
RZ 3823 (# Z1206-02) 03/24/2012 (revised: June 18, 2013)
Computer Science 18 pages

Research Report

Supporting Different Process Views through a Shared Process
Model (Revised Version)

Jochen Küster1, Hagen Völzer1, Cédric Favre1, Moises Castelo Branco2, and
Krzysztof Czarnecki2

1IBM Research – Zurich
8803 Rüschlikon
Switzerland

2Generative Software Development Laboratory
University of Waterloo
Canada

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some re-
ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Almaden • Austin • Brazil • Cambridge • China • Haifa • India • Tokyo • Watson • Zurich

Supporting Different Process Views through a Shared
Process Model

Jochen Küster1, Hagen Völzer1, Cédric Favre1, Moises Castelo Branco2, and
Krzysztof Czarnecki2

1 IBM Research — Zurich, Switzerland
2 Generative Software Development Laboratory, University of Waterloo, Canada

Abstract. Different stakeholders in the Business Process Management (BPM)
life cycle benefit from having different views onto a particular process model.
Each view can show, and offer to change, the details relevant to the particular
stakeholder, leaving out the irrelevant ones. However, introducing different views
on a process model entails the problem to synchronize changes in case that one
view evolves. This problem is especially relevant and challenging for views at
different abstraction levels. In this paper, we propose a Shared Process Model
that provides different stakeholder views at different abstraction levels and that
synchronizes changes made to any view. We present detailed requirements and
a solution design for the Shared Process Model in this paper. Moreover, we also
present an overview of our prototypical implementation to demonstrate the feasi-
bility of the approach.

1 Introduction

A central point in the value proposition of BPM suites is that a business process model
can be used by different stakeholders for different purposes in the BPM life cycle. It can
be used by a business analyst to document, analyze or communicate a process. Technical
architects and developers can use a process model to implement the business process
on a particular process engine. These are perhaps the two most prominent uses of a
process model, but a process model can also be used by a business analyst to visualize
monitoring data from the live system, or by an end user of the system, i.e., a process
participant, to understand the context of his or her participation in the process.

These different stakeholders would ideally share a single process model to collabo-
rate and to communicate to each other their interests regarding a particular business pro-
cess. For example, a business analyst and a technical architect could negotiate process
changes through the shared model. The business analyst could initiate process changes
motivated by new business requirements, which can then be immediately seen by the
technical architect and forms the basis for him to evaluate and implement the necessary
changes to the IT system. The technical architect may revise the change because it is not
implementable in the proposed form on the existing architecture. Vice versa, a technical
architect can also initiate and communicate process changes motivated from technical
requirements, e.g., new security regulations, revised performance requirements, etc. In
this way, a truly shared process model can increase the agility of the enterprise.

2

This appealing vision of a single process model that is shared between stakeholders
is difficult to achieve in practice. One practical problem is that, in some enterprises,
different stakeholders use different metamodels and/or different tools to maintain their
version of the process model. This problem makes it technically difficult to conceptually
share ‘the’ process model between the stakeholders (the BPMN -BPEL roundtripping
problem is a known example). This technical problem disappears with modern BPM
suites and the introduction of BPMN 2, as this single notation now supports modeling
both business and IT-level concerns.

However, there is also an essential conceptual problem. We argue that different
stakeholders intrinsically want different views onto the same process because of their
different concerns and their different levels of abstraction. This is even true for parts
that all stakeholders are interested in, e.g., the main behavior of the process. Therefore
we argue that we need separate, stakeholder-specific views of the process that are kept
consistent with respect to each other. Current tools do not address this problem. Either
different stakeholders use different models of the same process, which then quickly be-
come inconsistent, or they use the same process model, which then cannot reflect the
needs of all stakeholders.

This problem is a variation of the coupled evolution problem [11] and the model
synchronization problem [10]. Coupled evolution has been studied between metamod-
els and models but not for process models at different abstraction levels and in the area
of model synchronization various techniques have been proposed. Put into this context,
our research question is how process views at different abstraction levels can be kept
consistent and changes can be propagated in both directions automatically in a way that
is aligned with existing studies of requirements from practice. In this paper, we address
this problem, present detailed requirements and a design to synchronize process views
on different abstraction levels. The challenge for a solution arises from an interplay of a
variety of possible interdependent process model changes and their translation between
the abstraction levels. We also report on an implementation to substantiate that a solu-
tion is indeed technically feasible. An extended version of this paper is available as a
technical report [14].

2 The Business-IT Gap Problem

In this section, we motivate our Shared Process Model concept. First we argue why we
think that a single process model view is often not adequate for different stakeholders
and we discuss how different views differ. We illustrate this issue by example of two
prominent stakeholder views of a process: the business analysts view used for documen-
tation, analysis and communicating requirements to IT and the IT view of a process that
is used directly for execution. Then, we briefly argue that, with multiple views, we need
a dedicated effort to keep them consistent.

2.1 Why we want different views

Since BPMN 2 can be used for both documentation and execution, why can’t we use a
single BPMN 2 model that is shared between business and IT? To study this question,

3

Fig. 1. Illustration of some refinements often made going from the business to the IT model

we analyzed the range of differences between a process model created by a business
analyst and the corresponding process model that was finally used to drive the execu-
tion on a BPM execution engine. We built on our earlier study et al.[2], which analyzed
more than 70 model pairs from the financial domain, and we also investigated additional
model pairs from other domains. Additionally we talked to BPM architects from com-
panies using process models to collect further differences. We summarize our findings
here.

We identified the following categories of changes that were applied in producing an
execution model from a business model. Fig. 1 illustrates some of these changes in a
simplified claim handling process. We refer to our earlier study by Branco et al.[2] for a
larger, more realistic example. Note that the following categorization of changes, based
on a larger study, is a new contribution of this paper.

• Complementary implementation detail. Detail that is needed for execution is merely added
to the business model, i.e., the part of the model that was specified by the business analyst
does not change. Such details include data flow and -transformation, service interfaces and
communication detail. For example, to specify the data input for an activity in BPMN 2,
one sets a specific attribute of the activity that was previously undefined. The activity itself,
its containment in a subprocess hierarchy and its connection with sequence flow does not
change.

• Formalization and renaming. Some parts of the model need to be formalized further to be
interpreted by an execution engine, including routing conditions, specialization of tasks (into
service task, human task etc., see Fig. 1) and typing subprocesses (transaction, call) and
typing events. Furthermore, activities are sometimes renamed by IT to better reflect some
technical aspects of the activity. These are local, non-structural changes to existing model
elements that do not alter the flow.

• Behavioral refinement and refactoring. The flow of the process is changed in a way that does
not essentially change the behavior. This includes

- Hierarchical refinement/subsumption. A high-level activity is refined into a sequence
of low-level activities or more generally, into a subprocess with the same input/output
behavior. For example, ‘Settle Claim’ in Fig. 1 is refined into ‘Create Response Letter’
and ‘Send Response’. The refining subprocess may or may not be explicitly enclosed in
a separate scope (subprocess or call activity). If it is not enclosed in a separate scope, it

4

is represented as a subgraph which has, in most cases, a single entry and a single exit of
sequence flow. We call such a subgraph a fragment in this paper.
On the other hand, multiple tasks on the business level may be subsumed in a single
service call or a single human task to map the required business steps to the existing
services and sub-engines (human task, business rules). For example, in Fig. 1, ‘Get Per-
sonal Details’ and ‘Get Insurance Details’ got subsumed into a single call ‘Get Request
Details’ of the human task engine.

- Hierarchical refactoring. Existing process parts are separated into a subprocess or call
activity or they may be outsourced into a separate process that is called by a message
or event. Besides better readability and reuse, there are several other IT-architectural
reasons motivating such changes. For example, performance, dependability and security
requirements may require executing certain process parts in a separate environment. In
particular, long-running processes are often significantly refactored under performance
constraints. A long-running process creates more load on the engine than a short running
process because each change need to be persisted. Therefore, short-running parts of
long-running process are extracted to make the long-running process leaner.

- Task removal and addition. Sometimes, a business task is not implemented on the BPM
engine. It may be not subject to the automation or it may already be partly automated
outside the BPM system. On the other hand, some tasks are added on the IT level, that
are not considered to be a part of an implementation of a specific business task. For
example, a script task retrieving, transforming or persisting data or a task that is merely
used for debugging purposes (e.g. ‘Log Session Data’ in Fig. 1).

• Additional behavior. Business-level process models are often incomplete in the sense that
they do not specify all possible behavior. Apart from exceptions on the business-level that
may have been forgotten, there are usually many technical exceptions that may occur that
require error handling or compensation. This error handling creates additional behavior on
the process execution level. In Fig. 1, some fault handling has been added to the IT model to
catch failing service calls.

• Correction and revision of the flow. Some business-level process models would not pass syn-
tactical and semantical validation checks on the engine. They may contain modeling errors
in the control- or data flow that need to be corrected before execution. Sometimes activties
also need to be reordered to take previously unconsidered data and service dependencies
into account. These changes generally alter the behavior of the process. A special case is
the possible parallelization of activities through IT, which may or may not be considered a
behavioral change.

Different changes that occur in the IT implementation phase relate differently to
the shared process model idea. Complementary detail could be easily handled by a
single model through a progressive disclosure of the process model, i.e., showing one
graphical layer to business and two layers to IT stakeholders.

However, the decision which model elements are ‘business relevant’ depends on
the project and should not be statically fixed (as in the BPMN 2 conformance classes).
Therefore, an implementation of progressive disclosure requires extensions that specify
which element belongs to which layer. Additional behavior can be handled through pro-
gressive disclosure in a similar way as long as there are no dependencies to the business
layer. For example, according to the BPMN 2 metamodel, if we add an error boundary
event to a task with subsequent sequence flow specifying the error handling, then this
creates no syntactical dependencies from the business elements to this addition. How-
ever, if we merge the error handling back to the normal flow through a new gateway

5

or if we branch off the additional behavior by a new gateway in the first place, then
the business elements need to be changed, which would substantially complicate any
implementation of a progressive disclosure. In this case, it would be easier to maintain
two separate views. Also the changes in the categories behavioral refinement and refac-
toring as well as formalization and renaming clearly suggest to maintain two separate
views.

Why different views need to be synchronized. In fact, many organizations today keep
multiple versions of a process model to reflect the different views of the stakeholder
(cf., e.g., [2, 18, 19]). However, because today’s tools do not have any support for syn-
chronizing them, they typically become inconsistent over time. That is, they disagree
about which business tasks are executed and in which order. This can lead to costly
business disruptions or to audit failures [2]. In the technical report version of this paper
[14], we elaborate this point in more detail.

There are various reasons why business and IT models become inconsistent over
time. We explained above in Section 2.1 (see Correction and revision of the flow) that,
already in the initial implementation of a process, the flow may need to be corrected or
revised. If these updates are only done on the IT model and not on the business model,
then the models become already inconsistent in the initial implementation phase. Re-
spondents in our earlier survey [2] have agreed that inconsistency arises already in that
phase because the initial business model is incomplete (frequently), contains modeling
errors (occasionally to frequently), the business model contradicts some IT require-
ments (occasionally) and the business model does not faithfully represent the actual
business process (rarely).

Furthermore, more inconsistencies arise when business requirements change, which
are then often applied to only the IT model because of time pressure, neglecting a si-
multaneous update of the corresponding business model. Likewise changing IT require-
ments, e.g., an upcoming IT infrastructure change, may change some business-relevant
aspects of the IT model, which creates further inconsistencies between the business and
the IT model.

Thus, while different views onto a process are needed by different stakeholders, dif-
ferent views quickly become inconsistent if not synchronized. Inconsistencies in turn
can create business disruptions, audit failures, maintenance problems, or delays in the
implemementation of new requirements. They can also lead to a business analyst mis-
interpreting process monitoring data.

3 Requirements for a Shared Process Model

3.1 The Shared Process Model Concept

The Shared Process Model, which we now present, has the capability to synchronize
process model views that reside on different abstraction levels. The concept is illustrated
by Fig. 2. The Shared Process Model provides two different views, a business view and
an IT view, and maintains the consistency between them. A current view can be obtained
at any time by the corresponding stakeholder by the ‘get’ operation. A view may also
be changed by the corresponding stakeholder. With a ‘put’ operation, the changed view

6
Business

Analyst

IT Architect/

Developer

IT View

put put

get get Shared

Process

Model

change change

Business

View

 / /
 /

Business conformance IT conformance

Business-IT consistency

Fig. 2. Process view synchronization via a Shared Process Model

can be checked into the Shared Proess Model, which synchronizes the changed view
with the other view.

Each view change can be either designated as a public or a private change. A public
change is a change that needs to be reflected in the other view whereas a private change
is one that does not need to be reflected. For example, if an IT architect realizes, while
he is working on the refinement of the IT model, that the model is missing an important
business activity, he can insert that activity in the IT model. He can then check the
change into the Shared Process Model, designating it as a public change to express that
the activity should be inserted in the business view as well. The Shared Process Model
then inserts the new activity in the business view automatically at the right position,
i.e., every new business view henceforth obtained from the Shared Process Model will
contain the new activity. If the IT architect designated the activity insertion as a private
change, then the business view will not be updated and the new activity will henceforth
be treated by the Shared Process Model as an ‘IT-only’ activity.

Fig. 2 also illustrates the main three status conditions of a Shared Process Model:
business conformance, IT conformance and Business-IT consistency. The business view
is business conformant if it is approved by the business analyst, i.e., if it reflects the
business requirements. This should include that the business view passes basic validity
checks of the business modeling tool. The IT view is IT conformant if it is approved
by the IT architect, i.e., if it meets the IT requirements. This should include that the
IT view passes all validity checks of the IT modeling tool and the execution engine.
Business-IT consistency means that the business view faithfully reflects the IT view, or
equivalently, that the IT model faithfully implements the business view.

In the remainder of this section, we discuss the requirements and capabilities of the
Shared Process Model in more detail.

3.2 Usage Scenarios and Requirements

We distinguish the following usage scenarios for the Shared Process Model. In the
presentation scenario, either the business or IT stakeholder can, at any time, obtain a
current state of his view with the ‘get’ operation. The view must reflect all previous
updates, which may have been caused by either stakeholder.

The Shared Process Model is initialized with a single process model (the initial
business view), i.e., business and IT views are initially identical. Henceforth, both views
may evolve differently through view change scenarios, which are discussed below. For
simplicity, we assume here that changes to different views do not happen concurrently.
Concurrent updates can be handled on top of the Shared Process Model using known

7

concurrency control techniques. That is, either a pessimistic approach is chosen and
a locking mechanism prevents concurrent updates, which, we believe, is sufficient in
most situations. Or an optimistic approach is chosen and different updates to the Shared
Model may occur concurrently—but atomically, i.e., each update creates a separate
new consistent version of the Shared Model. Parallel versions of the Shared Model
must then be reconciled through a horizontal compare/merge technique on the Shared
Model. Such a horizontal technique would be orthogonal to the vertical synchronization
we consider here and out of scope of this paper.

In the view change scenario, one view is changed by a stakeholder and checked into
the Shared Process Model with the ‘put’ operation to update the other view. A view
change may contain many separate individual changes such as insertions, deletions,
mutations or rearrangement of modeling elements. Each individual change must be
designated as either private or public. We envision that often a new view is checked into
the Shared Process Model which contains either only private or only public individual
changes. These special cases simplify the designation of the changes. For example,
during the initial IT implementation phase, most changes are private IT changes.

A private change only takes effect in one view while the other remains unchanged.
Any public change on one view must be propagated to the other view in an automated
way. We describe in more detail in Sect. 4, in what way a particular public change in
one view is supposed to affect the other view. An appropriate translation of the change
is needed in general. User intervention should only be requested when absolutely neces-
sary for disambiguation in the translation process. We will present an example of such
a case in Sect. 4.

The designation of whether a change is private or public is in principle a deliberate
choice of the stakeholder that changes his view. However, we imagine that governance
rules are implemented that disallow certain changes to be private. For example, private
changes should not introduce inconsistencies between the views, e.g., IT should not
change the order of two tasks and hide that as a private change. Therefore, the business-
IT consistency status need to be checked upon such changes.

The key function of the Shared Process Model is to maintain the consistency be-
tween business and IT view. Business-IT consistency can be thought of as a Boolean
condition (consistent or inconsistent) or a measure representing a degree of inconsis-
tency. According to our earlier study [2], the most important aspect is coverage, which
means that (i) every element (e.g. activities and events) in the business view should
be implemented by the IT view, and (ii) only the elements in the business view are
implemented by the IT view.

The second important aspect of business-IT consistency is preservation of behavior.
The activities and events should be executed in the order specified by the business view.
The concrete selection of a consistency notion and its enforcement policy should be
configurable on a per-project basis. A concrete notion should be defined in a way that
users can easily understand, to make it as easy as possible for them to fix consistency
violations. Common IT refinements as discussed in Sect. 2.1 should be compatible with
the consistency notion, i.e., should not introduce inconsistencies, wheras changes that
cannot be considered refinements should create consistency violations. Checking con-

8

sistency should be efficient in order to be able to detect violations immediately after a
change.

On top of the previous scenarios, support for change management is desirable to fa-
cilitate collaboration between different stakeholders through the Shared Process Model.
The change management should support approving or rejecting public changes. In par-
ticular, public changes made by IT should be subject to approval by business. Only a
subset of the proposed public changes may be approved. The tool supporting the ap-
proval of individual changes should make sure that the set of approved changes that is
finally applied to the Shared Process Model leads to a valid model. The Shared Pro-
cess Model should be updated automatically to reflect only the approved changes. The
change management requires that one party can see all the changes done by the other
party in a consumable way. In particular, it should be possible for an IT stakeholder to
understand the necessary implementation steps that arise from a business view change.

If a process is in production, all three conditions, business conformance, IT con-
formance and business-IT consistency, should be met. Upon a public change of the IT
view, the business view changes and hence the Shared Process Model must show that
the current business view is not approved. Conversely, a public change on the business
view changes the IT view and the Shared Process Model must indicate that the current
IT view is not approved by IT. Note that a change of the IT view that was induced by
a public change of the business view is likely to affect the validity of the IT view with
respect to executability on a BPM engine.

4 A Technical Realization of the Shared Process Model

Fig. 3. The Shared Process Model as a combination
of two individual models, coupled by correspon-
dences

In this section, we present parts of a
technical realization of the concepts
and requirements from Sect. 3 as we
have designed and implemented them.

4.1 Basic Solution Design

We represent the Shared Process
Model by maintaining two process
models, one for each view, together
with correspondences between their
model elements, as illustrated by
Fig. 3. In the upper part, the process
model for business is shown, in the
lower part the process model for IT. A correspondence, shown by red dashed lines,
is a bidirectional relation between one or more elements of one model and one or more
elements of the other model.

For example, in Fig. 3, task B of the business layer corresponds to task B’ of the
IT layer which is an example for a one-to-one correspondence. Similarly, task D of
the business layer corresponds to subprocess D’ of the IT layer and tasks A1 and A2

9

correspond to the (human) task A of the IT layer which is an example for a many-to-
one correspondence. Many-to-many correspondences are technically possible but we
haven’t found a need for them so far. We only relate the main flow elements of the
model, i.e., activities, events and gateways, but sequence flow is not linked. Each el-
ement is contained in at most one correspondence. An element that is contained in a
correspondence is called a shared element, otherwise it is a private element.

Alternatively, we could have chosen to represent the Shared Process Model differ-
ently by merging the business and IT views into one common model with overlapping
parts being represented only once. This ultimately results in an equivalent representa-
tion, but we felt that we stay more flexible with our decision above in order to be able
to easily adapt the precise relationship between business and IT views during further
development.

Furthermore, with our realization of the Shared Process Model we can easily sup-
port the following:

• Import/export to/from the Shared Process Model: From the Shared Process Model,
a process model must be created (e.g. business view) that can be shown by an
editor. This is straight-forward in our representation. We use BPMN 2 internally
in the Shared Process Model, which can be easily consumed outside by existing
editors. Likewise, other tools working on BPMN 2 can be leveraged for the Shared
Process Model prototype easily.

• Generalization to a Shared Process Model with more than two process models is
easier to realize with correspondences rather than with a merged metamodel. This
includes generalization to three or more stakeholder views, but also when one busi-
ness model is implemented by a composition of multiple models (see Sect. 2.1) or
when a business model should be traced to multiple alternative implementations.

The technical challenges occur in our realization if one of the process models evolves
under changes because then the other process model and the correspondences have to
be updated in an appropriate way.

4.2 Establishing and Maintaining Correspondences

A possible initialization of the Shared Process Model is with a single process model,
which can be thought of the initial business view. This model is then internally du-
plicated to serve as initially identical business and IT models. This creates one-to-one
correspondences between all main elements of the process models for business and IT.
The creation of such correspondences is completely automatic because in this case a
correspondence is created between elements with the same universal identifier during
the duplication process. Another possible initialization is with a pair of initial business
and IT views where the two views are not identical, e.g. they might be taken from an ex-
isting project situation where the processes at different abstraction levels already exist.
In such a case, the user would need to specify the correspondences manually or process
matching techniques can be applied to achieve a higher degree of automation [1].

A one-to-many or many-to-one correspondence can be introduced through an edit-
ing wizard. For example, if an IT architect decides that one business activity is imple-
mented by a series of IT activities, he uses a dedicated wizard to specify this refinement.

10

The wizard forces the user to specify which activity is replaced with which set of activ-
ities, hence the wizard can establish the one-to-many correspondence.

The Shared Model evolves either through such wizards, in which case the wizard
takes care of the correspondences, or through free-hand editing operations, such as
deletion and insertion of tasks. When such changes are checked into the Shared Model
as public changes, the correspondences need to be updated accordingly. For example, if
an IT architect introduces several new activities that are business-relevant and therefore
designated as public changes, the propagation to the business level must also include the
introduction of new one-to-one correspondences. Similarly, if an IT architect deletes a
shared element on the IT level, a correspondence connected to this shared element must
be removed when propagating this change.

4.3 Business-IT Consistency

As described in Sect. 3.2, we distinguish coverage and preservation of behavior. Cover-
age can be easily checked by help of the correspondences. Every private element, i.e.,
every element that is not contained in a correspondence must be accounted for. For ex-
ample, all private business tasks, if any, could be marked once by the business analyst
and all private IT tasks by the IT architect. The Shared Process Model then remembers
these designations. A governance rule implemented on top may restrict who can do
these designations. All private tasks that are not accounted for violate coverage.

For preservation of behavior, we distinguish strong and weak consistency according
to the IT refinement patterns discussed in Sect. 2.1. If business and IT views are strongly
consistent, then they generate the same behavior. If they are weakly consistent, then
every behavior of the IT view is a behavior of the business view, but the IT view may
have additional behavior, for example, to capture additional exceptional behavior. As
with coverage, additional behavior in the IT view should be explicitly reviewed to check
that it is indeed considered technical exception behavior and not-considered ‘business-
relevant’.

We use the following concretizations of strong and weak consistency here. At this
stage, we only consider behavior generated by the abstract control flow, i.e., we do not
yet take into account how data influences behavior.

• We define the Shared Process Model to be strongly consistent if the IT view can
be derived from the business view by applying only operations from the first three
categories in Sect. 2.1: complementary implementation detail, formalization and
renaming, and behavioral refinement and refactoring. Private tasks in either view
are compatible with consistency only if they are connected to shared elements by
a path of sequence flow. The operations from the first three categories all preserve
the behavior. The Shared Process Model in Fig. 3 is not strongly consistent because
the IT view contains private boundary events. Without the boundary events and
without activity Y , the model would be strongly consistent. Fig. 4 shows examples
for violating strong consistency.
An initial Shared Process Model with two identical views is strongly consistent.
To preserve strong consistency, all flow rearrangements on one view, i.e., moving
activities, rearranging sequence flow or gateways must be propagated to the other
view as public changes.

11

• For weak consistency, we currently additionally allow only IT-private error bound-
ary events leading to IT private exception handling. Technically we could also allow
additional IT-private gateways and additional branches on shared gateways here, but
we haven’t yet seen a strong need for them. The Shared Process Model in Fig. 3 is
weakly consistent. The examples in Fig. 4 also violate weak consistency.

We have used the simplest notion(s) of consistency such that all the refinement
patterns we have encountered so far can be dealt with. We haven’t yet seen, within our
usage scenarios, the need for more complex notions based on behavioral equivalences
such as trace equivalence or bisimulation.

Strong and weak consistency can be efficiently checked but the necessary algorithms
and also the formalization of these consistency notions are beyond the scope of this
paper3. The automatic propagation of public changes, which we will describe in the
following sections, rests on the Shared Process Model being at least weakly consistent.

4.4 Computing Changes between Process Models

If the Shared Process Model evolves by changes on the business or IT view, then such
changes must be potentially propagated from one view to the other. As a basis for our
technical realization of the Shared Process Model, an approach for compare and merge
of process models is used [15]. We use these compound operations because they min-
imize the number of changes and represent changes on a higher level of abstraction.
This is in contrast to other approaches for comparing and merging models which focus
on computing changes on each model element.

Figure 5 shows the change operations that we use for computing changes. Inser-
tActivity, DeleteActivity and MoveActivity insert, delete and move activities or other
elements such as events and subprocesses. InsertFragment, DeleteFragment and Move-
Fragment is used for inserting, deleting and moving fragments which represent control
structures. The computation of a change script consisting of such compound operations
is based on comparing two process models and their Process Structure Trees. For more
details of the comparison algorithm, the reader is referred to [15].

As an example for an evolution scenario of the Shared Process Model, consider
Figure 6. The left hand side shows a part of the initial state of the Shared Process Model
in our scenario, which contains a 2-to-1 correspondence and a private IT task. So, some

3 For strong consistency, one has to essentially check that the correspondences define a contin-
uous mapping between the graphs as known in graph theory.

Fig. 4. Examples of inconsistencies

12

Effects on Process Model VChange Operation op

InsertActivity(x, a, b) Insertion of a new activity x between two succeeding elements a and b in
process model V and reconnection of control flow.

DeleteActivity(x) Deletion of activity x and reconnection of control flow.

MoveActivity(x, a, b) Movement of activity x from its old position into its new position between
two succeeding elements a and b in process model V and reconnection of
control flow.

InsertFragment(f, a, b) Insertion of a new fragment f between two succeeding elements a and b in
process model V and reconnection of control flow.

MoveFragement(f, a, b) Movement of a fragment f from its old position to its new position.

DeleteFragment(f, c, d) Deletion of fragment f between c and d from process model V and
reconnection of control flow.

Fig. 5. Change operations according to [15]

Fig. 6. Example of a change script on the IT level that is propagated to the business level

IT refinements have been done already. Assume now, that during IT refinement, the IT
architect realizes that, in a similar process that he has implemented previously, there
was an additional activity that checks the provided customer details against existing
records. He is wondering why this is not done in this process and checks that with the
business analyst, who in turn confirms that this was just forgotten. Consequently, the IT
architect now adds this activity together with a new loop to the IT view, resulting in a
new IT view shown in the lower right quadrant of Fig. 6. Upon checking this into the
Shared Process Model as a public change, the business view should be automatically
updated to the model shown in the upper right quadrant of Fig. 6.

To propagate the changes, one key step is to compute change operations between
process models in order to obtain a change script as illustrated in Fig. 6. In the partic-
ular example, we compute three compound change operations: the insertion of a new
empty fragment containing the two XOR gateways and the loop (InsertFragment), the
insertion of a new activity (InsertActivity) and the move of an activity (MoveActivity),

13

DeltaIT

Process
Model
(IT’)

Process
Model

(B)

Process
Model

(IT)

Process
Model
(B’)

DeltaB

Correspondences

(a)

Process
Model
(IT1)

Process
Model

(B)

Process
Model

(IT)

Process
Model
(B1)

op1

op1
T op2

T

op2

…

…
Process
Model
(IT’)

Process
Model
(B’)

Process
Model
(IT2)

Process
Model
(B2)

(b)

Fig. 7. Delta computation for propagating changes

illustrated by the change script in Figure 6. In the next section, we explain how we use
our approach to realize the evolution of the Shared Process Model.

4.5 Evolution of the Shared Process Model

For private changes, only the model in which the private changes occured is updated. In
the following, we explain how public changes are propagated from IT to business, the
case from business to IT is analogous.

When a new IT view is checked into the Shared Process Model, we first compute all
changes between the old model IT and the new model IT’, giving rise to a change script
DeltaIT , see Figure 7 (a). The change script is expressed in terms of the change opera-
tions introduced above, i.e., DeltaIT = 〈op1, ..., opn〉 where each opi is a change opera-
tion. In order to propagate the changes to the business level, DeltaIT is translated into a
change script DeltaB for the business-level. This is done by translating each individual
change operation opi into an operation opT

i and then applying it to the business-level.
Likewise, we also apply each change operation on the IT-level to produce intermediate
process models for the IT level. Overall, we thereby achieve a synchronous evolution
of the two process models, illustrated in Figure 7 (b).

Algorithm 1 Translation of a compound operation op from process model IT to Busi-
ness model B

Step 1: compute corresponding parameters of the operation op
Step 2: replace parameters of op with corresponding parameters to obtain opT

Step 3: apply opT to B, apply op to IT
Step 4: update correspondences between B and IT

Algorithm 1 describes in pseudo-code the algorithm for translating a compound op-
eration from IT to business. The algorithm for translation from business to IT can be
obtained by swapping business and IT. Overall, one key step is replacing parameters
of the operation from the IT model by parameters of the business model according to
the correspondences. For example, for translating a change InsertActivity(x, a, b), the
parameters a and b are replaced according to their corresponding ones, following the

14

correspondences in the Shared Process Model. In case that a and b are private elements,
this replacement of elements requires forward/backward search in the IT model until
one reaches the nearest shared element (Step 1 of the algorithm). Similarly, for trans-
lating an InsertFragment(f , a, b), the parameters a and b are replaced in the same way.
An operation DeleteActivity(x) is translated into DeleteActivity(x′) (assuming here that
x is related to x′ by a one-to-one correspondence). After each translation, in Step 3 the
change operation as well as the translated change operation are applied to produce new
models Bi and ITi, as illustrated in Figure 7 (b). Afterwards, Step 4 updates the corre-
spondences between the business and IT model. For example, If x is the source or target
of a one-to-many/many-to-one correspondence, then all elements connected to it must
be removed.

For the example in Figure 6, the change script DeltaIT is translated iteratively and
applied as follows:

• The operation InsertFragment(f, ‘Get Request Details’, ‘Log Session Data’) is translated into
InsertFragment(f, ‘Get Insurance Details’, ‘Validate Claim’). The operation as well as the
translated operation are applied to the IT and business model, respectively, to produce the
models IT1 and B1, and also the correspondences are updated. In this particular case, new
correspondences are created e.g. between the control structures of the inserted fragments.

• The operation InsertActivity(‘Check Consistency with Records’, Merge, Decision) is trans-
lated into InsertActivity(‘Check Consistency with Records’, Merge, Decision), where the new
parameters now refer to elements of the business model. These operations are then also ap-
plied, in this case to IT1 and B1, and correspondences are updated.

• The operation MoveActivity(‘Get Request Details’, Merge, ‘Check Consistency with Records’)
is translated into MoveActivity(‘Get Request Details’, Merge, ‘Check Consistency with Records’),
where the new parameters now refer to elements of the business model. Again, as in the pre-
vious steps, the operations are applied and produce the new Shared Process Model consisting
of B′ and IT ′.

In general, when propagating a change operation, it can occur that the insertion
point in the other model cannot be uniquely determined. For example, if a business user
inserts a new task between the activity ‘Get Insurance Details’ and ‘Validate Claim’ in
Fig. 6, then this activity cannot be propagated to the IT view automatically without user
intervention. In this particular case, the user needs to intervene to determine whether
the new activity should be inserted before or after the activity ‘Log Session Data’.

In addition to computing changes and propagating them automatically, in many
scenarios it is required that before changes are propagated, they are approved from the
stakeholders. In order to support this, changes can first be shown to the stakeholders
and the stakeholders can approve/disapprove the changes. Only approved changes will
then be applied. Disapproved changes are handed back to the other stakeholder. They
will then have to be handled on an individual basis. Such a change management can be
realized on top of our change propagation.

4.6 Implementation

As proof of concept, we have implemented a prototype as an extension to the IBM Busi-
ness Process Manager and as an extension to an open source BPMN editor. A recorded

15

demo of our prototype is publically available [8]. Our current prototype implements ini-
tialization of a Shared Process Model from a BPMN process model, check-in of private
and public changes to either view and change propagation between both views. Fur-
thermore, we have implemented a check for strong consistency, which can be triggered
when checking in private changes. We currently assume that the changes between two
subsequent IT views (or business views respectively) are either all public or all private.

With an additional component, this assumption can be removed. Then, the change
script is presented to the user who can then mark the public changes individually. For
this scenario, the compare/merge component needs to meet the following two require-
ments: (i) the change script must be consumable by a human user and (ii) individual
change operations presented to the user must be as independent as possible. Note that
the change operations in a change script are in general interdependent, which restricts
the ability to apply only an arbitrary subset of operations to a model. Therefore, a com-
pare/merge component may not support to separate all public from all private changes.

In fact, we first experimented with a generic compare/merge component from the
EMF Compare Framework, which could be used to generate a change script for two
process model based on the process metamodel, i.e., BPMN 2. The change operations
were so fine-grained, e.g. ‘a sequence flow reference was deleted from the list of in-
coming sequence flows of a task’, such that the change script was very long and not
meaningful to a human user without further postprocessing. Furthermore, the BPMN 2
metamodel generates very strong dependencies across the different parts of the model
so that separate changes were likely to be dependent in the EMF Compare change script.

For these reasons, we switched to a different approach with compound changes as
described above. Note that the change approval scenarios described in Sect. 3.2 generate
the same requirements for the compare/merge component: human consumability of the
change script and separability of approved changes from rejected changes.

5 Related Work

We used prior work [15] on comparing and merging process models on the same ab-
straction level. Our work deals with changes of models on different abstraction level
and distinguishes between public and private changes.

Synchronizing a pair of models connected by a correspondence relation is an in-
stance of a symmetric delta lens [6]. In a symmetric delta lens, both models share some
information, but also have some information private to them. Deltas are propagated by
translation, which has to take the original and the updated source including the relation
between them and original target model including the correspondence to the original
source as a parameter. Symmetric delta lenses generalize the state-based symmetric
lenses by Pierce et al. [12]. In recent years, various techniques have been developed
for synchronization of models. Popular approaches are based on graph grammars (e.g.
Giese et al. [10]). In contrast to these approaches, our idea of explicitly marking private
elements is novel.

In the area of model-driven engineering, the problem of a coupled evolution of
a meta-model and models is related to our problem. Coupled evolution has recently
been studied extensively (compare Herrmannsdoerfer et al. [11] and Cicchetti et al. [5,

16

4]). The problem of coupled evolution of a meta-model and models has similarities
to our problem where two or more models at a different abstraction level evolve. One
key difference is that in our application domain we hide private changes and that we
allow changes on both levels to occur which then need to be propagated. In contrast to
Herrmannsdoerfer et al., we aim at complete automation of the evolution. Due to the
application domain, we focus on compound operations and also translate the parameters
according to the correspondences. Overall, one could say that our solution tries to solve
the problem in a concrete application domain whereas other work puts more emphasis
on generic solutions which can be applied to different application domains.

On an even more general level, (in)consistency management of different views has
been extensively studied in recent years by many different authors (e.g. Finkelstein et
al. [9], Egyed et al. [7]). The goal of these works is to define and manage consistency
of different views where views can be diverse software artefacts including models. As
indicated in the paper, our problem can be viewed as one instance of a consistency
problem. In contrast, we focus on providing a practical solution for a specific applica-
tion domain which puts specific requirements into place such as usability and hiding of
private changes.

In the area of process modeling, Weidlich et al. [20] have studied vertical alignment
of process models, which brings models to the same level of abstraction. They also
discuss an approach for automatic identification of correspondences between process
models. Buchwald et al. [3] study the Business and IT Gap problem in the context of
process models and introduce the Business IT Mapping Model (BIMM), which is very
similar to our correspondences. However, they do not describe how this BIMM can
be automatically maintained during evolution. Tran et al. [18] focus on integration of
modeling languages at different abstraction levels in the context of SOA Models but
they do not focus on the closing the business IT gap as we do. Werth et al. [21] propose
a business service concept in order to bridge the gap between the process layer and
the technical layer, however, they do not introduce two abstraction layers of process
models. Thomas et al. [17] on the other hand distinguish between different abstraction
layers of process models and also recognize the need of synchronizing the layers but
they do not provide techniques for achieving the synchronization.

Various authors have proposed different forms of abstractions from a process model,
called a process view, e.g. [16]. A process view can be recomputed whenever the under-
lying process model changes. Recently, Kolb et al. [13] have taken the idea further to
allow changes on the process view that can be propagated back to the original process
model, which can be considered as a model synchronization. They restrict to hierarchi-
cal abstractions of control flow in well-formed process models.

6 Conclusion

Different process model views are important to reflect different concerns of different
process stakeholders. Because their concerns overlap, a change in one view must be
synchronized with all other overlapping views in order to facilitate stakeholder collab-
oration.

17

In this paper, we have presented detailed requirements for process model view
synchronization between business and IT views that pose a significant technical chal-
lenge for its realization. These requirements were derived from a larger industrial case
study [2] and additional interviews with BPM practicioners. A central intermediate
step was the systematic categorization of changes from business to IT level given in
Sect. 2.1. We have also presented our solution design and reported first results of its
implementation to demonstrate the feasibility of our approach.

We are currently working on the further elaboration and implementation of the
change management scenarios described above, and we are preparing an experimental
validation with users in order to further demonstrate the value of our approach. Also,
not all elements of the BPMN metamodel are currently synchronized but only the main
ones. In particular, the synchronization of the layout information of the models was not
yet addressed and requires further study.

References

1. M. Branco, J. Troya, K. Czarnecki, J. M. Küster, and H. Völzer. Matching business process
workflows across abstraction levels. In MoDELS, LNCS 7590, pp 626–641. Springer, 2012.

2. M. C. Branco, Y. Xiong, K. Czarnecki, J. Küster, and H. Völzer. A case study on consistency
management of business and IT process models in banking. Software and Systems Modeling,
March 2013.

3. S. Buchwald, T. Bauer, and M. Reichert. Bridging the gap between business process models
and service composition specifications. Int’l Handbook on Service Life Cycle Tools and
Technologies: Methods, Trends and Advances, 2011.

4. A. Cicchetti, F. Ciccozzi, and T. Leveque. A solution for concurrent versioning of metamod-
els and models. Journal of Object Technology, 11(3):1: 1–32, 2012.

5. A. Cicchetti, D. Di Ruscio, and A. Pierantonio. Managing dependent changes in coupled
evolution. In ICMT, LNCS 5563, pages 35–51. Springer, 2009.

6. Z. Diskin, Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann, and F. Orejas. From state- to delta-
based bidirectional model transformations: The symmetric case. In MoDELS, LNCS 6981,
pages 304–318. Springer, 2011.

7. A. Egyed. Instant consistency checking for the UML. In ICSE, pp 381–390. ACM, 2006.
8. C. Favre, J. Küster, and H. Völzer. Recorded demo of shared process model prototype.
http://researcher.ibm.com/view_project.php?id=3210.

9. A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsistency handling
in multi-perspective specifications. In ESEC, LNCS 717, pages 84–99. Springer, 1993.

10. H. Giese and R. Wagner. From model transformation to incremental bidirectional model
synchronization. Software and System Modeling, 8(1):21–43, 2009.

11. M. Herrmannsdoerfer, S. Benz, and E. Jürgens. Cope - automating coupled evolution of
metamodels and models. In ECOOP, LNCS 5653, pp 52–76. Springer, 2009.

12. M. Hofmann, B. Pierce, and D. Wagner. Symmetric lenses. In POPL, pp 371–384. ACM,
2011.

13. J. Kolb, K. Kammerer, and M. Reichert. Updatable process views for user-centered adaption
of large process models. In ICSOC, LNCS 7636, pp 484–498. Springer, 2012.

14. J. Küster, H. Völzer, C. Favre, M. C. Branco, and K. Czarnecki. Supporting different process
views through a shared process model. Technical Report RZ3823, IBM, 2013.

15. J. M. Küster, C. Gerth, A. Förster, and G. Engels. Detecting and Resolving Process Model
Differences in the Absence of a Change Log. BPM, LNCS 5240, pp 244–260. Springer, 2008.

18

16. D. Schumm, F. Leymann, and A. Streule. Process viewing patterns. In EDOC, pp 89–98.
IEEE Computer Society, 2010.

17. O. Thomas, K.Leyking, and F. Dreifus. Using process models for the design of service-
oriented architectures: Methodology and e-commerce case study. In HICSS, p 109. IEEE
Computer Society, 2008.

18. H. Tran und U. Zdun and S. Dustdar. View-based Integration of Process-driven SOA Models
at Various Abstraction Levels. In 1st Intl Workshop on Model-Based Software and Data
Integration. Springer, 2008.

19. M. Weidlich, A. P. Barros, J. Mendling, and M. Weske. Vertical alignment of process models
- how can we get there? In BPMDS, LNBI 29, pp 71–84. Springer, 2009.

20. M. Weidlich, R. Dijkman, and J. Mendling. The ICoP framework: Identification of corre-
spondences between process models. In CAiSE, LNCS 6051, pp 483–498. Springer, 2010.

21. D. Werth, K. Leyking, F. Dreifus, J. Ziemann, and A. Martin. Managing SOA through
business services - a business-oriented approach to service-oriented architectures. In ICSOC
Workshops, LNCS 4652, pp 3–13. Springer, 2006.

