

RZ 3824 (# Z1206-001) 06/01/2012
Computer Science 24 pages

Research Report

The Difficulty of Replacing an Inclusive OR-Join

Cédric Favre, Hagen Völzer

IBM Research – Zurich
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Almaden • Austin • Brazil • Cambridge • China • Haifa • India • Tokyo • Watson • Zurich

The Difficulty of Replacing an Inclusive OR-Join

Cédric Favre and Hagen Völzer

IBM Research - Zurich, Switzerland,
{ced,hvo}@zurich.ibm.com

Abstract. Some popular modeling languages for business processes,
e.g., BPMN, contain inclusive OR-joins (IOR-joins), but others, e.g.,
Petri nets, do not. Various scenarios in Business Process Management
require, or benefit from, translating a process model from one language
to another. This paper studies whether the control flow of a process
containing IOR-joins can be translated into a control flow without IOR-
joins.
First we characterize which IOR-joins can be replaced locally and define a
local replacement for each replaceable IOR-join. Then, we present exam-
ples that cannot be locally replaced but have a more general translation.
We give a non-local replacement technique, together with its condition of
applicability, which runs in polynomial time. Finally, we show that there
exist simple process models with an IOR-join that cannot be replaced –
in the sense that its synchronization behavior cannot be obtained by any
combination of AND and XOR gateways. The proof reveals an intrinsic
limitation on the replaceability of IOR-joins and hence the translatability
of BPMN-like control flow into Petri nets.
This technical report is the extended version of a conference publica-
tion [5].

1 Introduction

Different BPM tools, execution engines, and scientific analysis techniques are
based on different modeling languages for business processes. This generates a
general interest in translating models from one language into another. In par-
ticular, business processes are in practice often modeled in industrial languages
such as BPMN and EPCs whereas many analysis techniques, such as control-flow
analysis, cost estimation, performance analysis, and process mining are based on
Petri nets.

One major obstacle to translate process models between those industrial
languages and Petri nets is the presence of gateways with inclusive OR (IOR)
logic in the industrial languages. An IOR gateway forks or joins a variable set
of threads, thereby supporting various workflow patterns [11]. The IOR-join,
which has a non-local semantics, is difficult to translate to Petri nets because
the semantics of a Petri net transition is local. That is, the enablement and effect
of a transition in a Petri net relates only to its adjacent places—a small part of
the state of the Petri net—whereas the enablement of an IOR-join may depend
on the entire state of the process model.

In this paper, we study the question to what extent a process model with
IOR-joins can be translated into a process model without IOR-joins. More pre-
cisely, we focus on the control flow of a business process, which is modeled by
a workflow graph. We ask whether a workflow graph with IOR-joins can be
translated into a workflow graph with only XOR and AND gateways. Workflow
graphs with XOR and AND gateways can be easily translated into an isomorphic
Petri net [10].

We focus on acyclic workflow graphs, for which the IOR-join semantics is
simpler. This will allow us to provide replacement strategies for IOR-joins. Con-
versely, it will already suffice to display simple workflow graphs in which, in
some formal sense, an IOR-join cannot be replaced. This will reveal an intrinsic
limitation on the replacability of IOR-joins and hence the translatability of the
workflow graph of general process models into Petri nets.

The requirements of a translation from a workflow graph with IOR-joins into
a workflow graph without IOR-joins can vary for different use cases. To obtain
general, yet useful results, we take the following requirements into account:

– The translated workflow graph must have equivalent behavior. Many notions
of equivalence exist [12]. The adequacy of an equivalence for the translation
depends on the use case. We will present the equivalences we use later in
the paper. Note that this requirement is by itself not challenging as one can
easily ‘unfold’ an acyclic workflow graph into its finite full behavior (i.e.,
computation tree) and then encode this ‘unfolding’ as a sequential workflow
graph. Such a construction would preserve, depending on its precise execu-
tion, many popular behavioral equivalences, such as trace equivalence and
bisimulation. However, the obtained translation is in general exponentially
larger than the original workflow graph. Therefore, we require that

– the size of the obtained workflow graph must be manageable. An exponential
blowup is usually not acceptable. We are not aware of any general transla-
tion from workflow graphs with IOR-joins into Petri nets that preserves the
behavior and does not incur an exponential blowup.

– Furthermore, we are interested to preserve the structure of the workflow
graph as much as possible. This is important if we want to map analysis
results between the two workflow graphs. For example, in order to return to
the user of an analysis technique the results in terms of the original process
model or, when monitoring or administrating a process, to understand a trace
or a state of the running process in terms of the original process model.

The paper is structured as follows. In Sect. 3, we will first consider local
replacements of IOR-joins. This translation strategy consists in replacing an
IOR-join by a partial workflow graph that connects to the edges left dangling
by the removal of the IOR-join. Such a local replacement fully maintains, apart
from the IOR-join, the original workflow graph and thus makes the mapping to
the original workflow graph trivial. Moreover, it leads to a very intuitive notion
of equivalence: the partial workflow graph must have the same behavior as the
IOR-join. We characterize under which conditions a local replacement is possible

2

in an acyclic workflow graph and define a replacement for these cases. In Sect. 4,
we consider a non-local translation strategy and characterize its condition of
application. A non-local replacement essentially still retains the structure of the
original workflow graph and allows us to replace some IOR-joins that have no
local replacement. In Sect. 5, we relax our notion of replacement even more,
and we show that even then, there exist simple acyclic workflow graphs that
have IOR-joins that cannot be replaced. In Sect. 6, we relate this result and
its implications to the translations of workflow graphs containing IOR-joins into
Petri nets.

2 Workflow graphs

In this section, we define the necessary fundamental notions, which include work-
flow graphs and their semantics.

A directed multi-graph G = (N,E, c) consists of a set N of nodes, a set E of
edges and a mapping c : E → (N ∪ {null})× (N ∪ {null}) that maps each edge
to an ordered pair of nodes or a null value. If c(e) = (s, t), then s is called the
source of e, t is called the target of e; e is an outgoing edge of s, and e is an
incoming edge of t. If s = null, then we say that e is a source of the graph. If
t = null, then we say that e is a sink of the graph. For a node n ∈ N , the set of
incoming edges of n is denoted by ◦n. The set of outgoing edges of n is denoted
n◦.

Let G = (N,E, c) be an acyclic multi-graph. If x1, x2 are two elements in
N ∪ E such that there is a non trivial path from x1 to x2, then we say that x1
precedes x2, denoted x1 < x2, and x2 follows x1.

A partial workflow graph (pwfg) W = (N,E, c, l) consists of a multi-graph
G = (N,E, c) and a mapping l : N → {AND,XOR, IOR, task} that associates
a logic with every node n ∈ N . A workflow graph is a partial workflow graph
W = (N,E, c, l), such that: 1. W has exactly one source and at least one sink.
2. For each node n ∈ N , there exists a path from the source to one of the sinks
that contains n.

b

a
s

c

t

u e

y

z

h

f

d

g

j

x

v

i

Fig. 1. A workflow graph.

Figure 1 depicts an acyclic workflow graph.
A rectangle represents a task node. A diamond
containing a plus symbol represents a node with
AND logic, an empty diamond represents a node
with XOR logic, and a diamond with a circle in-
side represents a node with IOR logic. A node
with a single incoming edge and multiple outgo-
ing edges is called a split. A node with multiple incoming edges and a single
outgoing edge is called a join. A node with AND, IOR, or XOR logic is called
gateway. For the sake of presentation simplicity, we do not use gateways with
multiple incoming edges and multiple outgoing edges. It will become clear later
that this restriction does not reduce the expressiveness of workflow graphs be-
cause such gateway could be represented by a split and a join of the same logic.
Nodes with task logic always have a single incoming edge and a single outgoing

3

edge. In the rest of this paper, we only consider acyclic workflow graphs, which
simplifies some of our definitions such as the semantics of the IOR-join.

The semantics of workflow graphs is, similarly to Petri nets, defined as a token
game. Let W = (N,E, c, l) be a workflow graph. A marking of W is represented
by tokens on the edges of W , i.e., a marking is a mapping m : E → N. We write
m[e] instead of m(e). When m[e] = k, we say that the edge e is marked with k

tokens in m. When m[e] > 0, we say that m marks e. The initial marking ms of
W is such that the source edge is marked with exactly one token in ms and ms

does not mark any other edge. If a node n of a workflow graph has AND or task
logic, executing n removes one token from each of the incoming edges of n and
adds one token to each of the outgoing edges of n. If n has XOR logic, executing
n removes one token from one of the incoming edges of n and adds one token
to one of the outgoing edges of n. If n has IOR logic, n can be executed if and
only if at least one of its incoming edges is marked and there is no marked edge
that precedes a non-marked incoming edge of n. When n executes, it removes
one token from each of its marked incoming edges and adds one token to a non-
empty subset of its outgoing edges. This IOR semantics, which is explained in
detail elsewhere [14], complies with the BPMN 2.0 standard and BPEL’s dead
path elimination [1]. The choice of the set of outgoing edges to which a token is
added when executing a node with XOR or IOR logic is non-deterministic. In
the following, this semantics is defined formally:

A triple (E1, n, E2) is called a transition if n ∈ N , and any of the following
propositions:

– l(n) = AND or l(n) = task, E1 = ◦n, and E2 = n◦.
– l(n) = XOR, there exists an edge e ∈ ◦n such that E1 = {e}, and there

exists an edge e′ ∈ n◦ such that E2 = {e′}.
– l(n) = IOR, E1 ⊆ ◦n, E2 ⊆ n◦, and E1 and E2 are non-empty.

Let m and m′ be two markings of W . A transition (E1, n, E2) is enabled in a
marking m if, for each edge e ∈ E1, we have m[e] > 0 and, if l(n) = IOR,
E1 = {e ∈ ◦n | m(e) > 0} and for every edge e ∈ ◦n \ E1, there exists no edge
e′, marked in m, such that e′ < e. A transition t can be executed in a marking
m if t is enabled in m. When t is executed in m, a marking m′ results such
that: m′[e] = m[e] − 1 if e ∈ E1, m

′[e] = m[e] + 1 if e ∈ E2, and m
′[e] = m[e]

otherwise. We write m1
t
→ m2, when a transition t is enabled in a marking m1

and its execution results in a marking m2.
An execution sequence of W is a finite alternating sequence σ = 〈m0, t0,

m1, ..., mn〉 of markings mi of W and transitions ti = (Ei, ni, E
′

i) such that,
for each i ≥ 0, ti is enabled in mi and mi+1 results from the execution of

ti in mi. We write m1
σ
→ m2 when m1 is the first marking and m2 is the

last marking of σ. An execution sequence σ marks an edge e if there exists a
marking of σ that marks e. An execution of W is a (finite) execution sequence
σ = 〈m0, ...,mn〉 of W such that m0 = ms and there is no transition enabled
in mn. As the transition between two markings can be easily deduced, we often
omit the transitions when representing an execution or an execution sequence,

4

i.e., we write them as sequence of markings. We only consider finite executions
and finite execution sequences because we only discuss acyclic workflow graphs.

Let m be a marking of W , m is reachable from a marking m′ of W if there
exists an execution sequence σ = 〈m0, ...,mn〉 of W such that m0 = m′ and
m = mn. The marking m is a reachable marking of W if m is reachable from
ms. The marking m is a (local) deadlock if there exists a non-sink edge e ∈ E

that is marked in m and e is marked in all the markings reachable from m. We
say that W is deadlock-free if there exists no reachable marking m of W such
that m is a deadlock. The marking m is a lack of synchronization (or unsafe)
if there exists an edge e ∈ E that is marked by more than one token in m.
We say that a workflow graph W contains a lack of synchronization if there
exists a reachable marking m of W such that m is a lack of synchronization.
A workflow graph is sound if it is deadlock-free and does not contain a lack of
synchronization. Note that this notion of soundness is equivalent to the usual
notion of soundness used for workflow nets (see for e.g. [10]).

3 Local replacements

b
e

f
c
d

g
a h
r

s

j
t

Fig. 2. A workflow graph.

b
f

i

c
d

g
h

e

a
r

s

t

v

w

Fig. 3. Local replacement of j

by the partial workflow graph
composed of the nodes v and w,
and the edge i.

Fig. 2 and Fig. 3 illustrate an example of a lo-
cal replacement of an IOR-join. In this example,
the IOR-join j is replaced by the partial work-
flow graph composed of the nodes v and w, and
the edge i. As a graphical convention, we repre-
sent the elements of the original workflow graph
using plain lines and the elements introduced to
replace an IOR-join using dashed lines. In the
following, we omit tasks in the workflow graphs
when they are not relevant for our discussion.

A local replacement of an IOR-join j is a par-
tial workflow graph R that connects to the edges
left dangling by the removal of j. Note that j and
R have exactly the same set of incoming and
outgoing edges. Such a replacement is a very in-
tuitive way to replace an IOR-join. Apart from
the IOR-join, a local replacement preserves the original workflow graph, which
makes it very easy to relate the original and the translated workflow graph. We
formalize a local replacement as follows:

Definition 1 (Local replacement). Let W = (N,E, c, l) be a workflow graph
and j be a node in N . Let R = (N ′′, E′′, c′′, l′′) be a partial workflow graph such
that for each node n ∈ N ′′, l′′(n) = XOR or l′′(n) = AND, N ∩ N ′′ = ∅, and
E ∩E′′ = ∅.

A local replacement of j in W by R results in a workflow graph W ′ =
(N ′, E′, c′, l′) such that:

– N ′ = N \ {j} ∪N ′′,

5

– E′ = E ∪ E′′,
– c′(e) = c′′(e) when e ∈ E′′,
c′(e) = c(e) = (s, t) when e ∈ E and s 6= j 6= t,
c′(e) = (s, t) such that s ∈ N ′′ and t ∈ N iff e ∈ E and c(e) = (j, t),
c′(e) = (s, t) such that t ∈ N ′′ and s ∈ N iff e ∈ E and c(e) = (s, j),

– l′(n) = l(n) when n ∈ N \ j, l′(n) = l′′(n) when n ∈ N ′′, and
– each element x ∈ N ′′ ∪ E′′ is on a path in W from an edge ein ∈ E such

that c(ein) = (s, j) to the edge eout ∈ E such that c(eout) = (j, t).

Intuitively, the workflow graphW ′ resulting from the local replacement of an
IOR-join j in a workflow graph W by a partial workflow graph R is equivalent
to W iff R has the same “behaviour” as j. We formalize this as follows: Let,
in the rest of this section, W = (N,E, c, l) be a workflow graph containing an
IOR-join j and W ′ = (N ′, E′, c′, l′) be a workflow graph obtained by local-
replacement of j by a partial workflow graph R. A transition (E1, n, E2) of W

′

is a replacement transition iff n ∈ (N ′ \N). An execution sequence σ of W ′ is a
replacement execution sequence iff each transition of σ is a replacement transition
and after σ no replacement transition is enabled and no edge e ∈ E′\E is marked.
W and W ′ are equivalent iff the following two conditions are met:

1. Let m1 and m2 be two reachable markings of W . For any transition t =

(E1, j, E2) such that m1
t
→ m2 in W , there exists a replacement execution

sequence σ such that m1
σ
→ m2 in W ′.

2. Let m1 and m2 be two reachable markings of W ′ such that m1 and m2

only mark edges in E. For any replacement execution sequence σ such that

m1
σ
→ m2 in W ′, there exists a transition t = (E1, j, E2) such that m1

t
→ m2

in W .

Some IOR-joins can easily be replaced locally: It is clear that we can replace
an IOR-join by an AND-join if all its incoming edges are marked everytime it
is executed, and by an XOR-join if only one of its incoming edge is marked
everytime it is executed [15]. For an acyclic workflow graph, we have shown
elsewhere [4] how to compute these properties in quadratic time with respect
to the size of the workflow graph. Furthermore, a workflow graph completion
heuristic based on the refined process structure tree [13] can also provide a local
replacement for some IOR-joins.

In the following, we give a local replacement technique which, as we will see
later, can provide a local replacement for any IOR-join that can be replaced lo-
cally. Then, we characterize under which conditions an IOR-join can be replaced
locally, i.e., regardless of the replacement technique. This result is an extension
of a technique [13] that completes a workflow graph with multiple sinks to obtain
a workflow graph with a single sink.

First, we define the notions of test and cover which will allow us to formulate
a replacement based on covers:

Definition 2 (Mutually exclusive edges, test, and cover). LetW = (N,E, c, l)
be a workflow graph.

6

Two edges in E are mutually exclusive iff there exists no execution of W
which marks both edges.

A test of an edge e ∈ E is a set Te ⊆ E of pairwise mutually exclusive edges
such that an execution σ of W marks e iff σ marks one of the edges in Te. If
X ⊆ E is a subset of edges such that Te ⊆ X, we say that Te is a test over X.

Let X ⊆ E and e ∈ E. A cover of X with respect to e is a set C of tests of
e over X such that each edge in X belongs to a test in C.

In Fig. 2, the tests T1 = {e, f} and T2 = {c} of g form a cover C = {T1, T2}
of ◦j with respect to g. We now describe how to obtain a local replacement of an
IOR-join using a cover of its incoming edges with respect to its outgoing edge.
We shall see later that such cover does not always exist. Fig. 4 illustrates the
structure of the replacement:

Definition 3 (Cover-based replacement). Let j be an IOR-join in a work-
flow graph W and o be the outgoing edge of j. Let C be a cover of ◦j with respect
to o. Let the R = (N ′′, E′′, c′′, l′′) be a partial workflow graph defined as follows:

– N ′′ contains: an AND-split ae for each edge e ∈ ◦j, an XOR-join xi for each
test Ti ∈ C, and one AND-join f .

– For each test Ti ∈ C, for each edge e ∈ Ti, E
′′ contains an edge from the

AND-split ae to the XOR-join xi. For each XOR-join xi, E
′′ contains an

edge from xi to the AND-join f .

The Cover-based replacement (C-replacement for short) of j replaces j by R as
follows: The target of each (previously) incoming edge e of j is set to be ae. The
source of the (previously) outgoing edge o of j is set to f .

e1

en

.
.

.

.
.

.

o

AND-split for each

incoming edge
XOR-join for each test

Each test connects

to the final AND-join

Each edge connects to

the tests it belongs to

Final AND-join

f

x1

xm

ae1

aen

Fig. 4. Canvas of local replacement
based on a cover.

Note that, when an edge e in ◦j belongs
to only one test, the AND-split ae has a sin-
gle outgoing edge and can be removed. When
a test Ti contains only one edge, the XOR-
join xi has a single incoming edge and can be
removed. The local replacement illustrated
by Fig. 2 and Fig. 3 is the result of a C-
replacement using the cover C = {{e, f}, {c}}
of ◦j with respect to the outgoing edge g of
j. Because each edge is used only in one test,
there is no AND-split necessary. Moreover,
the test {c} contains only one edge, therefore
it does not require an XOR-join.

Computing tests, including checking that edges are mutually exclusive can
be done using state space exploration, which can take exponential time. More
efficient heuristics exist for some special cases. For example, it is possible to
compute in quadratic time whether a set of edges in an acyclic process is mutually
exclusive [4]. Efficient computation of the tests is out of scope of this paper.

We can now characterize the conditions under which an IOR-join has an
equivalent local replacement:

7

Theorem 1 (Equivalent local replacement existence). Let W be a sound
workflow graph containing an IOR-join j.

An IOR-join j has an equivalent local replacement iff there exists a cover of
◦j with respect to the outgoing edge of j.

Proof. We first proove the following lemma:

Lemma 1. Let W be a deadlock-free workflow graph. Let e, e∗, e′ be three edges
of W such that there exists no path from e∗ to e′. Let m be a reachable marking
of W which marks e and e∗. Let p be a path from e to e′.

There exists a marking m′, reachable from m, such that m′ marks e′ and e∗.

Proof. We proceed by induction on the length of p.

Base case: length(p) = 1 (i.e., e = e′). The marking m marks e∗ and e′.
Induction step: Assuming that Lemma 1 holds for any path of length n, we

show that that it holds for any path of length n + 1. Let en be the nth edge
of p, e′ be the next edge, and n be the node between en and e′. The prefix
of p until en is a path of length n from e to en. Moreover, there is no path
from e∗ to en otherwise there would be a path from e∗ to e′. Therefore, by
induction assumption, there exists a marking mn, reachable from m, such
that mn marks en and e∗.
By the workflow graph semantics, if n is an XOR-join, an XOR-split, an

AND-split, or an IOR-split, there exists a transition t such that mn
t
→ m′

and m′ marks e∗ and e′. We are left with the cases where n is an IOR-join
or an AND-join. As W is deadlock-free, there exist a marking m′, reachable
from mn, which does not mark en , i.e., n is executed. By the workflow graph
semantics, executing an IOR-join or an AND-join marks its single outgoing
edge e′. Reaching m′ from mn does not require to execute the target of e∗,
i.e., consume the token on e∗, otherwise there would exist a path from e∗ to
n and thus a path from e∗ to e′ would exist.

Proof of Thm. 1: We show the two directions of the theorem separately:

⇐ Let C be a cover of ◦j with respect to the outgoing edge of j. We show
that there exists a local replacement by showing that the C-replacement R
of j results in a workflow graph W ′ that is equivalent to W . We use the
usual labeling for the nodes of R as illustrated by Fig. 4. Let m1,m2 be two
markings of W (and thus two markings of W ′ because E ⊆ E′):

1. For any transition t = (E1, j, E2) such that m1
t
→ m2 in W , there exists

a replacement execution sequence σ such that m1
σ
→ m2 in W ′:

By the IOR-join semantics, we have m2 = m1 − E1 + eo and E1 6= ∅.
Note that, because j is enabled in m1 and W is sound, there is no token
upstream of an edge in ◦j. We now build the execution σ of R that
changes m1 to mi by executing the AND-splits ae that have a marked
incoming edge and then the XOR-joins of R. By the test definition and
the definition of C-replacement, each XOR-join has one marked incoming

8

edge and, by the the property of mutual exclusion of the edges in a test,
only one of incoming edge is marked. Then the final and join f of R is
executed. The AND-join f is enabled in mi because each XOR-join was
executed and thus, by C-replacement definition and XOR-join semantics,
each incoming edge of f carries a token. Executing f changes mi into
m2.

2. For any replacement execution sequence σ such that m1
σ
→ m2 in W ′,

there exists a transition t = (E1, j, E2) such that m1
t
→ m2 in W :

We must show that:
(a) t is enabled in m1: Suppose that t is not enabled in m1. By IOR-join

semantics either no incoming edge of j is marked in m1 or there is
a marked edge preceding a non-marked incoming edge of j. Because
σ is a replacement transition sequence, all transitions of σ execute
a node in R. Thus, because m1 only marks edges in E and by the
definition of local replacement, an edge of ◦j is marked. Thus there
must be an edge e that precedes an edge e′ ∈ ◦j which does not
carry a token in m1. By the cover definition, e′ belongs to a test
T , and by C-replacement and the definition of replacement execution
sequence, there exists an edge e′′, such that e′′ 6= e′, which belongs
to T and is marked by m1. As W is deadlock-free by assumption,
there is a path from e to e′, and e′′ is not on a path to or from e′, by
Lemma 1, there exists an execution sequence σ′ and a marking m′

1

such that m1
σ′

→ m′

1 and the edges e′, e′′ carry a token in m′

1. This
is in contradiction with the definition of a test as all the edges in a
test are mutually exclusive.

(b) executing t results in m2: like t, σ consumes one token of each incom-
ing edge marked in m1 because if an edge of ◦j was marked in m2,
then a replacement transition would be enabled which would contra-
dict the definition of replacement execution sequence. It is also clear
that, like executing σ, executing t marks the (formerly) outgoing edge
of j by the IOR-join semantics.

⇒ We show that when an IOR-join j in a workflow graph W = (N,E, c, l) can
be replaced locally by a partial workflow graph R (not necessarily using a C-
replacement) to result in an equivalent workflow graph W ′ = (N ′, E′, c′, l′),
then there exists a cover of ◦j with respect to the outgoing edge e of j.
A set X of edges is an independent set iff for each pair of edge e1, e2 ∈ X

there exists no path from e1 to e2. An independent set X1 is maximal with
respect to a graph G iff there exist no independent set X2 of edge in G such
that X1 ⊂ X2. Let G = R∪◦j ∪{e}. In the following, whenever we mention
a maximum independent set we omit to precise that it is with respect to G.
It is clear that {e} and ◦j are both maximum independent sets. Let δ be a
function which for each ordered pair of maximum independent sets (X1, X2)
returns the number of edges, not comprised in X1 ∪ X2 on a path from an
edge in X1 to an edge in X2.
We proceed by structural induction on the G, starting from e and following
the edges backward. We show that at each step, given a maximum indepen-

9

dent set X s.t. X 6= ◦j and a cover C of X with respect to e, we can build
a maximal independent set X ′ such that δ(◦j,X ′) < δ(◦j,X) and a cover
C′ of X ′ with respect to e. Which shows that there is a cover C∗ of ◦j with
respect to e in W ′. By definition of equivalence of the local replacement, it
is clear that a test T ⊆ E of an edge e ∈ E in W ′ is also a test of e in W .
Thus C∗ is a cover of ◦j with respect to the outgoing edge of e in W .
Base case: {{e}} is a cover of {e} with respect to e.
Induction step: Assume C to be a cover of X ⊆ G with respect to e such

that X is a maximum independent set. We show that for each edge u
with the node n as target such that n◦ ⊆ X, there exists a cover C′ of
a set X ′ ⊆ G with respect to {e} such that u ∈ X ′, X ′ is a maximum
independent set, and δ(◦j,X ′) < δ(◦j,X). We distinguish three cases:
1. n is an XOR-join: Without loss of generality, we can assume that

n has two incoming edges u, v and one outgoing edge w. Let X ′ =
X ∪ {u, v} \ {w}. Because X is a maximum independent set, it is
clear that X ′ is a maximum independent set such that δ(◦j,X ′) <
δ(◦j,X). We transform C into a cover C′ of X ′ with respect to e by
replacing w by u and v in all test of C.
We first show that if a test T ∈ C of e contains w, then T ′ =
T \ {w} ∪ {u, v} is a test of e:
We show that the edges in T ′ are pairwise mutually exclusive: Be-
cause T is a test, all edges in T \ {w} are mutually exclusive. By the
soundness assumption of W , the edges u and v are mutually exclu-
sive. Moreover, the edges in T \ {w} are pairwise mutually exclusive
with u and v because otherwise they would not be mutually exclusive
with w by the XOR-join semantics. Thus, all edges of T ′ are pairwise
mutually exclusive.
To prove that T ′ is a test, we are left to show that, for any execution
σ, σ marks e iff σ marks an edge of T ′: from the construction of
T ′ and the XOR-join semantics which ensures that σ marks w iff σ

marks an edge in ◦n, we have that σ marks an edge in T ′ iff σ marks
an edge in T . Because T is a test, it implies that σ marks T ′ iff σ

marks e.
2. n is an XOR-split: Without loss of generality, we can assume that n

has two outgoing edges v, w.
We first show that a test T ∈ C containing v must contain w (and
vice et versa): Suppose that a test T ∈ C contains v but not w. Let
σ be an execution such that σ marks w. By the test definition, there
exist an edge x ∈ T that is marked by σ. Note that, by definition
of C, we also have x ∈ X. Let σ′ be a prefix of σ such that the
last marking m1 of σ′ is followed in σ by m2 and m2 is the first
marking in σ which marks w or x. We can assume, without loss of
generality, that m2 marks w and thus m1 marks the incoming edge
u of v. Because x is marked in a state following m1 during σ, there
exists an edge x′ and a path p from x′ to x such that m1 marks x′.
As X is a maximum independent set, there exists no path between

10

x and w, which implies that there exists no path between u and x.ar
By Lemma 1, there exists a marking m′ reachable from m1 such that
m′ marks u and x. The transition t = ({u}, n, {v}) is enabled in
m′ by XOR-split semantics and because m′ marks u. Executing t in
m′ results in a marking m′′ such that m′′ marks v and x. As there
exists a marking which marks v and x, v and x are not mutually
exclusive, so T is not test. We have shown that a test containing v
must contain w. (The same reasoning can be applied to show that a
test containing w must contain v.)
Let X ′ = X ∪ {u} \ {v, w}. Because X is a maximum indepen-
dent set, it is clear that X ′ is a maximum independent set such
that δ(◦j,X ′) < δ(◦j,X). We transform C into a cover C′ of X ′

with respect to e by replacing v and w by u in all test of C. Us-
ing a similar reasoning as done the previous case n is an XOR-join,
it can be shown that if a test T ∈ C of e contains v and w, then
T ′ = T \ {v, w} ∪ {u} is a test of e.

3. l(n) = AND: Let X ′ = X ∪ ◦n \ j◦. Because X is a maximum
independent set, it is clear that X ′ is a maximum independent set
such that δ(◦j,X ′) < δ(◦j,X). We transform C into a cover C′ of
X ′ with respect to e by as follows: For each test T ∈ C such that T
contains an edge v ∈ j◦, we create a test Tu for each edge u ∈ ◦j

such that Tu = T ∪{u} \ {v}. We replace T in C by the tests
⋃

u∈◦j

Tu

to obtain C′. It is easy to see that each Tu is a test of e and that C′

is a cover of X ′ with respect to e.

b
f
c
d

g
a h
r

j
t

s

e

Fig. 5. The edge f does not
belong to any test of g that
is a subset of ◦j.

b

e

f

c
h

a
g

dp

q

r j

Fig. 6. The edge e does not
belong to any test of h that
is a subset of ◦j.

While Thm. 1 applies to any local replacement
technique, the proof of the ‘if’ direction [6] shows
that, whenever there exists a cover of ◦j with re-
spect to the outgoing edge of j, the C-replacement
of j produces an equivalent workflow graph.

Fig. 5 is a slight variation of Fig. 2 where chang-
ing the target of the edge e makes it impossible re-
place the IOR-join locally. By changing the target
of e, e does not belong to ◦j anymore. Therefore,
the test T1 = {e, f} cannot be used to build a cover
of ◦j anymore and there is no other test of g that
contains f .

In Fig. 6, the IOR-join cannot be replaced lo-
cally because e does not belong to any test of h
contained in ◦j, i.e., there exists no cover of h. We
will see in the next section how the IOR-joins of
these two examples can be replaced using a non-
local replacement.

11

4 Non-local replacements

b

e

f

c

h

a
g

ds
u

j
t

Fig. 7. A workflow graph.

Fig. 8 shows an example of a non-local replacement
where the IOR-join j of Fig. 7 is replaced by the par-
tial workflow graph composed of the nodes w, x and
the edges i, e′ where, additionally, the AND-split v
was inserted on the edge c which delivers additional
(non-local) information to the IOR-join replacement
via the edge i.

b
f

c'a
g

d

c

e'
e

i

u
s v

t h
w

x

Fig. 8. Non-local replacement of
j in Fig. 7.

So, in addition to a local replacement, we
allow non-local replacements to insert addi-
tional AND-splits in the graph, which can
only be connected to the IOR-join replace-
ment. These AND-splits only “copy” tokens
to route them to the replacement and do
not alter the original behavior of the process.
This also preserves the graph structure to a
large extent.

Kiepuszewski et al. [7, Proof of Theorem 5.1] give a completion approach to
transform a Petri net with multiple sinks into a Petri net with a single sink. In
this section, we will show that one can use a variation of that approach, which we
call K-replacement, to replace an IOR-join in an acyclic workflow graph. We give
a condition that characterizes the IOR-joins for which this replacement produces
an equivalent workflow graph. Finally, we show that checking whether replacing
the IOR-join produces an equivalent workflow graph can be done in polynomial
time and that the replacement itself requires polynomial time.

4.1 Non-local replacement and equivalence:

First, we formalize the concept of non-local replacement. When inserting a gate-
way g on an edge e, we create an additional edge e′ such that the source of e′ is
g and the target of e′ is the target of e and the target of e becomes g. We say
that the edge e′ is the resulting edge from the insertion of g on e.

Definition 4 (Non-local replacement). Let W = (N,E, c, l) be a workflow
graph and j be a node in N . Let R = (N ′′, E′′, c′′, l′′) be a partial workflow graph
such that for each node n ∈ N ′′, l′′(n) = XOR or l′′(n) = AND, N ∩N ′′ = ∅,
and E ∩ E′′ = ∅. Let lg =< a0, . . . , an > be a list of AND-splits such that
lg ∩ (N ∪R) = ∅.

A non-local replacement of j in W by R and lg results in a workflow graph
W ′ = (N ′, E′, c′, l′) obtained by the insertion of lg on some edges < e0, . . . , en >

of W resulting in a list le of edges and the insertion of R such that:

– N ′ = N \ {j} ∪N ′′ ∪ lg,
– E′ = E ∪ E′′ ∪ le ,

12

– c′(e) = c(e) = (s, t) when e ∈ E, s ∈ N , t ∈ N , and s 6= j 6= t,
c′(e) = c′′(e) = (s, t) when e ∈ E′′, s ∈ N ′′, and t ∈ N ′′,
c′(e) = (s, t) such that s ∈ N and t ∈ N ′′ iff e ∈ E and c(e) = (s, j) or
e ∈ E′′ and s ∈ lg,
c′(e) = (s, t) such that s ∈ N ′′ and t ∈ N iff e ∈ E and c(e) = (j, t),

– l′(n) = l(n) when n ∈ N \ j, l′(n) = l′′(n) when n ∈ N ′′, and
– each element x ∈ N ′′∪E′′ is on a path in W from an edge ein ∈ E such that
c(ein) = (s, j) or a node ai ∈ lg to the edge eout ∈ E such that c(eout) = (j, t).

We now define when a non-local replacement is semantically correct through
a notion of equivalence of the two workflow graphs. Let, in the rest of this
section, W = (N,E, c, l) be a workflow graph containing an IOR-join j and
W ′ = (N ′, E′, c′, l′) be a workflow graph obtained by non-local replacement of
j. To define equivalence we need to map the markings of W and W ′. We first
define a mapping ψ : E′ → E ∪ {null} such that for any edge e′ in E′:

ψ(e′) =

e′ if e′ ∈ E,

e if e′ is the resulting edge of the insertion of an AND-join on e,

null otherwise.

We define a mapping φ from a marking of W ′ to a marking of W such that

φ(m)[e] =
∑

ψ(e′)=e

m[e′].

We reuse the notion of replacement execution sequence defined in Sect. 3.
W and W ′ are equivalent iff for any pair of reachable markings m1 of W , m′

1

of W ′ such that m1 = φ(m′

1), we have:

1. for any transition t = (E1, j, E2) and any marking m2 such that m1
t
→ m2

in W , there exists a replacement execution sequence σ and a marking m′

2

such that m′

1
σ
→ m′

2 in W ′ and m2 = φ(m′

2), and
2. for any replacement execution sequence σ and any marking m′

2 such that

m′

1
σ
→ m′

2 in W ′, there exists a transition t = (E1, j, E2) and a marking m2

such that m1
t
→ m2 in W and m2 = φ(m′

2).

4.2 A simple non-local replacement:

b

e'

f
c
d

g
a h

e
i f'

r

s

t

v

w
x

Fig. 9. Non-local replacement of j
in Fig. 5.

As intermediary step, we discuss informally a
simple version of the technique, which we call
simple K-replacement. We will then point out
a shortcoming of simple K-replacement and
modify it to obtain the K-replacement.

As intermediary step, we discuss infor-
mally a simple version of the technique,
which we call simple K-replacement. We will
then point out a shortcoming of simple K-replacement and modify it to obtain
the K-replacement.

13

e

f

c'a
g

d'
d

b

c
d''

g'

e'

h

p

q

r

t

u

v

w

x

y

z

Fig. 10. Non-local replacement of j in
Fig. 6.

Fig. 9 and Fig. 10 show equivalent
non-local replacements for the work-
flow graphs in Fig. 5 and Fig. 6, re-
spectively. These are two examples of
simple K-replacement.

The simple K-replacement uses the
notion of a bridge: A bridge from an
edge e to an edge e′ is a path from e

to e′ such that each split on the path is
an AND-split and each join on the path is an XOR-join. For example, in Fig. 9,
the path < e, v, j, w, f ′ > is a bridge from e to f ′. The existence of a bridge from
e to e′ implies that every execution which marks e also marks e′.

The key idea of simple K-replacement is to replace an IOR-join by an AND-
join and to ensure that every incoming edge of the new AND-join carries a token

in every execution by adding suitable bridges. More precisely, for each in-
coming edge e′ of the AND-join and each outgoing edge e of any XOR-split such
that e is not on a path to e′, we create a bridge from e to e′. Intuitively, for each
outgoing edge e of an XOR-split that removes a token from a path to e′, we add
a bridge that brings an additional token to e′ on a different path. This leads to
equivalent workflow graphs for the examples in Fig. 5 and Fig. 6.

b
e

f

c'a
g

d'
d

c
g'

e'
h

y

w

x
z

vs

t

u

Fig. 11. Non-local replacement of j in
Fig. 7.

However, consider the workflow
graph in Fig. 11 obtained by the same
technique for the IOR-join v in the
workflow graph shown by Fig. 7. When
an execution σ marks the edge d of the
workflow graph in Fig. 11, the edge h is
also marked by σ which is not the case
when an execution marks the edge d
in the workflow graph in Fig. 7. Thus,
simple K-replacement does not lead to an equivalent workflow graph when ap-
plied to an IOR-join that is not executed by every execution of the original
workflow graph.

4.3 K-replacement:

We now describe our generalized technique, called K-replacement. Applying K-
replacement to f in Fig. 7 results in the workflow graph in Fig. 8. K-replacement
uses the notion of dominator frontier to apply the same replacement strategy as
the simple K-replacement to a sub-graph of the workflow instead of the complete
graph. Applying the K-replacement to a sub-graph of the workflow graph implies
that the AND-join replacing the IOR-join only executes during the execution
that marks an edge of this sub-graph and thus allows us to produce an equivalent
replacement in more cases than with simple K-replacement.

To this end, we use the following notions. A node x1 dominates another node
x2 if each path from the source edge of the workflow graph to x2 contains x1.
A dominator x1 of a node x2 is the minimal dominator of x2 iff there exists no

14

node x′1 such that x′1 dominates x2, x1 dominates x′1, and x1 6= x′1 6= x2. For
example, in Fig. 3, the nodes r and s dominate the node v and the node s is the
minimal dominator of v. A set Ed of edges is the dominator frontier of a node
x2 iff a node x1 is the minimal dominator of x2, Ed ⊆ x1◦, for each edge e ∈ Ed,
e < x2, and for each edge e′ ∈ ((x1◦) \ Ed), we have e′ 6< x2. For example, in
Fig. 7, the dominator frontier of j is the set of edges {b, c}.

K-replacement replaces an IOR-join j by an AND-join. Furthermore, a bridge
from e to e′ is created for each incoming edge e′ of j and each edge e such that
e is the outgoing edge of an XOR-split on a path from an edge of the dominator
frontier of j to j, and there is no path from e to e′. K-replacement is detailed
further by Algorithm 1. As mentioned earlier, Fig. 8 shows the workflow graph
resulting from the application of Algorithm 1 to the IOR-join j in Fig. 7.

Algorithm 1 K-replace(j, W) input: A workflow graph W = (N,E, c, l) and
and IOR-join j ∈ N . output: A workflow graph W ′ = (N ′, E′, c′, l′) where j
has been K-replaced.

Create an AND-join a and set the source of the outgoing edge of j to be a.
Let EI be the set of incoming edges of j in W .
for each edge e ∈ Ei do

Create an XOR-join xe.
Set the target of e to be xe.
Create and edge from xe to a.

Let preset(j) be the set of all elements in E ∪ N from the minimal dominator of j
having a path to j

for each edge e′ ∈ ◦j do

for each decision d ∈ preset(j) do
Let preset(e′) be the set of all elements in E ∪ N from the dominator frontier
of j having a path to e′,
for each edge e ∈ d◦ such that e 6∈ preset(e′)) do

if d 6= minimal dominator of j OR e ∈ dominator frontier of j then

if The target of e is not an and split then
Insert an AND-split s on e

else

Let s be the target of e
Add an edge from s to xe′

b

c

a
e

f

d

g

l

u

v

w

x

z

h

i

j

k

m
r

s

t

y

Fig. 12. The IOR-join y cannot be
replaced.

The K-replacement implies that the
AND-join replacing the IOR-join executes in
every execution where an edge of the domina-
tor frontier is marked. Thus, intuitively, the
K-replacement produces an equivalent work-
flow graph if each execution that marks one
edge of the dominator frontier also executes
the IOR-join. In the following, we formalize

15

this intuition as a necessary and sufficient condition for the K-replacement to
produce an equivalent workflow graph:

Theorem 2 (K-replacement applicability). K-replacement of an IOR-join j
in a workflow graph W produces a workflow graph that is equivalent with W iff j

is executed in each execution of W in which an edge of the dominator frontier
of j is marked.

Proof. We start by proving Lemma 2 which will be useful to prove the condition
of applicability given by Thm. 2.

Lemma 2. Let W ′ be the workflow graph obtained by K-replacment of j. Let F
be the dominator frontier of j in W . Let e′ be an edge in ◦j in W . Let x be the
XOR-join targeted by e′ in W ′ and e′′ be the outgoing edge of x.

For any execution σ of W ′ that marks an edge e in F , there exists a path p
in W ′ from e to e′′ such that each edge of p is marked during σ.

Proof. We build p inductively showing that each edge on p is 1. marked during
σ and 2. has a path to e′′:

Base case: It is clear that e satisfies both 1 and 2.
Induction step: e1 ∈ ◦n is satisfies 1 and 2. We show that there exists an

edge e2 ∈ n◦ that satisfies 1 and 2.
If n is an XOR-join, AND-split, or AND-join by induction hypothesis and

workflow graphs semantics it is clear that e2 exists and satisfies 1 and 2.
When n is an XOR-split, then, by the XOR-split semantics, there exists an

edge e2 that satisfies 1. We are left to show that e2 satisfy 2. Suppose that e2 is
not on a path to e′, then by the K-replacement procedure, the target of e2 is an
AND-split with a path to e′′.

We can now prove that j has an equivalent K-replacement iff j is executed
in each execution where an edge of the dominator frontier of j carries a token.

We show the two directions of the theorem separately:

⇒ Assume that there exists some execution σ such that dominator of j is exe-
cuted in σ but j is not executed in σ.
We show by contradiction that K-replacement does not lead to an equivalent
workflow graph: Suppose that there exists a valid K-replacement of j resulting
into a workflow gaph W ′ such that W ≡W ′. Consider the first marking m2

in σ such that there is no edge preceding j that is marked in m2 and the
previous marking m1 in σ. It is clear that there exists an edge e2 that is
marked in m2 and not in m1 such that e2 does not precede j. The edge e1
preceding e2 is marked in m1 and precedes j. By the completion definition
(Algorithm 1), in W ′, an AND-split a is inserted on e2 to obtain W ′ and
therefore there is a path from e2 (which is the incoming edge of a) to the
previously outgoing edge of j. There exists a marking m′

2 of W ′ such that
m2 ≡ m′

2 and e2 is marked in m′

2. By Lemma 2 and because there is no
deadlock, there exists an execution sequence in W ′ from m′

2 to a marking
in which the (previously) outgoing edge of j carries a token. There exists no
such execution sequence from m2 in W .

16

⇐ Assume that j is executed in each execution where an edge of the dominator
frontier F of j carries a token.
Let W ′ = (N ′, E′, c′, l′) be the workflow graph obtained by K-replacement of
j. Let m1 be a reachable marking of W and m′

1 be a reachable marking of
W ′ such that m1 = φ(m′

1)
We show that W and W ′ are equivalent:

1. Let t = (E1, j, E2) be a transition executing j such that m1
t
→ m2 in

W , we show that there exists a replacement execution sequence σ and a
marking m′

2 such that m′

1
σ
→ m′

2 in W ′ and m2 = φ(m′

2):
Because j is enabled in m1, either some XOR-joins of the replacement
are enabled in m′

1, or some incoming edge of the AND-join a of the
replacement are marked, or both. The execution σ starts by executing the
XOR-joins enabled in m′

1.
After executing the enabled XOR-join we end up in a state m′

a in which
some edges in ◦a are marked. We aim to reach a state such that each
edge in ◦a is marked: Let’s consider an edge e′′ ∈ ◦a such that e′′ is
not marked in m′

a. By Lemma 2 there exists a path p in W ′ from the
incoming edge e of the minimal dominator of j in W to e′′ such that all
edges of p are marked during any execution where an edge in F carries
a token. By assumption, it is the case for the execution we discuss.
Nodes execute at most once during sound execution of an acyclic work-
flow graph, thus the token is on the path p to e′. The token cannot be
on an edge that belongs to E because otherwise j would not be enabled
in m′

1 because there would be a path from a token to an empty incoming
edge of j. There exists a path from e to e′ for which only executes con-
sumes token marking edges of the replacement, i.e, edges in E′ \ E. By
Lemma 1, we can reach a making which marks e′.
This approach can be repeated for all empty incoming edges of a allowing
to reach a state where each edge in ◦a are marked and thus a is enabled.
σ last transition executes a resulting in m′

2.
We have m2 ≡ m′

2 because: σ consumes a token on all edges that where
(in W) incoming to j. As mentioned earlier, other transitions only con-
sume tokens marking edges of the replacement. Executing a produces a
token on its outgoing edge, which was (in W) and consumes a token on
each of its incoming edges.

2. Let σ∗ be a replacement execution sequence such that m′

1
σ∗

→ m′

2 in W ′,
we show that there exists a transition t = (E1, j, E2) and a marking m2

such that m1
t
→ m2 in W and m2 = φ(m′

2):
By definition of replacement execution we have that the (previously) out-
going edge of j is marked by m′

2. By definition of K-replacement, we have
that for any execution σ′ of W ′ containing m′

2, σ
′ contains a reachable

marking m′

0, preceding m
′

1 in σ′, such that m′

0 marks and edge of F .
We show that j executes after m1 in W : Let σ be the execution sequence
of W which contains the sequence of marking defined by applying the
function φ to the markings of exec′ until reaching the marking m1. It

17

is easy to see that the σ contains a marking m0 of W such that m1 is
reachable from m0 and m0 = φ(m′

0). By assumption, as m0 is marked
by σ, the outgoing edge o of j is marked by any execution sequence con-
taining m0. The edge o is marked by any marking obtained by executing
j in W and any marking obtained by executing the final AND-join f of
R in W ′. Thus j must be executed after m0. By replacement execution
sequence definition, the final AND-join f of R is executed during σ∗.
The IOR-join j executes after reaching m1 during σ because if it was ex-
ecuted earlier then there would be a marking in σ′ marking preceding m′

1

that marks o and f would execute before σ∗ in W ′ and σ∗ would execute
f a second time which would contradict the soundness assumption.

We show that a transition t executing j is enabled by m1: There exists no
edge preceding f that is marked in m2, otherwise the AND-join f could
execute a second time by Lemma 3 which would contradict the soundness
assumption. Let Aj = ◦j ∪ j◦ be the set of edges adjacent to j in W . By
definition of replacement execution sequence and of the the function φ,
φ(m′

1) \ Aj = φ(m′

2) \ Aj, i.e., the edges marked by m′

2 which are not
adjacent to j in W are marked in m′

1. Thus, no edge preceding an edge
of Aj is marked by m′

1. By definition of φ, no edge preceding an edge of
Aj is marked by m1. As we have shown that j executes after m1, there
exists an edge e preceding j marked by m1. As e does not precede an edge
of Aj, we have e ∈ ◦j. Therefore a transition t executing j is enabled by
m1 because m1 marks at least one edge in ◦j and m1 does not mark an
edge preceding a non-marked edge of ◦j.
Executing j in m1 results in a marking m2. We have shown previously
how a replacement execution results in a marking m′

2 such that m2 =
φ(m′

2).

Thus, K-replacement of the IOR-join j in Fig. 7 produces an equivalent
workflow graph shown in Fig. 8 because j executes in an execution σ if and only
if an edge of its dominator frontier {b, c} is marked by σ. This is not the case
for the workflow graph in Fig. 12. The dominator frontier of y in Fig. 12 is the
set {b, c}. The edges b and c are marked by every execution. Thus, applying the
K-replacement algorithm to y would thus produce a workflow graph in which
the task z is executed during every execution. It is not the case for the workflow
graph in Fig. 12 in which the execution where the edges g and d are marked
does not execute z.

4.4 A note on complexity:

We now argue that the condition expressed by Thm. 2 can be computed effi-
ciently, i.e., in polynomial time with respect to the size of the workflow graph.
Algorithm 1 also runs in polynomial time. This allows us to conclude that we
can identify IOR-joins that can be replaced by K-replacement and replace them
efficiently:

18

Theorem 3 (Polynomial time complexity of K-replacement). Let j be
an IOR-join, and W be the workflow graph containing j.

1. Computing whether the K-replacement of j produces a workflow graph that
is equivalent to W can be done in polynomial time with respect to the size of
W .

2. The K-replacement of an IOR-join j can be computed in polymonial time
with respect to the size of W .

Proof. We show the polynomial complexity of the check and of the replacement
separately:

1. In previous work [4] we show how to perform a symbolic execution of an
acyclic workflow graph in quadratic time and space with respect to the size
of the workflow graph. In this paragraph, we point out how to use the results
of this work to check the condition of applicability ok the K-replacement of
an IOR-join j with denominator frontier Df , i.e., to check that the for any
execution σ, σ marks the outgoing edge of j iff σ marks some edge(s) in Df .
The symbolic execution assigns to each edge of the workflow graph a symbol.
We described the notion of symbol equivalence: Two symbols s1 assigned to
an edge e1 and s2 assigned to an edge e2 are equivalent iff for each (concrete)
execution σ, σ marks e1 iff σ marks e2. We also showed how to compute the
equivalence of two symbols assigned to the edges of the workflow graph by
the symbolic execution in linear time. To check that for any execution σ,
σ marks the outgoing edge of j iff σ marks some edge(s) in Df , we check
that the symbol assigned to the outgoing edge of j is equivalent to sum of the
symbols assigned to the edges of Df . The symbolic execution, summing the
symbols assigned to the edges in Df , and computing the equivalence, requires
a quadratic amount of time with respect to the size of the workflow graph.

2. The domination relationship can be expressed using a tree data structure.
Computing the dominator tree of W can be done in O(|E|log(|N |)) [8].
Checking if an outgoing edge of the minimal dominator is part of the domina-
tor frontier is a simple reachability test which requires linear time. Applying
Algorithm 1 clearly requires a polynomial amount of time.

5 The difficulty of replacing an IOR-join

As discussed above, the IOR-join y in Fig. 12 cannot be replaced correctly with
K-replacement. In this section, we provide an argument why it is difficult to
implement the IOR-join in Fig. 12 with any combination of AND and XOR
gateways.

Recalling the discussion in Sect. 1 we have to specify an equivalence and
we require some structure to be preserved in order to rule out some ‘simple’
implementations that incur an exponential blowup.

19

b

c

a

e

f

d

g

r

s

t

Fig. 13. Prefix
that cannot be
completed.

In this section, we take the view that the IOR-join synchro-
nizes its incoming branches, where these incoming branches
have a certain ‘forking’ logic, depending on the gateway struc-
ture ‘before’ the IOR-join. The forking logic for the example
in Fig. 12 is represented by the workflow graph in Fig. 13. We
will show that the workflow graph in Fig. 13 cannot be com-
pleted with any combination of AND and XOR gateways to
produce a behavior equivalent to the behavior of the workflow
graph in Fig. 12. In this sense, no combination of AND and
XOR gateways can produce the synchronization behavior of
the IOR-join in Fig. 12.

We consider the workflow graph in Fig. 13 as a prefix of a possible imple-
mentation. A prefix P = (Np, Ep, cp, lp) of a workflow graph W = (N,E, c, l) is
a workflow graph that is a subgraph of N ∪ E such that for each pair e1, e2 of
elements of W such that e1 < e2, we have: If e2 belongs to P , then e1 belongs
to P .

Rather than picking a concrete behavioral equivalence (cf. discussion in Sect. 1),
we formalize properties that a workflow graph must have to be equivalent to the
workflow graph in Fig. 12. We allow multiple tasks of the implementing workflow
graph to be labeled with z and therefore to correspond to the task z in Fig. 12.

Definition 5 (Equivalent workflow graph properties).
Let W ′ be a workflow graph which has the prefix illustrated by Fig. 13. Let

t1 = ({b}, s, {d}) and t2 = ({c}, t, {g}. The workflow graph W ′ satisfies the
following properties:

P1 There exists no execution where t1, t2, and a task labeled with z are executed.
P2 There exists an execution during which t1 and a transition tz executing a

task labeled with z are executed and, for each execution where t1 and tz are
executed, t1 is executed before tz.

It is easy to see that the workflow graph in Fig. 12 satisfies these properties
and that notions of equivalence such as the ones that we defined for local and
non-local replacements would ensure that any equivalent workflow graph satisfies
them too. We can now enunciate our result:

Theorem 4 (The synchronization role of IOR-joins cannot be imple-
mented using only AND and XOR-logic). There exists no deadlock-free
workflow graph W ′ such that W ′ has the workflow graph P illustrated by Fig. 13
as prefix, W ′ does not contain any IOR-join, and W ′ satisfies the properties of
Def. 5.

Proof. This proof rests on the following two lemmas:

Lemma 3. Let W be a deadlock-free workflow graph, e, e′ be two edges of W ,
m be a reachable marking of W which marks e.

If there exists a path p from e to e′ in W , then there exists a marking m′,
reachable from m, such that m′ marks e′. (Can be proved by a straight-forward
induction on p. Lemma 1 implies Lemma 3)

20

Lemma 4. Let W be a deadlock-free acyclic workflow which does not contain
IOR-joins. Let t = (E1, n, E2) and t

′ = (E′

1, n
′, E′

2) be two transitions of W .
If, in each execution σ of W where t and t′ occur, we have that t occurs before

t′ during σ, then there exists a path from an edge e ∈ E2 to an edge e′ ∈ E′

1.

Proof. We prove that if in each execution σ of W where t and t′ occur, we have
that t occurs before t′ during σ, then there exists a path from an edge in E2 to
an edge in E′

1.
We proceed by contradiction: suppose in each execution σ of W where t and

t′ occur we have that t occurs before t′ during σ, that there is no path between
any edge in E2 and any edge in E′

1. We show a contradiction by showing the
existence of an execution where t′ executes before t. We consider the case where
n and n′ have a single entry and a single exit edge, a similar reasoning can be
applied for the other cases.

Let σ be an execution in which t and t′ are executed. Let m be the last marking
before executing t in σ. The marking m marks the incoming edge e∗ of n. Let
σ′ be the prefix of σ until reaching the marking m. Because t′ executes in σ,
there exists an edge e, that carries a token in m, and there exists a path p to the
outgoing edge e′ of n′. By Lemma 1, there exist an execution sequence σ′′ from
m to a marking m′′ such that m′′ marks e∗ and e′, i.e, t′ was executed during
σ′′ and t was not. As e∗ is marked by m′′, the transition t is enabled. Therefore
there exists an execution in which t′ occurs before t.

Proof of Thm. 4: We prove this theorem by contradiction: Suppose that
there exists a workflow graph W ′ such that W ′ has P (illustrated by Fig. 13) as
prefix, does not contain an IOR-join, and satisfies P1 and P2.

By P2, we have that t1 and a transition tz = (E1, n, E2) such that n is a
task labeled z occur together in some execution and that t1 always occur before
tz when both occur. By Lemma 4, there exists a path p from d to the incoming
edge of n.

Consider an execution sequence σ = 〈[a], ({a}, r, {b, c}), [b, c], t1, [d, c], t2,
[d, g]〉. We can complete σ to obtain the execution σ∗ by following p and thus
executing tz (Lemma 3). This contradicts P1 because t1, t2, and a task labeled z
are executed during σ∗.

6 On the translation to Petri nets and related work

We have shown that, in some sense, the IOR-join cannot always be replaced
by a combination of AND and XOR gateways. Workflow graphs without IOR
gateways are essentially equivalent to free-choice workflow nets, a class of Petri
nets for which efficient analysis algorithms exist [2]: A workflow graph without
IOR gateways can be translated into an isomorphic free-choice workflow net of
about the same size [10] but it can also be shown that a free-choice workflow net
can be translated into an isomorphic workflow graph without IOR of about the
same size. Hence, there is no free-choice workflow net implementing the IOR-join
in Fig. 12 in the sense discussed above.

21

To translate an acyclic workflow graph into a non-free-choice Petri-net, one
can use Dead Path Elimination [1, 14] to implement the IOR-join with gateways
that have a local semantics. Dead Path Elimination uses workflow graphs with
individual tokens, where a token can have a value that is either true or false.
Such a workflow graph can be easily translated into a high-level Petri net, which
in turn can be unfolded into a non-free-choice Petri net. Alternatively, Mendling,
van Dongen, and van der Aalst [9] use the theory of regions to synthesize a Petri
net from the reachability graph of the process model. In both approaches, the
resulting Petri net is exponentially larger than the original workflow graph and
does not preserve the structure of the original process.

a

r

b

c

e

f

g

d

l

l*

h

k

m

z

y1

y2

y3

s1

s2

t1
j

i

t2

u

v

w

x

y*

Replacement of y

g'

d'

Fig. 14. A non-free-choice Petri net
that is equivalent to the one in Fig. 12.

A more direct approach to implement
the IOR-join from Fig. 12 as a Petri net is
shown in Fig. 14, where the IOR-join re-
placement is delimited by the dashed box.
The behavior of this Petri net is equivalent
to the workflow graph in Fig. 12. Note that,
similar to K-replacement, we provide addi-
tional inputs to the IOR-replacement and
that this construction preserves most of the
structure of the original workflow graph.
These additional inputs give the IOR-join
replacement information on the edges that
have been marked by the execution.

We can then think of the IOR-join as two boolean expressions over these
marked edges that fully characterize its executions: the first expression charac-
terizes the executions that lead to a token on the outgoing edge of the IOR-join,
the second characterizing all other executions. Both expressions can be easily
represented by a non-free-choice Petri net as in the example in Fig. 14, where
the transitions y1, y2, and y3 implement the first expression (d′∧j)∨(i∧j)∨(i∧g′)
The transition y∗ implements the second expression. The role of y∗ is to “purge”
the place d′ and g′ in the second case.

This construction can be defined to implement an IOR-join in any acyclic
workflow graph because the full execution history can be provided to the replace-
ment subgraph. However, the Petri net representations of the boolean expressions
are exponential in the size of the workflow graph. We leave it as future work to
evaluate whether this exponential blowup can be mitigated using simplification
techniques for boolean formulas.

To sum up, Theorem 4 gives a strong argument why IOR-joins cannot be
easily implemented by a free-choice net, it points to some difficulty when trying
to translate to general Petri nets, and no general polynomial-space translation
to general Petri nets is known.

22

7 Conclusion

In this paper, we studied the difficulty of replacing an IOR-join. For acyclic
processes, we established a necessary and sufficient condition that characterizes
IOR-joins that can be locally replaced. For the IOR-joins that can be locally
replaced, we proposed a generic local replacement. We presented a non-local
replacement strategy which allows us to translate some of the IOR-joins that
cannot be replaced locally. We have shown that computing this replacement and
checking its condition of application can be done in polynomial time with respect
to the size of the original workflow graph.

While these results have been presented for the replacement of a single IOR-
join in a sound acyclic business process model, they can be applied to replace
multiple IOR-joins in an acyclic workflow graph. Moreover, it can be shown that
both replacement techniques do not alter the soundness of the process, i.e., can-
not introduce or fix a control-flow error which makes these replacement strategies
applicable to replace IOR-joins in process models of which the soundness is un-
known such as, for example, when performing a control-flow analysis. We have
used elsewhere [3] process structure trees to decompose the workflow graph into
fragments. Such a decomposition allows us to factor out cycles and therefore to
apply the replacements in processes containing cycles.

We have shown that the synchronization provided by the IOR-join cannot,
in general, be implemented by free-choice constructs. Translations of a workflow
graph containing an IOR-join into a (non-free-choice) Petri net exist, however,
known translations have an exponential blowup and, usually, do not preserve
the structure of the original process. These results show a difficulty to translate
the non-local semantics of the IOR-join into a modeling language that only
contains local gateways and therefore a difficulty to fully leverage Petri net
based techniques for process models containing IOR-joins.

References

1. A. Alves et al. Web services business process execution language version 2.0. OASIS

Standard, 11, 2007.

2. J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge University Press,
1995.

3. D. Fahland, C. Favre, J. Koehler, N. Lohmann, H. Völzer, and K. Wolf. Analysis on
demand: Instantaneous soundness checking of industrial business process models.
Data Knowl. Eng., 70(5):448–466, 2011.

4. C. Favre and H. Völzer. Symbolic Execution of Acyclic Workflow Graphs. In
BPM, volume 6336 of LNCS, pages 260–275. Springer, 2010.

5. C. Favre and H. Völzer. The Difficulty of Replacing an Inclusive OR-Join. In
BPM, LNCS. Springer, 2012.

6. C. Favre and H. Völzer. The Difficulty of Replacing an Inclusive OR-Join. Technical
report, IBM Research, RZ1234, 2012.

7. B. Kiepuszewski, A. ter Hofstede, and W. van der Aalst. Fundamentals of control
flow in workflows. Acta Informatica, 39(3):143–209, 2003.

23

8. T. Lengauer and R. Tarjan. A fast algorithm for finding dominators in a flowgraph.
ACM Transactions on Programming Languages and Systems, 1(1):121–141, 1979.

9. J. Mendling, B. van Dongen, and W. van der Aalst. Getting rid of or-joins and
multiple start events in business process models. Enterprise Information Systems,
2(4):403–419, 2008.

10. W. van der Aalst, A. Hirnschall, and H. Verbeek. An Alternative Way to Analyze
Workflow Graphs. In CAiSE02, volume 2348 of LNCS, pages 535–552, 2002.

11. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow
patterns. Distributed and parallel databases, 14(1):5–51, 2003.

12. R. J. van Glabbeek. The linear time-branching time spectrum (extended abstract).
In CONCUR, volume 458 of LNCS, pages 278–297. Springer, 1990.

13. J. Vanhatalo, H. Völzer, F. Leymann, and S. Moser. Automatic Workflow Graph
Refactoring and Completion. In ICSOC, volume 5364 of LNCS, 2008.

14. H. Völzer. A New Semantics for the Inclusive Converging Gateway in Safe Pro-
cesses. In BPM, volume 6336 of LNCS, pages 294–309. Springer, 2010.

15. M. Wynn, H. Verbeek, W. van der Aalst, A. ter Hofstede, and D. Edmond. Business
Process Verification–Finally a Reality! Business Process Management Journal,
15(1):74–92, 2009.

24

