only use expressions involving µ and N rather than b and

Bmax in the remainder of the paper. The implicit relationship

between µ, N , b, and Bmax is given in Table I.

Clustered placement is an exception as it does not use

distributed rebuild. The effective speed of rebuild for clustered

placement is cµ because data is read from any one of the

surviving nodes of the cluster to which the failed node

belonged, and then written to a spare node.

In this paper, as in [1], [2], we will assume that the rebuild

bandwidth is constant and hence the rebuild times are fixed.

However, the results obtained here can be extended to a large

class of rebuild time distributions by using the methodology

presented in [7].

E. Generally Reliable Nodes

We will assume that storage nodes are generally reliable,

that is, the mean time to failure of a node 1/λ is much larger

than the time to rebuild a node 1/µ:

1/λ ≫ 1/µ, or λ/µ ≪ 1. (6)

This condition implies that terms involving powers of λ/µ
greater than one are negligible compared to λ/µ and can be

ignored in the subsequent analysis.

IV. RELIABILITY ESTIMATION

At any point in time, the system is in one of two modes,

namely, fully-operational mode or rebuild mode. In the fully-

operational mode, all data in the system have r replicas and

there are no rebuilds in progress. In the rebuild mode, some

data in the system have lost some of their replicas and a rebuild

process that attempts to restore the lost replicas is underway. A

transition from fully-operational mode to rebuild mode occurs

when a node fails; we refer to this node failure that causes this



transition as a first-node failure. Following a first-node failure,

a complex sequence of rebuilds and subsequent node failures

may occur which eventually lead the system either back to the

original fully-operational mode or to irrecoverable data loss.

As the storage nodes are generally reliable, the rebuild times

are much shorter than the times to failure, and therefore the

time taken for this complex sequence of events is negligible

compared to the time to first-node-failure. Consequently, we

model the systems behavior as a series of first-node-failure

events each of which results in data loss with probability PDL,

or back to the original fully-operational mode with probability

1− PDL.

As the times to failure of the nodes are exponentially

distributed with mean 1/λ, the mean time between two first-

node failures is equal to 1/(nλ). Furthermore, as each first-

node failure could result in data loss with probability PDL, the

expected number of first-node failures until data loss occurs

is 1/PDL. Therefore, the mean time to data loss (MTTDL) is

equal to the product of the mean time between two first-node

failures and the expected number of first-node failures, that is,

MTTDL ≈ 1

nλPDL

. (7)

The above expression is approximate because the rebuild

times, which are negligible compared to the time between

failures, are ignored. Note that the above expression also holds

for more general non-exponential failure distributions [7].

It has been argued that MTTDL is useful for assessing trade-

offs, for comparing schemes, and for estimating the effect of

the various parameters on the system reliability [10], [11],

[12]. Since the main objective of this work is the assessment

of the effect of the network rebuild bandwidth on the reliability

of various types of data placement schemes, we proceed by

considering MTTDL as a reliability measure.

V. EFFECT OF NETWORK REBUILD BANDWIDTH

As noted earlier, limited network rebuild bandwidth can

negatively influence the rebuild process and therefore lower

the reliability of the system. In this section, we analyze its

effect by estimating the MTTDL of a system with spread factor

k > r. The analysis is done by modeling the system using

exposure levels and computing the probability PDL [2].

A. Exposure Levels

At time t, let Dl(t) be the number of distinct data blocks that

have lost l replicas, with 0 ≤ l ≤ r. The system is considered

to be in exposure level e at time t, 0 ≤ e ≤ r, if

e = max
Dl(t)>0

l. (8)

In other words, the system is in exposure level e if there exists

at least one block with r− e copies and no blocks with fewer

than r−e copies in the system, that is, De(t) > 0, and Dl(t) =
0 for all l > e. At t = 0, Dl(0) = 0 for all l > 0 and

D0(0) is the total number of distinct data blocks stored in the

system. Node failures and rebuild processes cause the values

of D1(t), · · · , Dr(t) to change over time, and when data loss

occurs, Dr(t) > 0.

B. Direct Path to Data Loss

Consider the direct path of successive transitions from

exposure level 1 to r. In [2] it was shown that PDL can be

approximated by the probability of the direct path to data loss,

PDL,direct, when nodes are generally reliable, that is,

PDL ≈ PDL,direct =

r−1
∏

e=1

Pe→e+1, (9)

where Pe→e+1 denotes the probability of transition from

exposure level e to e+ 1.

C. Rebuild Times at Each Exposure Level

Consider the direct path to data loss and let the rebuild times

of the most-exposed data at each exposure level in this path

be denoted by Re, e = 1, · · · , r − 1. Let αe be the fraction

of the rebuild time Re still left when a node failure occurs

causing an exposure level transition. It has been shown in [2]

that αe is uniformly distributed, that is,

αe ∼ U(0, 1), e = 1, · · · , r − 2. (10)

The amount of data to be rebuilt in exposure level 1 is c. For

a placement scheme with spread factor k > r, the surviving

replicas of this data are spread across k− 1 nodes. Therefore,

the speed of distributed rebuild follows from (5) and is equal

Seff(k− 1). The time to rebuild follows from (4) and is given

by

R1 =
c

Seff(k − 1)
. (11)

Given α1 and R1, the remaining time to complete the rebuild

is α1R1. As the rate of rebuild is Seff(k − 1), it now follows

that the amount of data not rebuilt in exposure level 1 is

α1R1Seff(k − 1). However, copies of only a fraction, r−1
k−1 ,

of this data were shared by the newly failed node due to the

nature of the symmetric placement scheme. This implies that,

in exposure level 2, the amount of most-exposed data, that is,

the data which have lost 2 copies, is r−1
k−1α1R1Seff(k−1). The

system performs intelligent rebuild, that is, rebuilds the most-

exposed data first. By the nature of the placement scheme, the

surviving replicas of the most-exposed data are now spread

across k−2 nodes and therefore the speed of distributed rebuild

follows from (5) and is equal to Seff(k−2). The time to rebuild

in exposure level 2, R2, follows from (4) and is given by

R2 =
r−1
k−1α1R1Seff(k − 1)

Seff(k − 2)

=
r − 1

k − 1
· Seff(k − 1)

Seff(k − 2)
α1R1. (12)

Using similar arguments, for any given exposure level e, e =
2, · · · , r − 1, it holds that

Re =
r − e+ 1

k − e+ 1
· Seff(k − e+ 1)

Seff(k − e)
αe−1Re−1. (13)



D. Conditional Probability of Exposure Level Transition

In the direct path to data loss, there are k − e nodes in

exposure level e whose failure before rebuild can cause the

system to go to exposure level e + 1. Denote the times to

failure of these nodes by E
(i)
t , i = 1, · · · , k − e, and denote

by Pe→e+1(Re) the conditional probability of transition to

exposure level e+ 1 given that the rebuild time is Re. Then,

Pe→e+1(Re) = Pr{min
i

E
(i)
t ≤ Re}

= 1− (1− Pr{E(1)
t ≤ Re})k−e. (14)

As E
(i)
t , i = 1, · · · , k − e are exponentially distributed with

mean 1/λ,

Pr{E(1)
t ≤ Re} ≈ λRe. (15)

The above approximation for the value of Pr{E(1)
t ≤ Re}

also holds for more general non-exponential distribution [7].

Substituting (15) into (14), and ignoring higher powers of λRe,

we get

Pe→e+1(Re) ≈ (k − e)λRe. (16)

E. Estimation of MTTDL

Consider a realization of the direct path to data loss with

fractions αe, e = 1, · · · , r − 2, and rebuild times Re, e =
1, · · · , r − 1. For notational convenience, let us denote the

vector (α1, · · · , αr−2) by ~α, (R1, · · · , Rr−1) by ~R, and the

conditional probability of this path by PDL,direct(~α, ~R). Then,

using (16),

PDL,direct(~α, ~R) =

r−1
∏

e=1

Pe→e+1(Re)

≈ λr−1
r−1
∏

e=1

(k − e)Re. (17)

By unconditioning on ~α and ~R, we now obtain

PDL,direct = E
[

PDL,direct(~α, ~R)
]

≈ λr−1E[R1R2 · · ·Rr−1]
r−1
∏

e=1

(k − e). (18)

Then by the direct path approximation (9), the probability PDL

is given by

PDL ≈ λr−1E[R1R2 · · ·Rr−1]
r−1
∏

e=1

(k − e). (19)

Substituting (13) for e = 2, · · · , r − 1 in (19), we obtain

PDL ≈ (λR1)
r−1E[αr−2

1 αr−3
2 · · ·α2

r−3αr−2]
r−1
∏

e=1

(k − e)

×
r−1
∏

e′=2

(

r − e′ + 1

k − e′ + 1

Seff(k − e′ + 1)

Seff(k − e′)

)r−e′

. (20)

Substituting (11) into (20), and using the fact that αe ∼
U(0, 1), e = 1, · · · , r− 2 and therefore E[αm

e ] = 1/(m+ 1),
we get

PDL ≈
(

λc

Seff(k − 1)

)r−1
1

(r − 1)!

r−1
∏

e=1

(k − e)

×
r−1
∏

e′=2

(

r − e′ + 1

k − e′ + 1

Seff(k − e′ + 1)

Seff(k − e′)

)r−e′

. (21)

Substituting (5) and (3) into (21), we get

PDL ≈
(

λ

µ

2

min(k − 1, N)

)r−1
1

(r − 1)!

r−1
∏

e=1

(k − e)

×
r−1
∏

e′=2

(

r − e′ + 1

k − e′ + 1

min(k − e′ + 1, N)

min(k − e′, N)

)r−e′

. (22)

Canceling terms of the form min(k− e′, N) and rewriting the

product, we get

PDL ≈
(

2λ

µ

)r−1
1

(r − 1)!

r−2
∏

e=1

(

r − e

k − e

)r−e−1

×
r−1
∏

e′=1

k − e′

min(k − e′, N)
. (23)

An estimate for the MTTDL then follows by substituting (23)

into (7):

MTTDL ≈ µr−1

nλr

(r − 1)!

2r−1

r−2
∏

e=1

(

k − e

r − e

)r−e−1

×
r−1
∏

e′=1

min(k − e′, N)

k − e′
. (24)

The above expression holds for all spread factors k > r. For

k = r, that is, for clustered placement, the rebuild process

always involves reading data from one of the surviving nodes

and writing to a new node at a rate cµ. Given that Bmax >
b = cµ, the network rebuild bandwidth Bmax is sufficient to

read and transfer data from one node to another at a rate cµ,

the MTTDL is given by [2]

MTTDLclus. =
µr−1

nλr
. (25)

F. MTTDL vs. Network Rebuild Bandwidth

The expression for MTTDL in (24) can be broken down

as follows to understand the effect of limited network rebuild

bandwidth. When the spread factor k ≤ N + 1, the terms

of the form min(k − e,N) become equal to k − e for

e = 1, · · · , r − 1, and the second product in expression (24)

for MTTDL becomes equal to one. This represents the case

when network rebuild bandwidth is sufficient and does not

affect the reliability of the system. For k = n, that is, for

declustered placement, and for k ≤ N + 1, expression (24) is

the same as expression (20) in [2]. On the other hand, when

the spread factor k ≥ N+r−1, the network rebuild bandwidth

is insufficient for a parallel rebuild process at full speed and
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Fig. 2. Theoretical estimates of MTTDL for a replication factor of two with
mean time to failure of a node equal to 10000 h.

therefore the system reliability is affected negatively. This can

be seen from the fact that the second product in expression (24)

for MTTDL becomes smaller than one and scales as k−(r−1).

In essence, if we denote the MTTDL under network band-

width constraint N by MTTDLN and the MTTDL under no

network bandwidth constraint, that is, N = ∞, by MTTDL∞,

then it follows from (24) that

MTTDLN = MTTDL∞

r−1
∏

e′=1

min(k − e′, N)

k − e′
, (26)

where MTTDL∞ is given by

MTTDL∞ ≈ µr−1

nλr

(r − 1)!

2r−1

r−2
∏

e=1

(

k − e

r − e

)r−e−1

. (27)

Replication Factor 2: For declustered placement, that is, for

k = n, the expression for MTTDL (24) reduces to

MTTDLdeclus. =











µ

2nλ2
when n ≤ N + 1

µN

2n(n− 1)λ2
when n ≥ N + 1.

(28)

The above expressions show that, when network rebuild

bandwidth is not sufficient to carry out the rebuild process

in parallel at full speed, the MTTDL becomes inversely

proportional to the square of the number of nodes instead

of being inversely proportional to the number of nodes. This

drastic change in the MTTDL behavior as the system scales is

shown in Fig. 2. The figure shows the plots of MTTDL as a

function of the number of nodes for four different placement

schemes, each with a different spread factor. When the network

rebuild bandwidth can support only up to N = 20 nodes at full

speed during distributed rebuild, it is seen that the MTTDL of

declustered placement drops significantly compared to other

placement schemes which are not affected (because their

spread factors are less than N ). For a scheme whose spread
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Fig. 3. Theoretical estimates of MTTDL for a replication factor of three
with mean time to failure of a node equal to 10000 h.

factor is k = ⌊√n⌋, the change in MTTDL behavior is seen

around n = N2 = 400 nodes.

Replication Factor 3: For declustered placement, the expres-

sion for MTTDL (24) reduces to

MTTDLdeclus. =















µ2(n− 1)

4nλ3
when n ≤ N + 1

µ2N2

4n(n− 2)λ3
when n ≥ N + 2.

(29)

The change in the MTTDL behavior due to limited network

rebuild bandwidth is greater than that observed for replication

factor two; it goes from being constant with respect to the

number of nodes when network rebuild bandwidth is sufficient,

to being inversely proportional to the square of the number of

nodes when the network rebuild bandwidth is limited. This

is also shown in Fig. 3. Interestingly, for r = 3, limiting the

spread factor to N , that is, setting k = min(n,N), can achieve

much higher MTTDL than the declustered placement scheme

for n ≥ N + 2.

Replication Factor 4: For declustered placement, the expres-

sion for MTTDL (24) reduces to

MTTDLdeclus.

=



































µ3(n− 1)2(n− 2)

24nλ4
when n ≤ N + 1

µ3N2(N + 1)

24(N + 2)λ4
when n = N + 2

µ3(n− 1)N3

24n(n− 3)λ4
when n ≥ N + 3.

(30)

The above expressions are plotted in Fig. 4. For replication

factor 4, the MTTDL values of a scheme that limits the spread

factor to N , that is, k = min(n,N), is comparable to the

MTTDL values of the declustered scheme for which k = n.

This is because, although the limited network bandwidth

slows down rebuilds in a declustered placement scheme, the
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Fig. 4. Theoretical estimates of MTTDL for a replication factor of four with
mean time to failure of a node equal to 10000 h.

amount of most-exposed data to be rebuilt as the system

goes to higher exposure levels also decreases. It appears that,

for declustered placement, the negative influence of limited

network bandwidth is effectively countered by the positive

influence of decreasing amounts of critical data as additional

nodes fail.

Replication Factor 5: For declustered placement, the expres-

sion for MTTDL (24) reduces to

MTTDLdeclus.

=























































µ4(n− 1)3(n− 2)2(n− 3)

768nλ5
when n ≤ N + 1

µ4(N + 1)2N3(N − 1)

768(N + 2)λ5
when n = N + 2

µ4(N + 2)2(N + 1)N3

768(N + 3)λ5
when n = N + 3

µ4(n− 1)2(n− 2)N4

768n(n− 4)λ5
when n ≥ N + 4.

(31)

The above expressions are plotted in Fig. 5. The effect of

decreasing amounts of critical data as additional nodes fail is

stronger than that observed for replication factor four.

G. Optimal Data Placement

Using expression (24) for MTTDL, one can find the optimal

value of the spread factor k for which the corresponding

MTTDL is maximized. Clearly, the optimal spread factor

depends on the number of nodes n and the maximum network

rebuild bandwidth Bmax. In a dynamically changing storage

system, the number of nodes and the available network rebuild

bandwidth Bmax may change over time. As a result, the optimal

spread factor may change as well. In this case, one could

consider redistributing the data in accordance to the new

optimal spread factor. Such a scheme ensures that the system

reliability constantly remains at the highest level.
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Fig. 5. Theoretical estimates of MTTDL for a replication factor of five with
mean time to failure of a node equal to 10000 h.

VI. SIMULATION

Event driven simulations similar to [2] are used to verify

the theoretical estimates of MTTDL for different placement

schemes. The storage system is simulated using an event-

driven simulator with three types of events that drive the sim-

ulation time forward: (a) failure events, (b) rebuild-complete

events, and (c) node-restore events. The state of the system

is maintained by the following variables: time, the simu-

lated time; failTimes, a list of times to next failure of

each node drawn according to the chosen failure distribution;

failedNodes, the list of nodes that have failed in the system

and are being rebuilt; exposureLevel, the exposure level;

and dataExposure = (D0, · · · , Dr), a vector of length

(r+1) where Dl is the number of distinct data blocks that have

lost l replicas. The values of these variables are updated at each

event, and when Dr > 0, data loss is said to have occurred and

the simulation ends. A network rebuild bandwidth constraint

B is imposed during the simulation by limiting the total

bandwidth of all rebuilds in the system to B. For each set of

parameters, the simulation is run 100 times, and the MTTDL

and its bootstrap 95% confidence intervals are computed.

Although some of the assumptions used in the theoretical

analysis, such as independence of node failures, are also used

in the simulation, the simulation results reflect a more realistic

picture of the systems reliability. This is because of the fol-

lowing key differences between the theoretical analysis and the

simulations. The theoretical estimate of MTTDL in (7) takes

into account only the time spent by the system in the fully-

operational mode and ignores the rebuild times, whereas the

simulations do not ignore the rebuild times. Furthermore, in

(9), PDL is approximated by the probability of the direct path

to data loss, thereby implicitly assuming that this is the only

path following a first-node-failure event that would lead to data

loss. In simulations however, all the complex trajectories of the

system through the different exposure levels are simulated by



TABLE II
RANGE OF VALUES OF DIFFERENT SIMULATION PARAMETERS

Parameter Meaning Range

c storage capacity of each node 12 TB
n number of storage nodes 4 to 64
r replication factor 2, 3, 4
b rebuild bandwidth available at each node 96 MB/s

1/λ mean time to failure of a node 300 to 10000 h
N maximum number of nodes from which

rebuild can occur at full speed in parallel
12

Bmax maximum network rebuild bandwidth 1152 MB/s

simulating random node failure events and updating the data

exposure vector by taking partial rebuilds into account. In the

theoretical analysis, the time required to restore new nodes in a

declustered placement scheme (following successful rebuild of

lost replicas in the spare space of surviving nodes) is ignored,

whereas in the simulations, the time to restore new nodes

is simulated as well. In addition, other approximations made

in the analysis, such as neglecting the effect of the transient

period of the system, are implicitly avoided in the simulations.

Therefore, the simulations reflect a more complex picture of

the system behavior than that assumed in theory.

Table II shows the range of parameters used for the simu-

lations. Typical values for practical systems are used for all

parameters, except for the mean times to failure of a node,

which have been chosen artificially low (10000 h and 1000
h for replication factors 2 and 3, respectively) to shorten

the simulation times. The running times of simulations with

practical values of the mean times to node failure, which are

of the order of 10000 h or higher, are prohibitively high; this

is due to the fact that PDL becomes extremely low, thereby

making the number of first-node-failure events that need to

be simulated (along with the other complex set of events that

restore all lost replicas following each first-node-failure event)

extremely high for each run of the simulation. Although this

approach scales down the MTTDL by making failure events

more frequent, its use is justified because it preserves the ratios

of MTTDLs of the various schemes [5].

The simulation-based values of MTTDL for replication

factors 2 and 3 are plotted in Figs. 6 and 7, respectively. The

simulations were done for the two extreme values of spread

factors, namely, clustered placement (k = r) and declustered

placement (k = n). It is seen that the simulation-based values

are a good match to the theoretical estimates.

The following lists the findings of this work:

• Network rebuild bandwidth limitations affects the rebuild

processes in a storage system significantly and decreases

reliability.

• The decrease in reliability due to limited network rebuild

bandwidth depends on the spread factor of the placement

scheme used.

• For declustered placement, the decrease in MTTDL is

proportional to nr−1.

• For replication factor two and three, a placement scheme

that limits the spread factor to the maximum number of

nodes that the network rebuild bandwidth can support at
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Fig. 6. Theoretical and simulation-based estimates of MTTDL for a
replication factor of two with mean time to failure of a node equal to 10000
h. For the simulation-based values, 95% bootstrap confidence intervals are
shown.
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Fig. 7. Theoretical and simulation-based estimates of MTTDL for a
replication factor of three with mean time to failure of a node equal to 1000
h. For the simulation-based values, 95% bootstrap confidence intervals are
shown.

full speed in distributed rebuild is observed to outperform

the declustered placement scheme in MTTDL.

• For replication factors greater than three, limiting the

spread factor does not yield any benefits over the declus-

tered placement scheme as it did for replication factor

three. This is because, the effect of decreasing amounts

of most-exposed data at each exposure level is stronger

than the effect of slower rebuilds.

VII. CONCLUSIONS

We studied the effect of limited network rebuild bandwidth

on the reliability of storage systems using theoretical analysis

and simulations. It was shown that, if replicas are spread over

a higher number of nodes than which the network rebuild

bandwidth can support at full speed during a parallel rebuild



process, the system reliability is significantly reduced and a

drastic change in MTTDL behavior is observed as the system

size increases. Replicas are spread across many nodes in

order to parallelize the rebuild process and improve system

reliability; but when the network bandwidth is incapable of

supporting such a high rate of data transfer across nodes

during parallel rebuild, the rebuild times increase and the time

window of vulnerability widens during which additional node

failures can lead to data loss. For replication factors two and

three, limiting the spread of replicas to the maximum number

of nodes that the network rebuild bandwidth can support at

full speed improves system reliability when compared to the

declustered placement scheme where the replicas are spread

across all the nodes. However, for higher replication factors,

the declustered placement scheme outperforms such a scheme

in MTTDL. This is attributed to the fact that spreading replicas

over many nodes also decreases the amount of critical data

that need to be rebuilt as additional nodes fail. Based on the

results obtained, a method to maintain the highest reliability

level in a dynamically changing storage environment was

proposed. Extension of the present methodology to address

reliability of systems using erasure codes is a subject of further

investigation.
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