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Abstract. Modern data storage systems employ advanced erasure codes
to protect data from storage node failures because of their ability to pro-
vide high data reliability at high storage efficiency. In contrast to previous
studies, we consider the practical case where the length of codewords in
an erasure coded system is much smaller than the number of storage
nodes in the system. In this case, there exists a large number of pos-
sible ways in which different codewords can be stored across the nodes
of the system. In this paper, it is shown that a declustered placement
of codewords can significantly improve system reliability compared to
other placement schemes. A detailed reliability analysis is presented that
accounts for the rebuild times involved, the amounts of partially rebuilt
data when additional nodes fail during rebuild, and an intelligent rebuild
process that attempts to rebuild the most critical codewords first.

1 Introduction

Modern data storage systems are complex in nature consisting of several com-
ponents of hardware and software. To perform a reliability analysis, we require a
model that abstracts the reliability behavior of this complex system and lends it-
self to theoretical analysis, but at the same time, preserves the core features that
affect the system failures and rebuilds. In this article, we develop and describe
a relatively simple yet powerful model that captures the essential reliability be-
havior of an erasure coded data storage system. Using this model, we show the
effect of codeword placement on the system reliability.

As an alternative to replication, storage systems employ advanced erasure
codes to protect data from storage node failures because of their ability to pro-
vide high data reliability as well as high storage efficiency. The use of such
erasure codes can be dated back to as early as the 1980s when they were applied
in systems with redundant arrays of inexpensive disks (RAID) [1, 2]. When nodes
fail, storage systems try to maintain the redundancy through node rebuild pro-
cesses that use the data from the surviving nodes to reconstruct the lost data
in new replacement nodes. As these rebuild processes take a finite amount of
time, there exists a non-zero probability of further node failures during rebuild
that can cause the system to lose enough redundant data to make some of the
originally stored data irrecoverable. The average amount of time taken by the
system to end up in irrecoverable data loss, also known as the mean time to
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data loss, or MTTDL, is a measure of reliability commonly used for comparing
different coding schemes and studying the effect of various design parameters [3].
The length of codewords in an erasure coded system is typically much smaller
than the number of storage nodes in the system (e.g. RAID-6 typically uses a
codeword length of 16). This implies that there exist a large number of pos-
sible ways in which codewords can be stored across the nodes of the system.
However, many reliability analyses in the literature are performed under the as-
sumption that the number of storage nodes is equal to the codeword length [1,
2, 4]. In addition, some of the reliability analyses do not account for the time
taken to rebuild [4–7]. For replication-based systems, it is well-known that the
MTTDL is significantly affected by the choice of placement of replicas [5, 6, 8–
10]. In particular, it is known that a certain replica placement scheme, known
as declustered placement, can provide significantly higher reliability than other
placement schemes, especially for large storage systems [9].

This paper addresses the following practical questions regarding erasure coded
systems. How does the MTTDL of a system depend on the codeword length and
the number of parities in the erasure code? For a given codeword length and a
given number of parities, how does the codeword placement affect the MTTDL
of a system? Do the results on the effect of replica placement on MTTDL in
replication-based systems extend to the effect of codeword placement on the
MTTDL in erasure coded systems? How does the trade-off between storage ef-
ficiency and MTTDL depend on the codeword placement scheme?

The key contributions of this article are the following. We extend previous
work in the literature by considering the general case of erasure coded systems,
which includes replication-based systems. A new model enhancing previous ones
is developed here to evaluate the MTTDL of erasure coded systems. The model
developed captures the effect of the various system parameters as well as the
effect of various codeword placement schemes. The reliability analysis is detailed,
in the sense that it accounts for the rebuild times involved, the amounts of
partially rebuilt data when additional nodes fail during rebuild, and and an
intelligent rebuild process that attempts to rebuild the most critical codewords
first. The validity of the model is confirmed by simulation.

The remainder of this article is organized as follows: Section 3 describes
the system model considered. Section 4 describes the methodology of reliability
analysis used. Using the methodology described in the previous section, Sec-
tion 5 evaluates the reliability of clustered and declustered placement schemes.
Section 6 provides numerical results and discusses the effect of codeword place-
ment on reliability. Section 7 compares simulation-based MTTDL values with
the theoretical predictions. Finally, the paper is concluded in Section 8.

2 Related Work

A comparison between erasure codes and replication in terms of availability in
peer-to-peer systems has been presented in [11]. It has been well-established that
erasure codes can provide much higher reliability than replication for the same
level of storage efficiency. The trade-off, however, is in the performance as erasure
codes may require Galois field arithmetic for encoding and decoding. Therefore,
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Table 1. Parameters of a storage system

c amount of data stored on each storage node (bytes)
n number of storage nodes
cµ average read-write rebuild bandwidth of a storage node (bytes/s)
1/λ mean time to failure of a storage node (s)
1/µ mean time to read/write c amount of data from/to a node (s)

many recent works have laid emphasis on the development of new codes as
well as new encoding and decoding techniques to improve the performance of
erasure coded systems (see [12] and references therein). Some works have also
addressed the reliability assessment of erasure codes through simulation [13]. One
thing that is common in all these works is that they essentially consider the case
where the codeword length is equal to the number of nodes. In contrast, our work
provides a unified framework for assessing the reliability of erasure coded systems
where the codeword length may be larger than the number of nodes, in which
case, there exist many possible ways of storing each codeword across the nodes
in the system. This is a practically relevant case as, for performance reasons, the
lengths of the erasure codes used in real storage systems are kept constant and
small, whereas the number of nodes in the system grows with the system capacity.
For replication-based systems, it was shown that the reliability is significantly
affected by the choice of placement of replicas [9, 10, 14]. In this article, we extend
these results to a more general case of maximum distance separable (MDS)
erasure codes. To the best of our knowledge, this is the first work exploring the
space of codeword placement for erasure codes in a homogeneous environment
through both theory and simulation, which shows that codeword placement can
have a significant impact on reliability.

3 System Model

The storage system is modeled as a collection of n storage nodes each of which
stores c amount of data. In addition to the space required for the c amount of
data that is stored, each node is assumed to have sufficient spare space that may
be used for a distributed rebuild process (see Section 3.5) when other nodes fail.
The main parameters used in the storage system model are listed in Table 1.

3.1 Storage Node

Each storage node is a fairly complex entity that comprises of disks, memory,
processor, network interface, and power supply. Any of these components can
fail and lead to the node either becoming temporarily unavailable, or failed. It
is assumed that there is some mechanism, such as regular pinging of each node,
in place to detect node failures as they occur.
Node Unavailability vs. Node Failure: The difference between node tem-
porary unavailability and failure (or permanent unavailability) is crucial to the
reliability model. Temporary node unavailability may result in temporary data
unavailability. On the other hand, node failures may result in irrecoverable data
loss. The primary focus of this paper is the investigation of this issue. As noted
in [15], more than 90% of the node unavailabilities are transient and do not last
for more than 15 minutes. As most of the unavailabilities are transient, a node
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rebuild process is initiated only if a node stays unavailable for more than 15
minutes [15]. In other words, node unavailabilities lasting longer than a certain
amount of time are treated as node failures.
Independence of Node Failures: Node unavailabilities have been observed
to exhibit strong correlation that may be due to short power outages in the
datacenter, or part of a rolling reboot or upgrade activity at the datacenter
management layer [15]. However, there is no indication that correlations exist
among node failures. It has been argued that disk (as opposed to node) replace-
ment rates show correlations [16]. However, as disks have been observed to be
far more reliable than other components of a node [17], the failure of a node
is mainly determined by the failure of these other components. As there is no
evidence that correlations exist among node failures (or permanent unavailabil-
ities), we assume node failures to be independent in our model.

3.2 Redundancy

In erasure coded systems, the user data is divided into blocks (or symbols) of a
fixed size (e.g. sector size of 512 bytes) and each set of l blocks is encoded into
a set of m (> l) blocks, called a codeword, before storing them on m distinct
nodes. In this paper, we consider (l,m)-MDS codes, in which the encoding is
done, such that, any subset of l symbols of a codeword can be used to decode
the l symbols of user data corresponding to that codeword. Replication-based
systems, with a given replication factor r, are a subset of erasure coded systems
where the parameters l and m are equal to 1 and r, respectively.

3.3 Codeword Placement

In a large storage system, the number of nodes, n, is typically much larger than
the codeword length, m. Therefore, there exist many ways in which a codeword
of m blocks can be stored across n nodes.
Clustered Placement: If n is divisible by m, one simple way to place code-
words would be to divide the n nodes into disjoint sets, of m nodes each, and
store each codeword across the nodes of a particular set. We refer to this type of
data placement as clustered placement, and each of these disjoint sets of nodes
as clusters. In such a placement scheme, it can be seen that no cluster stores the
redundancies corresponding to the data on another cluster. The entire storage
system can essentially be modeled as consisting of n/m independent clusters.
Reliability behavior of a cluster under exponential failure and rebuild time dis-
tributions is well-known [1, 2, 18]. To the best of our knowledge, all prior work
in the reliability analysis of erasure coded systems have solely been for clustered
placement (see [12] and references therein).
Declustered Placement: A placement scheme that can potentially offer far
higher reliability than the clustered placement scheme, especially as the number
of nodes in the system grows, is the declustered placement scheme. There exist(
n
m

)
different ways of placing m symbols of each codeword across n nodes. In this

scheme, all these
(
n
m

)
possible ways are equally used to store all the codewords in

the system. It can be seen that, in such a placement scheme, when a node fails,
the redundancy corresponding to the data on the failed node is equally spread
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across all the surviving nodes (as opposed to clustered placement in which it is
spread only across the surviving nodes of the corresponding cluster). This allows
one to use the rebuild read-write bandwidth available at all surviving nodes to
do a distributed rebuild in parallel, which can be extremely fast when the number
of nodes is large. As it turns out, this is one of the main reasons why declustered
placement can offer significantly higher reliability than clustered placement for
large systems.
Spread Factor: A broader set of placement schemes can be defined using the
concept of spread factor. For each node in the system, its redundancy spread
factor is defined as the number of nodes over which the data on that node
and its corresponding redundant data are spread. In an erasure coded system,
when a node fails, its spread factor determines the number of nodes which have
the redundancy corresponding to the lost data, and this in turn determines
the degree of parallelism that can be used in rebuilding the data lost by that
node. In this paper, we will consider symmetric placement schemes in which
the spread factor of each node is the same, denoted by k. Two examples of
such symmetric placement schemes are the clustered and declustered placement
schemes for which the spread factor, k, is equal to m and n, respectively. A
number of different placement schemes can be generated by varying the spread
factor, k, between m and n.

3.4 Node Failure

Based on the discussion in Section 3.1, there is no indication that node failures
are correlated. Therefore, the times to node failures are modeled as independent
and identically distributed random variables. Denote the cumulative distribution
function of the times to node failure by Fλ, with mean, 1/λ. Typically, Fλ is
assumed to be exponential as this allows one to use Markov models for analysis.
However, it has been observed that real-world storage devices do not have expo-
nentially distributed failure times [16, 19]. An interesting result of this paper is
that the mean time to data loss of an erasure coded storage system tends to be
invariant within a large class of failure time distributions, that includes the expo-
nential distribution and, most importantly, real-world distributions like Weibull
and gamma. A similar result has been established earlier for replication-based
systems [14].

3.5 Node Rebuild

When storage nodes fail, codewords lose some of their symbols and this leads to a
reduction in data redundancy. The system attempts to maintain the redundancy
of the system by reconstructing the lost codeword symbols using the surviving
symbols of the affected codewords.
Codeword Reconstruction: For a system using an (l,m)-MDS code for re-
dundancy, a simple way to reconstruct a codeword that has lost up to m − l
symbols is to read any of its l symbols, decode the original l user data blocks,
re-encode these l user data blocks using the (l,m)-MDS code, and recover the
lost codeword symbols. The reconstruction process takes a finite amount of time,
which depends on the amount of data to read and write. Alternative methods
of reconstruction based on regenerating codes have been proposed as a solution
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Fig. 1. Distributed rebuild in declustered placement.

to reduce the amount of data transferred over the storage network during recon-
struction (see [20] and references therein). The effect of these methods on the
system reliability is outside the scope of this paper and is a subject of further
investigation.

Intelligent Rebuild: In an intelligent rebuild process, the system attempts
to first recover the codewords of the user data that have the least number of
codeword symbols left. These codewords are also referred to as the most-exposed
codewords. In contrast to intelligent rebuild, one may consider a blind rebuild,
where lost codeword symbols are being recovered in an order that is not specif-
ically aimed at recovering the codewords with the least number of surviving
symbols first. Clearly, such a blind rebuild is more vulnerable to data loss. So,
in the remainder of the paper, we consider only intelligent rebuild.

Distributed Rebuild: When a storage node fails, all the codewords that had
one of their symbols stored on this node are affected. For a symmetric placement
scheme with spread factor k, m ≤ k ≤ n, the surviving symbols of the affected
codewords are equally distributed across k − 1 other surviving nodes of the
system.

For clustered placement, i.e., k = m, the surviving symbols are present in the
m− 1 surviving nodes of the affected cluster. The lost symbols are recovered by
reading the required codeword symbols from a set of l nodes of the corresponding
surviving cluster. The lost symbols are reconstructed on the fly and directly
written to a new replacement node.

For other placement schemes, i.e., m+ 1 ≤ k ≤ n, the surviving symbols are
present in k−1 (≥ m) surviving nodes. Performing a rebuild similar to clustered
placement would, in general, degrade reliability for these placement schemes.
This is because, although the rebuild time would be the same (as the same
amount of data is written to the new replacement node), there are more nodes
(k − 1 > m − 1) that contain the surviving symbols of the affected codewords
The failure of any of these nodes can result in additional symbols of the affected
codewords being lost. We therefore consider instead distributed rebuild for these
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placement schemes as illustrated in Fig. 1. Distributed rebuild involves reading
the required codeword symbols from all the k − 1 nodes, computing the lost
codeword symbols, and writing them to the spare space of these k − 1 nodes
in such a way that no symbol is written to a node in which another symbol
corresponding to the same codeword is already present. Once all lost codeword
symbols are recovered, they are transferred to a new replacement node. Due to
the parallel nature of distributed rebuild, the rebuild times can be extremely
short for large storage systems. Such a distributed rebuild process is in fact used
in practical systems [21].
Node Rebuild Bandwidth: During the rebuild process, an average read-write
bandwidth of cµ bytes/s is assumed to be reserved at each node for the rebuild.
This implies that the average time required to read (or write) c amount of data
from (or to) a node is equal to 1/µ. The average rebuild bandwidth is usually
only a fraction of the total bandwidth available at each node; the remainder is
being used to serve user requests. Denote the cumulative distribution function
of the time required to read (or write) c amount of data from (or to) a node by
Gµ, and its corresponding probability density function by gµ.

3.6 Failure and Rebuild Time Distributions

It is known that real-world storage nodes are generally reliable, that is, the mean
time to repair a node (which is typically of the order of tens of hours) is much
smaller than the mean time to failure of a node (which is typically at least of the
order of thousands of hours). So, it follows that generally reliable nodes satisfy
the following condition:

1/µ ≪ 1/λ, or λ/µ ≪ 1. (1)

In the subsequent analysis, this condition implies that terms involving powers
of λ/µ greater than one are negligible compared to λ/µ and can be ignored. Let
the cumulative distribution functions Fλ and Gµ satisfy the following condition:

µ

∫ ∞

0

Fλ(t)(1−Gµ(t))dt ≪ 1, with
λ

µ
≪ 1. (2)

The results of this paper are derived for the class of failure and rebuild distri-
butions that satisfy the above condition. In particular, the mean time to data
loss of a system is shown to be insensitive to the failure distributions within
this class. This result is of great importance because it turns out that this con-
dition holds for a wide variety of failure and rebuild distributions, including,
most importantly, distributions that are seen in real-world storage systems [14].
Condition (2) can also be stated in the following alternate way [14]:

Fλ(t) ≪ 1 when Gµ(t) < 1 and λ ≪ µ, (3)

µ(1−Gµ(t)) ≪ 1 when Fλ(t) > 0 and µ ≫ λ. (4)

4 Reliability Analysis

The reliability analysis in this article uses a methodology similar to [9, 10, 14]. It
involves a series of approximations, each of which is justified for generally reliable
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nodes with failure and rebuild time distributions satisfying (2). The theoretical
estimates of mean times to data loss predicted using this methodology have also
been shown to match with simulations, which avoid all the approximations made
in the methodology, over a wide range of system parameters [9, 10, 14].

4.1 Mean Time to Data Loss (MTTDL)

In an erasure coded system, a data loss is said to have occurred when sufficient
number of blocks of at least one codeword have been lost, rendering the code-
word(s) undecodeable. The average time taken for the system to end up in data
loss, also referred to as the mean time to data loss, or MTTDL, is a commonly
used measure that is useful for assessing trade-offs, for comparing schemes, and
for estimating the effect of the various parameters on the system reliability [3].

At any point of time, the system can be thought to be in one of two modes:
fully-operational mode or rebuild mode. During the fully-operational mode, all
data in the system has the original amount of redundancy and there is no active
rebuild process. During the rebuild mode, some data in the system has less than
the original amount of redundancy and there is an active rebuild process that is
trying to restore the lost redundancy. A transition from fully-operational mode
to rebuild mode occurs when a node fails; we refer to this node failure that
causes a transition from the fully-operational mode to the rebuild mode as a
first-node failure. Following a first-node failure, a complex sequence of rebuilds
and subsequent node failures may occur, which eventually lead the system either
to irrecoverable data loss, with probability PDL, or back to the original fully-
operational mode by restoring all codeword symbols, with probability 1− PDL.
In other words, the probability of data loss in the rebuild mode, PDL, is defined
as follows:

PDL := Pr

{
data loss occurs before returning
to the fully-operational mode

∣∣∣∣ system enters rebuild mode

}
.(5)

Since the rebuild times are much shorter than the times to failure, when com-
puting the time to data loss, the time spent by the system in rebuild mode can
be ignored. If we ignore the rebuild times, the system timeline consists of one
first-node failure after another, each of which can end up in data loss with a
probability PDL. It can be shown that the mean time between two successive
first-node failures, converges to 1/(nλ) [14] and that the MTTDL is given by the
following proposition:

Proposition 1. Consider a system with generally reliable nodes whose failure
and rebuild distributions, Fλ and Gµ, satisfy (2). Its MTTDL is given by

MTTDL ≈ 1/(nλPDL), (6)

where PDL is defined in (5). The relative error in the approximation tends to
zero as λ/µ tends to zero.

Proof. See [14]. ⊓⊔
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4.2 Probability of Data Loss in Rebuild Mode (PDL)
This section show how PDL is estimated so that MTTDL can be obtained using
Proposition 1.
Exposure Levels: Consider an erasure coded storage system with an (l,m)-
MDS code. Let

r̃ := m− l + 1. (7)

We model the system as evolving from one exposure level to another as nodes fail
and rebuilds complete. At time t ≥ 0, let Dj(t) be the amount of user data that
have lost j symbols of their corresponding codewords, for 0 ≤ j ≤ r̃. At time t,
the system is said to be in exposure level e, 0 ≤ e ≤ r̃, if e = maxDj(t)>0 j.
Direct Path Approximation: A path to data loss following a first-node-failure
event is a sequence of exposure level transitions that begins in exposure level 1
and ends in exposure level r̃ (data loss) without going back to exposure level 0,
that is, for some j ≥ r, a sequence of j− 1 exposure level transitions e1 → e2 →
· · · → ej such that e1 = 1, ej = r̃, e2, · · · , ej−1 ∈ {1, · · · , r̃−1}, and |ei−ei−1| =
1, ∀ i = 2, · · · , j. To estimate PDL, we need to estimate the probability of the
union of all such paths to data loss following a first-node failure. As the set of
events that can occur between exposure level 1 and exposure level r̃ is complex,
estimating PDL is a non-trivial problem. Therefore, we proceed by denoting the
probability of the direct path to data loss by PDL,direct, that is,

PDL,direct := Pr{exposure level path 1 → 2 → · · · → r̃}, (8)

and approximate PDL by PDL,direct using the following proposition.

Proposition 2. Consider a system with generally reliable nodes whose failure
and rebuild distributions, Fλ and Gµ, satisfy (2). Its PDL is given by

PDL ≈ PDL,direct, (9)

The relative error in the approximation tends to zero as λ/µ tends to zero.

Proof. See [9]. ⊓⊔

4.3 Probability of the Direct Path to Data Loss (PDL,direct)
Consider the direct path to data loss, that is, the path 1 → 2 → · · · → r̃
through the exposure levels. At each exposure level, the intelligent rebuild pro-
cess attempts to rebuild the most-exposed data, that is, the data with the least
number of codeword symbols left (see Section 3.5). Let the rebuild times of
the most-exposed data at each exposure level in this path be denoted by Re,
e = 1, · · · , r̃ − 1. Let te, e = 2, · · · , r̃, be the times of transitions from exposure
level e − 1 to e following a first-node failure. Let ñe be the number of nodes in
exposure level e whose failure before the rebuild of most-exposed data causes
an exposure level transition to level e+ 1. Denote the time period from te until

the next failure of node i by E
(i)
te

. The time, Fe, until the first failure among the
ñe−1 nodes that causes the system to enter exposure level e from e− 1, is

Fe := min
i∈{1,··· ,ñe−1}

E
(i)
te−1

, e = 2, · · · , r̃. (10)
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At exposure level e, let αe be the fraction of the rebuild time Re still left when
a node failure occurs causing an exposure level transition, that is, let

αe := (Re − Fe+1)/Re, e = 1, · · · , r̃ − 2. (11)

It can be shown that αe is uniformly distributed in (0, 1) (see Lemma 2 in
Appendix A). Now, denote by 1/µe the following conditional means of Re:

1/µe := E[Re|Re−1, αe−1], e = 2, · · · , r − 1. (12)

The actual values of 1/µe depend on the codeword placement and this will be
further discussed in later sections of this paper. Now, the distribution of Re

given Re−1 and αe−1 could be modeled in several ways. We consider the model
B presented in [14], namely,

Re|Re−1, αe−1 = 1/µe w.p. 1 for e = 2, · · · , r̃ − 1. (13)

This model assumes that the rebuild time Re is determined completely by Re−1

and αe−1 and no new randomness is introduced in the rebuild time of exposure
level e. For further discussion on this model see [14]. Under this model, the
probability of the direct path to data loss is given by the following proposition.

Proposition 3. Consider a system with generally reliable nodes whose failure
and rebuild distributions, Fλ and Gµ, satisfy (2). Consider the direct path 1 →
2 → · · · → r̃ through the exposure levels in which the rebuild times Re satisfy
(13). The probability of this direct path is given by

PDL,direct ≈ λr̃−1 × ñ1 · · · ñr̃−1

∫ ∞

τ1=0

· · ·

∫ ∞

τr̃−1=0

∫ 1

a1=0

· · ·

∫ 1

ar̃−2=0

(
τ1 · · · τr̃−1gµ1

(τ1)

× δ

(
τ2 −

1

µ2

)
· · · δ

(
τr̃−1 −

1

µr̃−1

)
dar̃−2 · · · da1dτr̃−1 · · · dτ1

)
. (14)

The relative error in the approximation tends to zero as λ/µ tends to zero.

Proof. See Appendix A. ⊓⊔

5 Effect of Codeword Placement on Reliability

In this section, we consider different codeword placement schemes as discussed
in Section 3.3. We wish to estimate their reliability in terms of their MTTDL
and understand how codeword placement affects data reliability. To use the
expression (14) for PDL,direct, we need to compute the conditional means of
rebuild times in each exposure level, 1/µe, e = 1, · · · , r̃ − 1, and the number of
nodes whose failure can cause a transition to the next exposure level, ñe, e =
1, · · · , r̃ − 1. The values of these quantities depend on the underlying codeword
placement and the nature of the rebuild process used. Now, denote the kth raw
moment of the rebuild distribution Gµ byMk(Gµ). The MTTDL of clustered and
declustered codeword placement schemes are given by the following propositions.
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Proposition 4. Consider a storage system using clustered codeword placement
with generally reliable nodes whose failure and rebuild distributions satisfy (2).
Its mean time to data loss is given by

MTTDLclus. ≈
µm−l

nλm−l+1

1(
m−1
l−1

)M
m−l
1 (Gµ)

Mm−l(Gµ)
. (15)

The relative error in the above approximation tends to zero as λ/µ tends to zero.

Proof. See Appendix B. ⊓⊔

Proposition 5. Consider a storage system using declustered codeword place-
ment with generally reliable nodes whose failure and rebuild distributions satisfy
(2). Its mean time to data loss is given by

MTTDLdeclus. ≈
µm−l

nλm−l+1

(m− l)!

(l + 1)m−l

Mm−l
1

(
Gn−1

l+1
µ

)

Mm−l

(
Gn−1

l+1
µ

)
m−l−1∏

e=1

(
n− e

m− e

)m−l−e

.(16)

The relative error in the above approximation tends to zero as λ/µ tends to zero.

Proof. See Appendix C. ⊓⊔

Remark 1. The expressions for MTTDL obtained in this paper are better ap-
proximations for smaller values of λ/µ. This implies that, if simulation-based
MTTDL values match the theoretically predicted MTTDL values for a certain
value of λ/µ, it will also match for all smaller values of λ/µ. This fact is used
in Section 7, where simulations are shown to match theory for values of λ/µ
that are much larger than those observed in real-world storage systems, thereby
establishing the applicability of the theoretical results to real-world storage sys-
tems.

6 Numerical Results

In this section, we compare the MTTDLs of (l,m)-MDS code based systems for
clustered and declustered placement schemes for various choice of parameters l
and m with the help of figures.
Single Parity Codes: Single parity (l,m)-MDS codes correspond to the case
where m−l = 1. When l = 1, this corresponds to two-way replication. For higher
values of l, this corresponds to RAID-5 [1]. It is observed that the MTTDL of
single parity codes under both placement schemes are directly proportional to
the square of the mean time to node failure, 1/λ, and inversely proportional
to the mean time to read all contents of a node during rebuild, 1/µ. In addi-
tion, the MTTDL values are seen to be independent of the underlying rebuild
distribution. The result for clustered placement is well known since the 1980s
when the reliability of RAID-5 systems were studied [1]. Fig. 2(a) illustrates the
MTTDL behavior of single parity codes with respect to the number of nodes in
the system. It is seen that the MTTDL is inversely proportional to the number
of nodes for both clustered and declustered placement schemes.
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Fig. 2(b) shows how the MTTDL varies as a function of both the codeword
length m and the spread factor k for single parity codes, for a given number
of nodes n. In Fig. 2(b), clustered placement corresponds to the cases where
the spread factor is equal to the codeword length, and declustered placement
corresponds to the case where the spread factor is equal to the number of nodes.
It is observed that the clustered placement scheme has slightly higher MTTDL
values than other placement schemes, and that increasing the codeword length
decreases the MTTDL.

Double Parity Codes: It is observed that the MTTDL of double parity codes
under both placement schemes are directly proportional to the cube of the mean
time to node failure, 1/λ, and inversely proportional to the square of the mean
time to read all contents of a node during rebuild, 1/µ. The result for clustered
placement is well known in the context of RAID-6 systems [2].

In contrast to single parity codes, it is seen that the MTTDL of double
parity codes depends on rebuild distribution. For deterministic rebuild times, the

ratios M2
1 (Gµ)/M2(Gµ) and M2

1

(
G n−1

m−1
µ

)
/M2

(
G n−1

m−1
µ

)
become one. However,

for random rebuild times, these ratios are upper-bounded by one by Jensen’s
inequality. The MTTDL of a system using a (2, 4)-MDS code is plotted against
the number of nodes in the system for clustered and declustered placements,
as well as for deterministic and exponential rebuild times, in Fig. 3(a). It is
observed that the rebuild time distribution scales down the MTTDL, but leaves
the behavior with respect to the number of nodes, n, unaffected.

In contrast to single parity codes, the difference in MTTDL between the
two schemes can be significant, depending on the number of nodes, n, in the
system. This is because, the MTTDL of clustered placement is inversely propor-
tional to n, whereas the MTTDL of declustered placement is roughly invariant
with respect to n. This is illustrated in Fig. 3(b) in which MTTDL of double
parity codes is plotted against the number of nodes, n, in a log-log scale. The
lines corresponding to clustered placement have a slope of −1, whereas the lines
corresponding to declustered placement have a slope of roughly 0. It is also ob-



13

10
0

10
1

10
2

10
6

10
7

10
8

Number of nodes

M
T

T
D

L
 (

in
 d

ay
s)

 

 

(2, 4)-MDS code
1/λ = 30000 h
1/µ = 30 h

clustered, deterministic rebuild

declustered, deterministic rebuild

clustered, exponential rebuild

declustered, exponential rebuild

(a) MTTDL vs number of nodes n for a
(2, 4)-MDS code illustrating the effect of
rebuild distribution

10
0

10
1

10
2

10
4

10
5

10
6

10
7

10
8

10
9

Number of nodes

M
T

T
D

L
 (

in
 d

ay
s)

 

 

Double Parity Codes
1/λ = 30000 h
1/µ = 30 h

(1,3)−MDS, clustered

(1,3)−MDS, declustered

(4,6)−MDS, clustered

(4,6)−MDS, declustered

(10,12)−MDS, clustered

(10,12)−MDS, declustered

(22,24)−MDS, clustered

(22,24)−MDS, declustered

(b) MTTDL vs number of nodes n for
various double parity codes

3
6

9
12

15
18

21
24

27
30

3
6

9
12

15

1.0e+005

1.0e+006

1.0e+007

1.0e+008

1.0e+009

Spread Factor 

Codew
ord Length

M
T

T
D

L
 (

in
 d

ay
s)

Double Parity Codes
1/λ = 30000 h
1/µ = 30 h
n = 30 nodes

(c) MTTDL vs codeword length m and
spread factor k for n = 30

Fig. 3. MTTDL for double parity codes with 1/λ = 30000 h and 1/µ = 30 h

served from Fig. 3(b) that longer codes, which are more desirable as they have
higher storage efficiency, can have better MTTDL with declustered placement
than shorter codes with clustered placement for large systems. This is seen, for
example, by observing the lines corresponding to (4, 6)-MDS code with declus-
tered placement and (1, 3)-MDS code with clustered placement, for n > 100.
Just like in the case of single parity codes, the difference in MTTDL between
clustered and declustered is observed to be smaller for larger values of the code-
word length, m. Fig. 3(c) shows how the MTTDL varies as a function of both
the codeword length m and the spread factor k for double parity codes, for a
given number of nodes, n.

Codes with Higher Number of Parities: Comparing the MTTDL values
of clustered placement in (15) with those of declustered placement in (16), we
observe that they are both directly proportional to the (m− l+1)th power of the
mean time to node failure 1/λ, and inversely proportional to the (m− l) power
of the mean time to node rebuild 1/µ. This is a general trend in the MTTDL
behavior of data storage systems. However, in contrast to clustered placement,
which always scales inversely proportional to the number of nodes, the MTTDL
of declustered placement is observed to scale differently with the number of nodes
for different values of r̃ = m − l + 1. In particular, for codes with more than
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two parities, the MTTDL of declustered placement increases with n. This shows
that, by changing the codeword placement scheme, one can influence the scaling
of MTTDL with respect to the number of nodes n, resulting in a tremendous
improvement in reliability for large storage systems.

7 Simulations

Event-driven simulations are used to verify the theoretical estimates of MTTDL
of erasure coded systems for two placement schemes, namely, clustered and
declustered. The simulations are more involved than the theoretical analysis
as they do not make any of the approximations made in theory. Despite this
fact, it is found that the theoretical estimates match the simulation results for a
wide range of parameters, including the parameters generally observed in prac-
tice, thereby validating the applicability of the reliability analysis to real-world
storage systems.

7.1 Simulation Method

The storage system is simulated using an event-driven simulation with three
types of events that drive the simulation time forward: (a) failure events, (b)
rebuild-complete events, and (c) node-restore events. The state of the system is
maintained by the following variables: time, the simulated time; nActiveNodes,
the number of active (surviving) nodes in the system; failTimes, the times of
next failure of each active node generated according to the distribution Fλ;
failedNodes, the indices of all failed nodes; exposureLevel, the exposure level;
and a vector of length (r + 1), dataExposure = (D0, · · · , Dr̃), where De is the
number of codewords that have lost e symbols, e = 1, · · · , r̃. The values of these
variables are updated at each event, and when Dr̃ > 0, data loss is said to have
occurred and the simulation ends. For each set of parameters, the simulation is
run 100 times, and the MTTDL and its 95% confidence intervals are computed.
To obtain the time to data loss for declustered placement, the simulation is run
for all n nodes. In contrast, for clustered placement, n/m simulations are run
for one cluster, that is, m nodes, and the time to data loss of the whole system
is obtained by taking the minimum of the times to data loss obtained in each of
the n/m simulations. This is because the clusters are independent of each other
and the number of clusters is n/m.

Failure Event Besides updating time, a failure event triggers the following:
(i) decreasing activeNodes by one and increasing exposureLevel by one (recall
that, for the declustered scheme, any node failure causes an exposure level tran-
sition, and that, for the clustered scheme, only one cluster is being simulated
and therefore any node failure in that cluster causes an exposure level transi-
tion), (ii) scheduling the next failure event based on failTimes, (iii) updating
dataExposure by taking partial rebuild of the most exposed data into account,
and (iv) scheduling the rebuild-complete event based on the most exposed data
in dataExposure, the placement scheme used (which determines the parallelism
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that can be exploited and therefore the speed of rebuild), network rebuild band-
width limitations, and the rebuild distribution. By the nature of the rebuild
process, data placement is preserved, that is, declustered remains declustered
and clustered remains clustered. This is because, when the placement is declus-
tered, critical blocks are read from and written to all nodes at the same time
and the new codeword symbols are placed such that declustering is preserved.
When the placement is clustered, the codeword symbols are created in a new
node directly, which again preserves the placement. One main difference between
declustered and clustered placement is how the data exposure vector changes at
each exposure level transition. It was observed in the previous sections that the
main reason for declustered placement to have a higher reliability is the fact that
the amount of most-exposed data at each exposure level decreases significantly
as the system enters higher exposure levels. Therefore, proper computation of
data exposure vector at each exposure level transition for declustered placement
is an important step in its reliability simulation. Whereas the computation of
data exposure vector for clustered placement is fairly straightforward, the com-
putation of data exposure vector for declustered placement is more involved.

Data Exposure Vector for Declustered Placement For declustered placement at
exposure level e, when a failure occurs, the data exposure vector, dataExposure,
is updated from (D0, D1, · · · , De, 0, · · · , 0) to (D′

0, D
′
1, · · · , D

′
e, D

′
e+1, 0, · · · , 0)

as follows. Let ñ denote the number of active nodes in the system at exposure
level e. For j = 0, · · · , e− 1, the number of codewords that have m− j surviving
symbols in exposure level e is equal to Dj . These m − j symbols are equally
spread across the ñ surviving nodes of the system due to the nature of declustered
placement and distributed rebuild. Therefore, when an additional node failure
occurs, m−j

ñ
Dj codewords lose their (j + 1)th symbols, for j = 0, · · · , e− 1. So,

D′
j , j = 0, · · · , e− 2 is given by

D′
0 = D0 −

m

ñ
D0, (17)

D′
j = Dj −

m− j

ñ
Dj +

m− j + 1

ñ
Dj−1,

for j = 1, · · · , e− 2, (18)

If α denotes the fraction of rebuild time at exposure level e still left when a
transition to exposure level e+ 1 occurred, then D′

e+1 is given by:

D′
e+1 =

m− e

ñ
αDe. (19)

This is because, m−e
ñ

αDe codewords lose their (e+1)th symbol during the expo-
sure level transition. However, an additional symbol was created by the rebuild
process in exposure level e for each of the (1 − α)De most-exposed codewords.
Therefore,

D′
e−1 = De−1 −

m− e+ 1

ñ
De−1 +

m− e+ 2

ñ
De−2

+ (1− α)De, (20)
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Moreover, m−e+1
ñ

De−1 codewords lose their eth symbol during the exposure level
transition. Therefore, it follows that D′

e is given by

D′
e = De −

m− e

ñ
αDe +

m− e+ 1

ñ
De−1 − (1− α)De. (21)

Data loss occurs when Dr̃ becomes positive.

Rebuild-Complete Event A rebuild-complete event updates time and trig-
gers the following: (i) decreasing exposureLevel by one, (ii) at exposure level e,
e = 1, · · · , r − 1, updating dataExposure by adding De to De−1 and setting De

to zero (this means that the rebuild process always creates symbols of the most
exposed data first, or in other words, an intelligent rebuild is done), (iii) schedul-
ing the next rebuild-complete event based on the most exposed codewords, the
placement scheme, and the rebuild distribution. Besides these, there are a few
other updates that differ based on placement: for declustered placement, when
all codewords have m symbols, that is, when the exposure level becomes 0, a
node-restore event is scheduled. A node-restore event occurs at the time when
all the newly restored codeword symbols have been successfully transferred to
new replacement nodes and the number of nodes is brought back to n. The
number of nodes to restore is stored in nodesToRestore. For clustered placement,
activeNodes is increased by one (because codeword symbols are being directly
created in a new node and so a node-restore event is not required), and a failure
time for the newly restored node is generated using the failure distribution Fλ.

Node-Restore Event From the preceding, it follows that a node-restore event
needs to be scheduled only for declustered placement. Besides updating the
simulated time, this event increases activeNodes by nodesToRestore and sets
nodesToRestore to zero. Failure times for the newly restored nodes are scheduled
using the failure distribution Fλ.

7.2 Theory vs. Simulation

Although some of the assumptions used in the theoretical analysis, such as inde-
pendence of node failures, are also used in the simulation, the simulation results
reflect a more realistic picture of the systems’s reliability. This is because of the
following key differences between the theoretical analysis and the simulations.
The theoretical estimate of MTTDL in (6) takes into account only the time
spent by the system in the fully-operational mode and ignores the time spent
in rebuild mode, whereas the simulations do not ignore the rebuild times when
calculating the times to data loss. Furthermore, in (9), PDL is approximated by
the probability of the direct path to data loss. In simulations however, all the
complex trajectories of the system through the different exposure levels are sim-
ulated by simulating random node failure events and updating the data exposure
vector by taking partial rebuilds into account. In the theoretical analysis, the
time required to restore new nodes in a declustered placement scheme (following
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Table 2. Range of values of different simulation parameters

Parameter Meaning Range

c amount of data stored on each node 12 TB
n number of storage nodes 4 to 200

m− l number of parities 1, 2
b average rebuild bandwidth at each storage node 96 MB/s

1/λ mean time to failure of a node 1000 h to 10000 h
1/µ average time to read/write c amount of data

from/to a node during rebuild (1/µ = c/b)
35 h

successful rebuild of lost codeword symbols in the spare space of surviving nodes)
is ignored, whereas in the simulations, the time to restore new nodes is simulated
as well. In addition, other approximations made in the analysis, such as neglect-
ing the effect of the transient period of the system, are implicitly avoided in the
simulations. Therefore, the simulations reflect a more comprehensive picture of
the system behavior than what is assumed in theory.

7.3 Simulation Results

Table 2 shows the range of parameters used for the simulations. Typical values
for practical systems are used for all parameters, except for the mean times to
failure of a node, which have been chosen artificially low (1000 h to 10000 h) to
run the simulations fast. The running times of simulations with practical values
of the mean times to node failure, which are of the order of 10000 h or higher,
are prohibitively high; this is due to the fact that PDL becomes extremely low
thereby making the number of first-node-failure events that need to be simulated
(along with the other complex set of events that restore all lost codeword sym-
bols following each first-node-failure event) extremely high for each run of the
simulation. It is seen that, despite the unrealistically low values of mean times
to node failure, the simulation-based values are a good match to the theoretical
estimates. This observation in conjunction with Remark 1 implies that the the-
oretical estimates will also be accurate for realistic values of mean times to node
failure, 1/λ, which are generally much higher.

Figure 4 shows the comparison between the theoretically-predicted MTTDL
values and the simulation-based MTTDL values for systems using (3, 4) and
(6, 8) MDS codes. The simulation-based MTTDLs are observed to be in agree-
ment with the theoretical predictions.

8 Conclusion

The reliability of erasure coded systems was studied with a detailed analytical
model that accounts for the rebuild times involved, the amounts of partially
rebuilt data when additional nodes fail during rebuild, and the fact that mod-
ern systems utilize an intelligent rebuild process that rebuilds the most critical
codewords first. It was shown that the mean time to data loss of erasure coded
systems are practically insensitive to distribution of times to node failure but
sensitive to the distribution of node rebuild times. In particular, it was shown
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Fig. 4. MTTDL of two different erasure codes with the same storage efficiency for a
system with mean time to node failure 1/λ = 3000 h and mean time to read all contents
of a node during rebuild 1/µ = 34.7 h.

that random rebuild times result in lower MTTDL values compared to deter-
ministic rebuild times. The codeword placement scheme, and the rebuild process
used, are major factors that influence the scaling of MTTDL with the number of
nodes in the system. Declustered codeword placement with distributed rebuild
was shown to potentially have significantly larger values of MTTDL compared
to clustered codeword placement as the number of nodes in the system increases.
Simulations were used to confirm the validity of the theoretical model. Exten-
sions of this work to non-MDS codes and correlated failures are subjects of
further investigation.
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Appendix

A Proof of Proposition 3

Consider a sample direct path with Re = τe, e = 1, · · · , r̃ − 1, and αe = ae,
e = 1, · · · , r̃ − 2.1 Denote the vector (τ1, · · · , τr̃−1) by τ and (a1, · · · , ar̃−2) by

1 More strictly, we consider a direct path to data loss with τe < Re ≤ τe + δτe,
e = 1, · · · , r̃− 1, and ae < αe ≤ δae, e = 1, · · · , r̃− 2, where δτe and δae are positive
infinitesimal quantities, but we leave this out for notational convenience.
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a for notational convenience. Then, the probability of this direct path, denoted
by PDL,direct(τ ,a), is

PDL,direct(τ ,a) = Pr{R1 = τ1} × Pr{F2 < R1|R1 = τ1}

× Pr{α1 = a1|R1 = τ1, F2 < R1}

× Pr{R2 = τ2|R1 = τ1, F2 < R1, α1 = a1}

× Pr{F3 < R2|R1 = τ1, F2 < R1, α1 = a1, R2 = τ2}

· · · × Pr
{
Fr̃ < Rr̃−1

∣∣Re = τe, Fe′+1 < Re′ , αe′ = ae′ ,

∀ e ∈ {1, · · · , r̃ − 1}, ∀ e′ ∈ {1, · · · , r̃ − 2}
}
. (22)

If we denote the mean of R1 by 1/µ1, based on the rebuild model described in
Section 3.5, it follows that R1 is distributed according to some distribution Gµ1

that satisfies (2), that is, R1 ∼ Gµ1
. Therefore, the first term in (22) reduces to

Pr{R1 = τ1} = gµ1
(τ1)δτ1, (23)

where δτ1 denotes an infinitesimal increment in τ1. The remaining terms in (22)
fall into three types:

A: Pr
{
Fe < Re−1

∣∣Re′ = τe′ , Fe′′+1 < Re′′ , αe′′ = ae′′ ,

∀ e′ ∈ {1, · · · , e− 1}, ∀ e′′ ∈ {1, · · · , e− 2}
}
, (24)

B: Pr
{
αe = ae

∣∣Re′ = τe′ , Fe′+1 < Re′ , αe′′ = ae′′ ,

∀ e′ ∈ {1, · · · , e}, ∀ e′′ ∈ {1, · · · , e− 1}
}
, (25)

C: Pr
{
Re = τe

∣∣Re′ = τe′ , Fe′+1 < Re′ , αe′ = ae′ ,

∀ e′ ∈ {1, · · · , e− 1}
}
. (26)

The following three lemmas give the expressions for terms of type A, B, and C.

Lemma 1. Expressions of type A given by (24) reduce to

Pr{Fe < Re−1|Re−1 = τe−1} ≈ ñe−1λτe−1, (27)

for e = 2, · · · , r̃, where the approximation holds for systems with generally reli-
able nodes satisfying (2). The relative error in the approximation tends to zero
as λ/µ tends to zero.

Proof. See Appendix D. ⊓⊔

Lemma 2. Expressions of type B given by (25) reduce to

Pr{αe = ae|Re = τe, Fe+1 < Re} ≈ δae, (28)

for e = 1, · · · , r̃ − 2, where the approximation holds for systems with generally
reliable nodes satisfying (2). Here, δae denotes an infinitesimal increment of ae.
The relative error in the approximation tends to zero as λ/µ tends to zero.

Proof. See Appendix E. ⊓⊔
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Lemma 3. For a direct sample path 1 → 2 → · · · → r̃ through the exposure
levels in which the rebuild times Re satisfy (13), expressions of type C given by
(26) reduce to

Pr{Re = τe|Re−1 = τe−1, αe−1 = ae−1} = δ(τe − 1/µe)δτe (29)

for e = 2, · · · , r̃ − 1. Here, δ(τe − 1/µe) denotes the Dirac delta function with a
spike at 1/µe, and δτe denotes an infinitesimal increment of τe.

Proof. See Appendix F. ⊓⊔

Substituting (23), (27), (28), and (29) in (22), we obtain

PDL,direct(τ ,a) ≈ λr̃−1 × ñ1 · · · ñr̃−1 × τ1 · · · τr̃−1 × gµ1
(τ1)× δa1 · · · δar̃−2

×δτ1 · · · δτr̃−1 × δ(τ2 − 1/µ2) · · · δ(τr̃−1 − 1/µr̃−1). (30)

The probability of the direct path to data loss, PDL,direct, is the summation
of the probabilities, PDL,direct(τ ,a), of all possible sample direct paths. As the
infinitesimal increments in (30) tend to zero, the summation becomes an integral
resulting in (14). ⊓⊔

B Proof of Proposition 4

The rebuild process in clustered placement always involves reading data from
l nodes of the affected cluster at an average bandwidth of cµ from each node,
computing the lost codeword symbols on-the-fly, and writing them to a spare
node at an average bandwidth of cµ. Therefore, in exposure level 1, the average
time to rebuild the c amount of lost data is given by

1/µclus.
1 = 1/µ. (31)

In the direct path approach to data loss in a system using clustered placement, we
need to consider only successive failures of nodes belonging to the same cluster.
As no cluster shares the redundancies corresponding to the data on another
cluster, the number of nodes, ñe, whose failure can cause a transition to the
next exposure level is equal to the number of surviving nodes in the affected
cluster in exposure level e, that is,

ñclus.
e = m− e. (32)

When the system enters exposure level e, all of the most-exposed codewords that
were unrebuilt in exposure level e−1 lose their eth codeword symbol. Therefore,
given that the rebuild time in the previous exposure level was Re−1 = τe−1, and
the fraction αe−1 = ae−1, the conditional mean 1/µclus.

e is given by

1/µclus.
e = ae−1τe−1, e = 2, · · · , r̃ − 1. (33)

By substituting the values of 1/µclus.
e and ñclus.

e from (31), (32), and (33), into
(14), successively evaluating the integrals in (14), we get

P clus.
DL ≈

λm−l

µm−l

(
m− 1

l − 1

)
Mm−l(Gµ)

Mm−l
1 (Gµ)

. (34)

Substituting (34) into (6), we obtain (15). ⊓⊔
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C Proof of Proposition 5

The distributed rebuild process in each exposure level e involves reading the
required codeword symbols of the data to be rebuilt from all the n− e surviving
nodes of the system, computing the lost codeword symbols, and writing them
to the spare space of these nodes in such a way that no codeword symbol is
written to a node in which another codeword symbol corresponding to the same
codeword is already present. In exposure level 1, this process requires reading
lc amount of data, as well as writing c amount of data, from and to all n − e
surviving nodes in parallel. As each of the n− e nodes has an average read-write
rebuild bandwidth of cµ, the average time to rebuild the c amount of lost data
is given by

1/µdeclus.
1 = (l + 1)/((n− 1)µ). (35)

Due to the nature of declustered placement, the failure of any of the surviving
n− e nodes at exposure level e before rebuild will cause a transition to exposure
level e+ 1. Therefore,

ñdeclus.
e = n− e. (36)

When the system enters exposure level e, in contrast to clustered placement, not
all the most-exposed codewords whose symbols were unrebuilt in exposure level
e−1 lose their eth codeword symbol. Due to the nature of declustered codeword
placement, the newly failed node stored codeword symbols corresponding to only
a fraction (m−e+1)/(n−e+1) of these most-exposed codewords. Furthermore,
as the rebuild in exposure level e involves only n − e nodes (versus n − e + 1
nodes in exposure level e−1) the speeds of rebuild in exposure levels e and e−1
differ by a factor (n−e+1)/(n−e). Taking these effects into account, and given
that the rebuild time in the previous exposure level was Re−1 = τe−1, and the
fraction αe−1 = ae−1, the conditional mean 1/µdeclus.

e is given by

1/µclus.
e =

m− e+ 1

n− e
ae−1τe−1, e = 2, · · · , r̃ − 1. (37)

By substituting the values of 1/µdeclus.
e and ñdeclus.

e from (35), (36), and (37),
into (14), successively evaluating the integrals in (14), and substituting the result
in (6), we obtain (16). ⊓⊔

D Proof of Lemma 1

Expressions of the form (24) denote the conditional probability of transition from
exposure level e − 1 to e. Given that the rebuild time Re−1 = τe−1, the event
Fe < Re−1 is independent of all other conditioning terms in (24). Removing
these other conditioning terms, (24) becomes

Pr{Fe < Re−1|Re−1 = τe−1} = Pr{Fe < τe−1}. (38)
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Here (38) follows from the fact that the time to next node failure, Fe, and the
time to rebuild the most-exposed data, Re−1, are independent. Substituting for
Fe from (10), we have

Pr{Fe < τe−1} = Pr

{
min

i∈{1,··· ,ñe−1}
E

(i)
te−1

< τe−1

}
(39)

= 1− Pr

{
min

i∈{1,··· ,ñe−1}
E

(i)
te−1

≥ τe−1

}
(40)

= 1− Pr
{
E

(i)
te−1

≥ τe−1 ∀ i ∈ {1, · · · , ñe−1}
}

(41)

= 1−
(
Pr
{
E

(1)
te−1

≥ τe−1

})ñe−1

(42)

= 1−
(
1− Pr

{
E

(1)
te−1

< τe−1

})ñe−1

. (43)

Here, (42) follows from the fact that E
(i)
te−1

are independent random variables. It

is known that, during the stationary period of the system, E
(i)
te

are distributed

according to F̃λ given by [14, Lemma 2]

F̃λ(t) := λ

∫ t

0

(1− Fλ(τ))dτ. (44)

Therefore,

Pr
{
E

(1)
te−1

< τe−1

}
= F̃λ(τe−1) = λ

∫ τe−1

0

(1− Fλ(τ))dτ (45)

= λτe−1 + o (λτe−1) . (46)

Here, (46) follows from (3). Substituting (46) in (43), we get

Pr{Fe < τe−1} = 1− (1− λτe−1 + o (λτe−1))
ñe−1 (47)

= ñe−1λτe−1 + o (λτe−1) ≈ ñe−1λτe−1, (48)

where the approximation (48) holds good for systems with generally reliable
nodes satisfying (2). From (38) and (48), we observe that the type A expressions
of the form (24) can be reduced to (27). ⊓⊔

E Proof of Lemma 2

Type B terms of the form (25) denote the conditional probability that the frac-
tion, αe, of rebuild time, Re, still left when an exposure level transition from e
to e+1 occurred, is equal to ae. Given that Re = τe and Fe+1 < Re, the fraction
αe is independent of the other conditioning terms in (25). Removing these other
terms, (25) can be rewritten as

Pr{αe = ae|Re = τe, Fe+1 < Re}. (49)
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Substituting for αe from (11) into (49), we get

Pr{αe = ae|Re = τe, Fe+1 < Re}

= Pr

{
Re − Fe+1

Re

= ae

∣∣∣∣Re = τe, Fe+1 < Re

}
(50)

=
Pr
{

Re−Fe+1

Re
= ae, Re = τe, Fe+1 < Re

}

Pr {Re = τe, Fe+1 < Re}
(51)

=
Pr {Fe+1 = τe(1− ae), Re = τe, Fe+1 < τe}

Pr {Re = τe, Fe+1 < τe}
(52)

=
Pr {Fe+1 = τe(1− ae), Fe+1 < τe}Pr{Re = τe}

Pr {Fe+1 < τe}Pr{Re = τe}
(53)

=
Pr {Fe+1 = τe(1− ae)}

Pr {Fe+1 < τe}
. (54)

Here, (53) follows from the fact that the time to next node failure, Fe+1, and
the time to rebuild the most-exposed data, Re, are independent. From (48), we
have

Pr {Fe+1 < τe} ≈ ñ(e)λτe−1, (55)

and

Pr {Fe+1 = τe(1− ae)}

= Pr{τe(1− (ae + δae) < Fe+1 ≤ τe(1− ae))}

= Pr{Fe+1 ≤ τe(1− ae)} − Pr{Fe+1 ≤ τe(1− (ae + δae))}

≈ ñ(e)λτe−1(1− ae)− ñ(e)λτe−1(1− (ae + δae)) (56)

= ñ(e)λτe−1δae, (57)

where δae denotes an infinitesimal increment of ae. From (49), (54), (55), and
(57), we observe that type B terms of the form (25) can be reduced to (28). ⊓⊔

F Proof of Lemma 3

Type C expressions of the form (26) denote the conditional probability that the
rebuild time, Re, in exposure level e is equal to τe. Given that Re−1 = τe−1 and
αe−1 = ae−1, the rebuild time in exposure level e is independent of the other
conditioning terms. Removing these other terms, (25) can be rewritten as

Pr{Re = τe|Re−1 = τe−1, αe−1 = ae−1}. (58)

Now, given that the rebuild times Re satisfy (13), the above expression reduces
to (29). ⊓⊔


