

RZ 3828 (# Z1208-002) 08/10/2012
Computer Science 23 pages

Research Report

Language Definition for a Notation of Computational Problems

R. Jongerius‡, P. Stanley-Marbell*

‡IBM Netherlands
1006 CE Amsterdam
Netherlands

*IBM Research – Zurich
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Almaden • Austin • Brazil • Cambridge • China • Haifa • India • Tokyo • Watson • Zurich

Language Definition for a Notation of Computational Problems

Rik Jongerius

IBM Netherlands∗

r.jongerius@nl.ibm.com

Phillip Stanley-Marbell

IBM Research—Zürich

pst@zurich.ibm.com

August 10, 2012

Contents

1 Introduction 2

2 NCP Language Overview 3

2.1 Low-level representation . 3
2.2 Relation to Sal/Svm . 3
2.3 Variables . 4

3 NCP Language Definition 4

3.1 Lexical elements . 4
3.2 Problem structure . 5
3.3 Example: linear programming . 6
3.4 Preprocessor . 7
3.5 Variable declarations . 7
3.6 Available types . 8
3.7 Typecasting for Sal . 9
3.8 Type definition area . 9
3.9 Domain and range areas . 9
3.10 Relation area . 10
3.11 Operators . 10
3.12 Boolean and arithmetic expressions . 11
3.13 Variable-binding operators . 11
3.14 Arithmetic functions and Boolean predicates . 13

A NCP Language Grammar 15

B Library: math 16

C NCP Design Choices 16

C.1 Declarative, second-order logic language . 16
C.2 Readability . 16
C.3 Boolean operators . 17

D Examples 18

D.1 Discrete cosine transform—type II . 18
D.2 8x8 2D discrete cosine transform—type II . 18
D.3 k-Means clustering . 18
D.4 Integer sorting . 19
D.5 Minimum-cost network flow . 19

∗Work performed while at IBM Research—Zürich

1

E Examples of compilation to Sal 20

F Compiler Command Line Reference 22

F.1 Options . 22

G Vim Syntax Highlighting 23

1 Introduction

Computer applications usually implement several algorithms to perform the task intended by a pro-
grammer. However, these algorithms only describe methods for solving computational problems (CPs).
Usually, these CPs can be solved by a variety of algorithms, and each algorithm can be implemented in
a variety of ways [1]. As an example, consider the computational problem of sorting integers; algorithms
to solve this problem include MergeSort, QuickSort, and others. A programmer is left with the task
of selecting the best-performing algorithm and implementation for a given hardware platform and input
data size. However, not all design parameters might be known or even fixed at design time, making this
a non-trivial, and possibly even impossible task.

The problem of algorithmic choice can be addressed by moving the task of selecting algorithms and
implementations from the programmer to the runtime system. A runtime system can base the decision
of which algorithm to execute on current system parameters and past performance measurements of the
algorithms. Such a runtime system, however, needs a method to identify candidates for replacement
among the algorithms and implementations solving the same CP.

This document describes NCP, a notation to capture the semantic properties of computational prob-
lems, independent of algorithms. A CP is a 3-tuple, as defined in Definition 1. The set SD describes
the possible inputs, or domain of the problem, and SR the possible outputs, or range. The relation R
defines which outputs are valid given the input of the problem.

Definition 1. Computational Problem (CP). A computational problem, CP(SD, SR, R) is a 3-tuple
representing an input set SD and output set SR, which are related by the relation R. ♦

The main intention of the notation is to enable algorithmic choice after application compilation.
However, the potential usage of the notation is not restricted to this single objective. It is envisioned
that the notation can be used, among other things, for:

Algorithmic choice. Code sections in executable binaries can be annotated with a description of the
CPs described in NCP. A runtime system may then use the annotated CP descriptions of two independent
sections of code (which might be in other libraries or binaries) to verify if both sections solve the same
problem, and, if so, possibly replace one by the other.

Documentation. The notation can be used to give a human-understandable description of the purpose
of a piece of (possibly highly optimized) source code. It may be easier to understand a description of the
semantics written in NCP than to extract this from an algorithmic implementation.

Analysis. The NCP description permits interesting new CP-level analyses. Using descriptive complexity
theory, it is, for example, possible to determine the computational complexity of a CP based on the logic
operators used in the NCP description. Another potential analysis may be to make statements about
inherent parallelism in a given computational problem.

Verification. The description of a CP in NCP captures the semantics of the computation an algorithmic
implementation performs. This may allow one to verify correctness of an algorithmic implementation
based on the CP description.

Problem solving. A CP may be solved using search heuristics (analogous to those used by SAT and
SMT solvers). The NCP notation can be compiled to Sal [2], permitting Svm to be used to solve the CP
description. A potential future method would be to automatically synthesize the semantic description
into a software algorithm or hardware accelerator.

2

In the remainder of this document, the term problem is strictly used for problem definitions written in
the notation described in this reference manual. The term application is used for host applications written
in any other language, implementing algorithms which are annotated, with a problem, for algorithmic
replacement.

2 NCP Language Overview

NCP is a declarative language for describing computational problems, which is intended to enable algo-
rithmic choice. It is a language with operators capturing at least a second-order logic language. Based
on the problem descriptions, a decision can be made to determine if two machine-code implementations
of a problem can be replaced by each other without changing the behavior of the application. The basic
unit considered for replacement on the machine-code level is between a function’s call instruction and
its return instruction. Replacement may then be performed by changing the jump of the call instruction
to the address of the replacement routine.

The programmer captures the semantics of a CP in the language. The problem definition may be
developed together with the algorithm used in the application, or may be developed after the fact.
The application can be programmed in any high-level programming language, for example, C. Both
the problem definition and the algorithm have the same inputs and outputs. However, the algorithm
describes how the output can be calculated step by step from the input, while the problem only describes
the relation between input and output.

2.1 Low-level representation

For algorithmic replacement, comparing the computational semantics (the relation) of two implementa-
tions is not sufficient to guarantee correct operation of the application after replacement. The system
has to ensure that two implementations not only solve the same problem, but also expect the same data
types, sizes, and memory locations. As such, a low-level representation incorporating this additional
information is needed. For example, a mapping table, which maps variables to physical locations, could
be contained in the low-level representation. The current implementation of NCP, however, does not yet
provide such a mapping table.

2.2 Relation to Sal/Svm

An effort is being made to compile NCP into the Set assembly language (Sal) [2], a low-level language
for representing CPs. The current NCP compiler can compile a subset of the language to Sal (a few
examples of NCP problems compiled to Sal can be found in Appendix E). NCP was designed to provide
a higher-level interface to the concepts embodied in Sal; the relation between NCP and Sal can be seen
as anologous to that between a high-level language, such as C, and a machine language, such as MIPS
assembler.

There are two reasons to compile NCP problems into Sal problems. The Set virtual machine (Svm)
is Sal’s runtime system, providing a means to execute NCP problems by compiling them down to Sal.
Compiling into Sal thus allows verification of the correctness of a CP description by verifying if the gen-
erated output is as expected. Second, if a correct CP description is available, this also allows verification
of the associated algorithmic implementations, as it allows evaluating whether a data input-output pair
satisfies the relation.

While Sal is capable of capturing the semantics of computational problems, NCP can also capture
the data structures of input and output of CPs as required for algorithmic choice.

3

2.3 Variables

Variables in an NCP problem are either physical or virtual (Definitions 2 and 3) and can be either free
or bound (Definitions 4 and 5, which are identical to the work of Abelson et al. [3]).

Definition 2. Physical variables. A variable v is a physical variable if it appears in an NCP problem
and has a counterpart in the actual machine-code implementation of the computational problem. The
mapping table contains an entry mapping the variable to the physical representation on the hardware
platform. ♦

Definition 3. Virtual variables. A variable v is a virtual variable if it appears in an NCP problem, but
does not have a counterpart in an actual machine-code implementation. The mapping table contains no
entry for the variable. ♦

Definition 4. Bound variables. A variable is bound in an expression if consistent renaming of the
variable throughout the expression does not change the meaning of the expression. ♦

Definition 5. Free variables. A variable which is not bound in an expression is a free variable. ♦

3 NCP Language Definition

The NCP language is used to describe the semantic properties of a computational problem (CP). It
captures the relation between the domain and range of the CP. The notation is strongly-typed, has
several constructs such as predicates and function expanding, to simplify CP definitions. The complete
grammar of the notation in EBNF [4] can be found in Appendix A.

3.1 Lexical elements

A problem consists of a sequence of characters. Groups of characters form tokens according to the
language specification. Tokens are separated by whitespace, or any of the non-alphanumeric tokens.
Whitespace consist of the characters ‘\ ’, ‘\n’ ‘\r’, and ‘\t’. The non-alphanumeric tokens are:

== != < > <= >= >=< + - * / % ^ () {

} [] , : :: ; ::= = _ ’ " #

The reserved keywords are:

include define typedef domain range

relation struct int nat real

char bool or and not

forall exists sum prod min

max from to with

A few keywords are reserved for future functionality and, as such, can not be used for identifiers:

string

Comments start with // and end with a newline character ‘\n’. Constant values are tokenized by the
lexer and their syntax diagrams are shown in Figure 1.

4

realconst:

intconst .

0--9

. 0--9

0--9

e

E

intconst

intconst:

+

-

1--9

0--9

charconst:

’

\

ASCII character ’

strconst:

"

ASCII character

"

Figure 1: Syntax diagrams for signed real, signed integer, character, and string constants.

3.2 Problem structure

The syntax diagram in Figure 2 and code in Listing 1 show the basic structure of a computational
problem in NCP. The first part of the problem in the listing, before the typedef keyword, is called
the header. If needed, the header can include Boolean predicate, arithmetic function, and structure
prototypes. The header can contain C-style #include and #define directives, which are processed by a
preprocessor before actual parsing starts.

An #include statement can be used to include library interfaces. Libraries implement arithmetic
functions or Boolean predicates, and, after inclusion of their interfaces, these functions and predicates
are available to use in an NCP problem. Currently, only the math library is available (see Appendix B).

Listing 1: Basic structure of an NCP problem.

// opt iona l header
#include ” l i b ”

typedef : :
//Optional typede f area

domain : :
//Domain area

range : :
//Range area

relation : :
//Relat ion area

The #include statement in the header in Listing 1 is followed by an optional type definition area.
This area always starts with the keyword typedef and contains additional type definitions for data
structures. The type definition area can appear once anywhere after the last include statement and
before the relation keyword.

The domain area, range area, and relation area are always required (however, they may be empty)
and have a fixed order in which they appear in the problem. The domain area and range area, starting
with the keywords domain and range respectively, describe the input and output variables of the CP. A
detailed description can be found in Section 3.9. The relation area starts with the relation keyword
and defines the relation between domain and range; see Section 3.10.

5

problem:

prototypes typedefarea

domainarea rangearea relationarea

Figure 2: Syntax diagram for the structure of a problem.

Listing 2: NCP problem representation for linear programming.

1 fun c on s t r a i n t (y : int<32>[N]) : bool<1>
fun p o s i t i v i t y (y : int<32>[N]) : bool<1>

domain : :
5 N : int<32> //Number of elements in x

M : int<32> //Number of problem cons t ra in t s
A : int<32>[M,N]
b : int<32>[M]
c : int<32>[N]

10 range : :
x : int<32>[N]

relation : :
c o s t : int<32>
i : int<32> = <0 to N−1> //Temporary used as i t e r a t i on var i ab l e

15 j : int<32> = <0 to M−1> //Temporary used as i t e r a t i on var i ab l e

//Objec t ive funct ion
exists co s t { co s t == max for x with c on s t r a i n t (x) and p o s i t i v i t y (x) { sum i { c [i] ∗ x [i] }

} } ;

20 //Problem cons t ra in t s
fun c on s t r a i n t (y : int<32>[N]) : bool<1> : := f o ra l l j { sum i { a [j , i] ∗ y [i]} <= b [j] } ;

//Non−nega t i v i t y cons t ra in t
fun p o s i t i v i t y (y : int<32>[N]) : bool<1> : := f o ra l l i { y [i] >= 0 } ;

3.3 Example: linear programming

Before introducing the language constructs and semantics, an example is used to introduce a problem in
the notation. Linear programming models are widely used in industry. Linear programming is a method
to optimize linear objective functions and can be expressed as:

maximize c>x

subject to Ax ≤ b

and x ≥ 0

where x is the vector of variables to optimize and A, b, and c are respectively a coefficient matrix and
two coefficient vectors. The objective function is the expression to be maximized and x is subjected to
problem constraints and a non-negativity constraint.

Listing 2 shows the problem capturing the semantics of linear programming. The problem does not
need libraries or type definitions, and, as such, the #include and typedef statements are not present.
The header on lines 1 and 2 contain two Boolean predicate prototypes, which are defined later on lines
21 and 24.

Lines 4 through 9 contain the domain area and define the inputs of the problem. There are two 32-bit
integer scalars: N, the number of elements in x, and M, the number of problem constraints. A is an M×N
matrix of 32-bit integers with the coefficients A. The arrays b and c are the coefficient vectors b and c.
Variables in the domain area are bound and physical variables (see Definitions 4 and 2 given previously).

The range area on lines 10 and 11 defines the outputs of the problem, and the variables defined therein
are, just as the domain variables, physical variables. The range area is, in terms of syntax, identical to
the domain area. In the example, the only output variable is x, representing x in the linear programming
problem. However, in contrast to variables in the domain area, variables defined as the range are free
variables (Definition 5) and have to be bound by a variable-binding operator.

The remainder of the problem is in the relation area. First, four temporary, free and virtual variables
(Definition 3) are declared. The variables i and j, on lines 14 and 15 can only have values from 0
to, respectively, N−1 or M−1. All other variables can take values from −231 to 231 − 1, the range of a

6

extvariabledef:

variabledef

= variablerange

variabledef:

varname

,varname

: vartypeconstruct

vartypeconstruct:

type

[arithexpr

,arithexpr

]

type:

*

typeident

int

nat

real

char

bool

< varsize >

Figure 3: Syntax diagram for variable declarations. Multiple variables with the same type can be defined
by separating variable names with commas. The non-terminal “typeident” is a string with the name of
a structure.

32-bit signed integer, as discussed in more detail in Section 3.6. The relation area consists of Boolean
expressions which describe the relation between the domain and range, as well as Boolean predicates
constraint(...) and positivity(...). If, for a given set of input and output values, these expressions
all evaluate to true, the input, output-pair is valid.

Line 18 represents the objective function. It binds three variables cost, x, and i, the variable-binding
operators being exists, max for, and sum. If this Boolean expression evaluates to true, then the output
x maximizes the objective function given the input. However, x should also be subjected to the problem
constraints and the non-negativity constraint. Therefore, using the with keyword, x is subjected to the
two Boolean predicates on lines 21 and 24.1

3.4 Preprocessor

Before parsing of a problem starts, the source code is first processed by a preprocessor2. Two directives
are available with the following syntax3:

#include "filename"

#define identifier token-string

The #include statement can be used to merge source files. The #define statement allows giving a mean-
ingful name to constants, every occurrence of identifier in the code is replaced with token-string.

3.5 Variable declarations

Variables can be declared in various parts of an NCP problem. A variable declaration consists of the
variable name, its type and size, and an optional construct limiting the range of values a variable can
represent. Unlike in imperative programming languages, variables are not storage containers. Variable
declarations do not allocate storage; they simply associate a type with an identifier.

The NCP grammar productions in Figure 3 show that the type of a variable can be any of the five
basic types (see Section 3.6) or the name of a structure; asterisks indicate pointers to structures. The

1Note that the function’s variable y is never bound using a variable-binding operator. y is substituted with the bound
variable x when the predicates are applied.

2The compiler performs a system call to gcc to invoke its preprocessor. However, gcc adds additional lines of code to
the problem if #include and #define directives are used. As a result, line numbers in error-messages correspond with lines
in the preprocessed file and not in the original problem.

3As the current preprocessor is gcc, the full C syntax and other preprocessor directives might also be accepted. However,
these are not part of the NCP language and might not be supported in future versions of the compiler (this includes macro-
expansions via the #define directive).

7

variablerange:

< arithexpr to arithexpr >

Figure 4: The possible values a variable can represent, can be limited by applying a range limit.

varidentifier:

varid

.varid

varid:

varname

[arithexpr

,arithexpr

]

Figure 5: Syntax diagram for a variable identifier used in expressions.

size of a variable in bits is set by the non-terminal “varsize”, an unsigned integer. In the case of a
multi-dimensional array, the size of each dimension, separated by a comma, is an arithmetic expression
(covered in Section 3.12) and is put between brackets [and].

Figure 4 shows the optional production for the range limit. This limit can be used to set valid input
or output values of the problem or to limit the range of any of the variable-binding operators.

Variables can be used in expressions using the syntax in Figure 5. Elements in structures can be
accessed using a dot, ‘.’.

Variables can be defined in different areas and are lexically scoped. Variables in the domain, range,
and relation area are scoped from the moment that they are declared until the end of the problem
definition. This makes it possible to use domain variables to indicate the size of arrays, even of arrays in
structures as the type definition area can be placed before or after any other area, or between any two
areas.

3.6 Available types

Currently, the language supports five different basic types: bool, char, nat (natural numbers including
zero), int (integers) and real. The basic types can be divided into two categories: the Boolean type
(bool) and the arithmetic types (the others). Operators operate either on the Boolean types or on the
arithmetic types (they cannot be mixed) and the resulting type of the operator depends on the operand
types according to Table 1. The only exception are the comparison operators, which are always of type
bool irrespective of their operand types, which can be of arithmetic type.

Table 1: Type inference for non-comparison operators.

First type Second type Cast to

char nat nat

char int int

char real real

nat real real

nat int int

int real real

8

typedefarea:

typedef ::

typedefstmt

typedefstmt:

structproto { extvariabledef

extvariabledef

}

Figure 6: Syntax diagrams related to the type definition area.

domainarea:

domain ::

extvariabledef

rangearea:

range ::

extvariabledef

Figure 7: Syntax diagrams for domain and range area.

3.7 Typecasting for Sal

The Sal language contains four types, bool, integers, reals, and strings. The NCP types are cast to
the corresponding Sal types according to Table 2, when compiling NCP to Sal.

Table 2: Typecasting rules for Sal.

NCP type Sal type

bool bool (or integers = <0 ... 1> if used as type for a domain or range variable)
char integers (smallest element in the Svm-universe is 0, using ASCII values)
nat integers (smallest element in the Svm-universe is 0)
int integers

real reals

The Sal language does not allow using arithmetic operators with differently typed operands. As such,
evaluating the problem on Svm requires typecasting or type promotion. If an expression contains a single
type with different sizes, all variables are promoted to the largest size. If an expression contains mixed
types, all variables are cast to a single type according to the rules in Table 2, after inferring the type of
an expression with the rules in Table 1.

3.8 Type definition area

In the type definition area, starting with the typedef keyword, additional data structures can be defined
from the basic types. Figure 6 shows the syntax diagrams for the type definition area as well as for a
type definition statement. Each structure has a type name and one or more member variables. Note
that a structure may include pointers to itself, enabling linked lists, binary trees, and other advanced
structures (this is, however, not yet supported by the compiler).

3.9 Domain and range areas

The domain and range area, starting with domain and range keywords respectively, define the inputs
and outputs of a CP. In terms of syntax they are both identical; the meaning of variables, however, is
different. The domain area defines bound and physical variables, and these variables are used without
variable-binding operators. On the other hand, the range area defines free and physical variables and
they have to bound using the exists variable-binding operator. The syntax diagrams for the domain
and range area can be found in Figure 7. Variables are defined as in Section 3.5.

9

relationarea:

relation ::

extvariabledef

relationstmt

relationstmt

relationstmt:

boolexpr

predexpr

;

Figure 8: Syntax diagrams for the relation area.

3.10 Relation area

The relation area, Figure 8, captures the relation between domain and range of a computational problem.
A relation area starts with variable definitions; these variables are both free and virtual. Following the
variable definitions are relational statements, separated by semicolons. These statements can either be
a Boolean expression (see Section 3.12), a Boolean predicate, or an arithmetic function (Section 3.14).

The set SE is defined as the set of Boolean expressions representing the relation R from Definition 1.
SE is thus a set of individual expressions s which completely define the valid set of input and output
values for the CP. The complete set of input and output values is an enumeration of all possible values
for the 2-tuple (SD, SR). A 2-tuple (SD, SR) is a valid 2-tuple of input and output values iff each Boolean
expression s ∈ SE given SD and SR evaluates to true, thus iff

∧
s∈SE

s(SD, SR) = true. If the set SE

is the empty set ∅, the problem will evaluate to false for any 2-tuple (SD, SR).

3.11 Operators

Three types of operators are available for use in Boolean and arithmetic expressions. Table 3 lists the
Boolean operators, Table 4 the comparison operators, and Table 5 the arithmetic operators. The syntax
diagrams with production names are found in Figure 9.

Table 3: Boolean operators.

Operator Description Precedence

or Logical or Low
and Logical and High
not Logical not High

Table 4: Comparison operators.

Operator Description

== Equals
!= Not equals
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
>=< Is a permutation of

Table 5: Arithmetic operators.

Operator Description Precedence

+ Add Low
- Subtract Low
* Multiply High
/ Division High
% Modulo High
^ Exponentiation High

All comparison operators are defined on scalar values. However, the comparison operators ==, !=,
and >=< also operate on multi-dimensional arrays. Two multi-dimensional arrays are considered equal
if:

• both arrays have an equal number of dimensions;

• the respective dimensions in each array have an equal number of elements;

• elements with the same index in each array have equal values.

10

lpreclogicalop:

or

hpreclogicalop:

and

unarylogicalop:

not

logicalcompop:

==

!=

>=<

<

>

<=

>=

lprecarithop:

+

-

hprecarithop:

*

/

%

^

Figure 9: Syntax diagrams and production names for all operators.

For the permutation operator >=<, two multi-dimensional arrays are considered a permutation of
each other if:

• both arrays have an equal number of dimensions;

• the respective dimensions in each array have an equal number of elements;

• both arrays have elements with equal values, but do not necessarily have the same index.

3.12 Boolean and arithmetic expressions

The relation R, of a CP definition, is composed of one or more Boolean expressions. Boolean expressions
can be built using comparisons of arithmetic expressions. Expressions are composed of terms, which are
linked together via low precedence operators. Terms are made up of factors, which are joined using high
precedence operators.

Figure 10 shows the syntax diagrams related to Boolean expressions. Boolean expressions can be a
single comparison of two arithmetic expressions or constants. However, more elaborate expressions can
be made using Boolean variables, operators, predicates (see Section 3.14), or variable-binding operators
(see Section 3.13). The Boolean variable-binding operators are forall or exists.

Arithmetic expressions have similar syntax diagrams as the Boolean expressions, as shown in Fig-
ure 11. An arithmetic factor can be a variable or a constant, or combinations joined with arithmetic
operators. Four variable-binding operators are available: sum, prod, min for, and max for.

3.13 Variable-binding operators

The syntax (Figure 12) of all variable-binding operators is identical. However, the type of the quantified
expression depends on the type of the operator, Boolean operators have to be followed by a Boolean
expression and the arithmetic operators by an arithmetic expression.

Each variable-binding operator can bind one or more variables. The range over which a variable is
bound, is determined by either the range limit set when the variable was defined (see Section 3.5) or by
an optional condition in the construct of the binding operator. There are two constructs available: using
the keywords from and to, or using the keyword with.

The keywords from and to set the range between two arithmetic expressions. The keyword with sets
valid values for the variable using a Boolean expression, values for which the Boolean expression evaluates
to true are valid. Note that Boolean expressions can be Boolean predicates. If multiple variables are
bound with the same operator, they are all subject to the same range limit if any of the constructs is
used.

11

boolfactor:

boolconst

unarylogicalop

varidentifier

(boolexpr)

predfun

arithexpr logicalcompop arithexpr

boolexpr:

boolterm

lpreclogicalopboolterm

forallstmt

existsstmt

boolterm:

boolfactor

hpreclogicalopboolfactor

Figure 10: Syntax diagrams for Boolean expressions.

arithfactor:

arithconst

lprecarithop

varidentifier

(arithexpr)

predfun

arithexpr:

arithterm

lprecarithoparithterm

sumstmt

prodstmt

minmaxstmt

arithterm:

arithfactor

hprecarithoparithfactor

Figure 11: Syntax diagrams for arithmetic expressions.

The six variable-binding operators can be interpreted as follows. Let us define a variable i over the
range 0 ≤ i < 5:

i : int<32> = <0 to 4>

There is a Boolean predicate p and an arithmetic function f (see Section 3.14 for details):

fun p(i : int<32>) : bool<1> : := //some Boolean pred ica te of i
fun f (i : int<32>) : int<32> : := //some ar i thmet ic funct ion of i

The following Boolean statements will always evaluate to true:

f o ra l l i { p(i) } == p(0) and p (1) and p (2) and p (3) and p (4)
exists i { p(i) } == p(0) or p (1) or p (2) or p (3) or p (4)
sum i { f (i) } == f (0) + f (1) + f (2) + f (3) + f (4)
prod i { f (i) } == f (0) ∗ f (1) ∗ f (2) ∗ f (3) ∗ f (4)

The min for and max for operators can be expressed using an additional variable r and temporary
variable t:

t : int<32> = <0 to 4>
r : int<32>

The operation

exists r { r == min for i { f (i) } } ;

is equal to:

12

forallstmt:

forall varname

,varname from arithexpr to arithexpr

with boolexpr

{ boolexpr }

existsstmt:

exists varname

,varname from arithexpr to arithexpr

with boolexpr

{ boolexpr }

sumstmt:

sum varname

,varname from arithexpr to arithexpr

with boolexpr

{ arithexpr }

prodstmt:

prod varname

,varname from arithexpr to arithexpr

with boolexpr

{ arithexpr }

minmaxstmt:

min for

max for

varname

,varname from arithexpr to arithexpr

with boolexpr

{ arithexpr }

Figure 12: Syntax diagrams for variable-binding operators.

fun minelement (i : int<32>) : bool<1> : := f o ra l l t { f (i) <= f (t) } ;
exists r { exists i with minelement (i) { r == f (i) } } ;

Rewriting for the max for operator is trivial.

Variable-binding operator examples

In order to get a better understanding on how to use the variable-binding operators and the from, to,
and with keywords, several examples are given. Let us consider integer variables x and y (x and y)
without a range, a Boolean predicate (p(x)), and an arithmetic function (f(x)):

x , y : int<32>

fun p(x : int<32>) : bool<1> : := //some Boolean pred ica te of x
fun f (x : int<32>) : int<32> : := //some ar i thmet ic funct ion of x

The examples are given in Table 6, they use the variables, predicate, and function defined above.

3.14 Arithmetic functions and Boolean predicates

For ease of programming, the language supports arithmetic functions and Boolean predicates which can
be used in arithmetic and Boolean expressions respectively and are expanded during compilation. The
syntax of both are identical and they are used in the same way. However, Boolean predicates always
evaluate to type bool, while arithmetic functions evaluate to any of the other arithmetic types. The
syntax diagram is given in Figure 13; they can be used in expressions using the syntax in Figure 14.

A predicate or function definition starts with the keyword fun, followed by a unique identifier. This
is followed by a set of variable definitions, between parenthesis, for use in the expression. These variables
are bound in the expression as they are replaced with (explicitly) bound variables when the predicate
or function is used. After the colon, the type to which the function evaluates is specified. The actual

13

expression follows after the ::=. The expression can use any of the constructs available, but note that
recursion is not allowed.

Table 6: Examples of variable-binding operators in NCP.

Mathematical representation NCP representation

∀x p(x) f o ra l l x { p(x) }

∀x,x≥0 p(x) f o ra l l x with x >= 0 { p(x) }

∃x,0≤x<64 p(x) exists x from 0 to 63 { p(x) }

∃x ∃y p(x+ y) ∧ ¬p(x− y) exists x , y { p(x+y) and not p(x−y) }

∑10
x=1 f(x) sum x from 1 to 10 { f (x) }

∏
x≥0 f(x) prod x with x >= 0 { f (x) }

min
x

f(x) min for x { f (x) }

max
0≤x<32

f(x) max for x from 0 to 31 { f (x) }

predexpr:

fun funname (variabledef

,variabledef

) : vartypeconstruct ::= boolexpr

arithexpr

Figure 13: Syntax diagram of an arithmetic function or Boolean predicate.

predfun:

funname (arithexpr

,arithexpr

)

Figure 14: Syntax diagram for using an arithmetic function or Boolean predicate in expressions.

References

[1] R. Jongerius, P. Stanley-Marbell, and H. Corporaal, “Quantifying the common computational prob-
lems in contemporary applications,” in Proceedings of the 2011 IEEE International Symposium on
Workload Characterization, 2011.

[2] P. Stanley-Marbell, “Sal/svm: an assembly language and virtual machine for computing with non-
enumerated sets,” in Proceedings of the 2010 workshop on Virtual Machines and Intermediate Lan-
guages, VMIL ’10, pp. 1:1–1:10, ACM, 2010.

[3] H. Abelson, G. J. Sussman, and J. Sussman, Structure and Interpretation of Computer Programs.
MIT Press, sixth ed., 1985.

[4] N. Wirth, “What can we do about the unnecessary diversity of notation for syntactic definitions?,”
Communications of the ACM, vol. 20, 1977.

[5] N. Immerman, Descriptive Complexity. Springer-Verlag, 1998.

14

A NCP Language Grammar

Listing 3: NCP language grammar in EBNF.
d i g i t = ”0−−9” .
uimm = ”1−−9” { d i g i t } .
i n t c on s t : := [”+” | ”−”] uimm .
d r ea l c on s t ex t = ” .” { d i g i t } .
e r e a l c on s t e x t = [” . ” d i g i t { d i g i t }] (” e” | ”E”) i n t c on s t .
r e a l c on s t : := in t c on s t (d r e a l c on s t ex t | e r e a l c on s t e x t) .
char = ”ASCII cha rac t e r ” .
charconst : := ” ’” [”\\”] char ” ’” .
s t r i d e n t : := char { char } .
s t r c on s t : := ”\”” { char } ”\”” .
boo l cons t : := ” true ” | ” f a l s e ” .

i n t c o n s t l i s t : := in t c on s t { ” ,” i n t c on s t } .
r e a l c o n s t l i s t : := r e a l c on s t { ” ,” r e a l c on s t } .
c h a r c o n s t l i s t : := s t r c on s t | (charconst { ” ,” charconst }) .
c o n s t l i s t = i n t c o n s t l i s t | r e a l c o n s t l i s t | c h a r c o n s t l i s t .
a r raycons t : := s t r c on s t | (”{” c o n s t l i s t ”}”) | (”{” ar raycons t { ” ,” ar raycons t } ”}”) .

problem : := {prototypes } [typede fa rea] domainarea rangearea r e l a t i o n a r e a .
prototypes : := s t ru c tp ro t o | predproto .
typede fa rea : := ” typede f ” ” : : ” { typedefstmt } .
domainarea : := ”domain” ” : : ” {domainstmt} .
rangearea : := ” range ” ” : : ” { rangestmt} .
r e l a t i o n a r e a : := ” r e l a t i o n ” ” : : ” { e x t v a r i a b l e d e f } r e l a t i on s tmt { r e l a t i on s tmt } .

typedefstmt : := s t ru c tp ro t o ”{” ex t v a r i a b l e d e f { e x t v a r i a b l e d e f } ”}” .
s t ru c tp ro t o : := type ident ” :” ” s t r u c t ” .
domainstmt = ex t va r i a b l e d e f .
rangestmt = ex t v a r i a b l e d e f .
r e l a t i on s tmt : := (boolexpr | predexpr) ” ;” .

e x t v a r i a b l e d e f : := va r i a b l e d e f [”=” va r i ab l e r ange] .
v a r i a b l e d e f : := varname { ” ,” varname } ” :” var typecons t ruc t .
var typecons t ruc t : := type [” [” ex tva r l en ”] ”] .
va r i ab l e r ange : := ”<” a r i th expr ” to ” a r i th expr ”>” .
type : := [”∗”] type ident | basetype”<” va r s i z e ”>” .
basetype = ” in t ” | ”nat” | ” r e a l ” | ” char ” | ” bool ” .
v a r s i z e : := uimm .
extva r l en = var l en {” ,” var l en } .
va r l en = ar i thexpr .

incname = s t r c on s t .
type ident : := s t r i d e n t .
varname : := s t r i d e n t .
funname : := s t r i d e n t .

log ica lcompop : := ”==” | ”!=” | ”>=<” | ”<” | ”>” | ”<=” | ”>=” .
l p r e c l o g i c a l o p : := ”or ” .
hp r e c l o g i c a l op : := ”and” .
una ry l og i ca l op : := ”not” .
b oo l f a c t o r : := boo l cons t | [una ry l og i ca l op] (v a r i d e n t i f i e r | ”(” boolexpr ”) ” | predfun |

a r i th expr log ica lcompop ar i thexpr) .
boolexpr : := boolterm { l p r e c l o g i c a l o p boolterm} | f o r a l l s tm t | ex i s t s s tmt .
boolterm : := boo l f a c t o r { hp r e c l o g i c a l op boo l f a c t o r } .

a r i t h c on s t : := in t c on s t | r e a l c on s t | charconst | ar raycons t .
l p r e c a r i t h op : := ”+” | ”−” .
hprecar i thop : := ”∗” | ”/” | ”%” | ”ˆ” .
a r i t h f a c t o r : := a r i t h c on s t | [l p r e c a r i t h op] (v a r i d e n t i f i e r | ”(” a r i th expr ”) ” | predfun) .
a r i th expr : := ar i thterm { l p r e c a r i t h op ar i thterm } | sumstmt | prodstmt | minmaxstmt .
ar i thterm : := a r i t h f a c t o r { hprecar i thop a r i t h f a c t o r } .

predproto = ” fun” funname ”(” va r i a b l e d e f {” ,” v a r i a b l e d e f } ”) ” ” :” var typecons t ruc t .
predexpr : := predproto ”: :=” (boolexpr | a r i th expr) .
predfun : := funname ”(” a r i th expr {” ,” a r i th expr } ”) ” .

f o r a l l s tm t : := ” f o r a l l ” varname {” ,” varname} [condstmt] ”{” boolexpr ”}” .
ex i s t s s tmt : := ” e x i s t s ” varname {” ,” varname} [condstmt] ”{” boolexpr ”}” .
sumstmt : := ”sum” varname {” ,” varname} [condstmt] ”{” a r i th expr ”}” .
prodstmt : := ”prod” varname {” ,” varname} [condstmt] ”{” a r i th expr ”}” .
minmaxstmt : := (”min f o r ” | ”max f o r ”) varname {” ,” varname} [condstmt] ”{” a r i th expr ”}” .
condstmt = condrangestmt | condwithstmt .
condrangestmt = ”from” ar i thexpr ” to ” a r i th expr .
condwithstmt = ”with” boolexpr .

v a r i d e n t i f i e r : := var id { ” .” var id } .
var id : := varname [” [” a r i th expr {” ,” a r i th expr } ”] ”] .

15

B Library: math

The math library contains several mathematical functions. Once the header file for library is included,
the following variables and arithmetic predicates are available for use in problem definitions:

1 //Defines :
#de f i n e PI 3.141592

//Arithmetic funct ions accept ing in t ege r s :
5 fun abs i (x : int<32>) : int<32>

fun s q r t i (x : int<32>) : int<32>

//Arithmetic funct ions accept ing r ea l s :
fun cos (x : real<32>) : real<32>

10 fun s i n (x : real<32>) : real<32>
fun tan (x : real<32>) : real<32>
fun acos (x : real<32>) : real<32>
fun as in (x : real<32>) : real<32>
fun atan (x : real<32>) : real<32>

15 fun atan2 (y , x : real<32>) : real<32>

fun cosh (x : real<32>) : real<32>
fun s inh (x : real<32>) : real<32>
fun tanh (x : real<32>) : real<32>

20

fun exp (x : real<32>) : real<32>
// fun frexp (x) : rea l 32 //C vers ion requ i res add i t i ona l return of an in t
fun ldexp (x : real<32>, exp : int<32>) : real<32>
fun l og (x : real<32>) : real<32>

25 fun l og10 (x : real<32>) : real<32>
// fun modf(x : real <32>) : real<32> //C vers ion requ i res add i t i ona l return of an in t

// fun pow(base , exp : real <32>) : real<32> not needed , as there i s the ˆ operator
fun s q r t (x : real<32>) : real<32>

30

fun c e i l (x : real<32>) : real<32>
fun f abs (x : real<32>) : real<32>
fun f l o o r (x : real<32>) : real<32>
fun fmod (num, den : real<32>) : real<32>

C NCP Design Choices

During the design of the NCP language, several design choices were made which influenced the appearance
of the language. Some of the choices are explained in the following subsections.

C.1 Declarative, second-order logic language

The main intention of the language is to capture the semantic properties of a computation independent
of algorithms. As a result, the language is chosen to be a purely declarative language without any control
flow statements. Recursion via Boolean predicates or arithmetic functions is not allowed, as it would
require control flow to terminate the recursion.

The operators available in the language allow to express second-order logic systems; it is known that
this is sufficient to capture the semantics of problems in PH, the polynomial-time hierarchy [5]. As it is
known that

P ⊆ NP ⊆ PH, (1)

it is possible to express a sufficiently large amount of problems in the language. The choice for second-
order logic is made as it contains no operators which imply control flow and the set of problems which
can be expressed is sufficiently large for the language to be of use.

C.2 Readability

The language is intended to be used by programmers, and, as such, it is favored to be human readable.
Several of the available constructs were added to improve readability.

Because of the design of the language, problems tend to be written in a single line of code. For
larger problem definitions, this quickly becomes unmanageable. As such, both Boolean predicates and

16

arithmetic expressions can be used to structure a problem. Listing 4 shows two different implementations
of the objective function for the linear programming problem, with and without predicates.

Listing 4: Motivational example for predicates and functions.
//Objec t ive funct ion without pred ica tes :
exists co s t {

co s t == max for x
with fora l l j { sum i { a [j , i] ∗ x [i]} <= b [j] } and fora l l i { x [i] >= 0 }

{ sum i { c [i] ∗ x [i] } }
} ;

//Or the equ iva l en t o b j e c t i v e funct ion with pred ica tes :
exists co s t {

co s t == max for x with c on s t r a i n t (x) and p o s i t i v i t y (x) { sum i { c [i] ∗ x [i] } }
} ;

//Problem cons t ra in t s
fun c on s t r a i n t (y : int<32>[N]) : bool<1> : := f o ra l l j { sum i { a [j , i] ∗ y [i]} <= b [j] } ;

//Non−nega t i v i t y cons t ra in t
fun p o s i t i v i t y (y : int<32>[N]) : bool<1> : := f o ra l l i { y [i] >= 0 } ;

The for keyword in max for and min for was added to improve readability of the operator. First,
consider the following sentence:

exists x with x > 0 { x == f (i) }

It could literally be read as “there exists an x with x larger than 0 such that x is equal to some function
f(i)”, which correctly describes the operator. However, the following (erroneous) statement can be
misleading:

max x with x > 0 { f (x) }

In a similar way as with the exists keyword, this could be read as “maximize x with x larger than
0...”, but then we are “left” with the function f(x). The operator is however intended to maximize the
function f(x). Adding the for keyword clarifies the statement:

max for x with x > 0 { f (x) }

Which could correctly read as “maximize for x with x larger than 0 the function f(x)”.

C.3 Boolean operators

The NCP language defines three Boolean operators: or, and, and not. The actual keywords are chosen
over the C-style operators ||, &&, and ! for readability. As problems are intended to be written by
programmers, editors with syntax highlighting can be used to highlight the keywords. Listing 5 shows
three candidate approaches from which the first was chosen.

Listing 5: Tentative options for Boolean operators.
with i >= 0 and i < 50 and j >= 0 and not j >= 25
with i >= 0 && i < 50 && j >= 0 && ! (j >= 25)
with (i >= 0) && (i < 50) && (j >= 0) && ! (j >= 25)

17

D Examples

The following are examples of various computational problems defined in NCP.

D.1 Discrete cosine transform—type II

1 #include ”math . cpd”

domain : :
N : int<32> //# samples

5 x : real<32>[N] //time domain samples
range : :
X : real<32>[N] // f r eq domain samples
relation : :
k : int<32>

10 n : int<32>

exists X {
f o ra l l k from 0 to N−1 {
X[k] == sum n from 0 to N−1 { (x [n] ∗ cos (PI / N ∗ (n + 0 . 5) ∗ k)) }

15 }
} ;

D.2 8x8 2D discrete cosine transform—type II

1 #include ”math . cpd”

domain : :
x : real <32>[8 ,8] //time domain samples

5 range : :
X : real <32>[8 ,8] // f r eq domain samples
relation : :
Y : real <32>[8 ,8] // ha l f transform
k , l : int<32> = <0 to 7>

10 n : int<32> = <0 to 7>

exists Y,X {
f o ra l l l , k {
Y[l , k] == sum n { (x [l , n] ∗ cos (PI / 8 ∗ (n + 0 . 5) ∗ k)) }

15 } and

fora l l l , k {
X[l , k] == sum n { (Y[n , k] ∗ cos (PI / 8 ∗ (n + 0 . 5) ∗ l)) }

}
} ;

D.3 k-Means clustering

1 #include ”math . cpd”

domain : :
N : int<32> //# points

5 D : int<32> //# dim
k : int<32> //# c l u s t e r s
p : int<32>[N,M] // points

range : :
c : int<32>[N] = <0 to k−1> // c l u s t e r assignment , each point has to be assigned to one of

the k c l u s t e r s
10 relation : :

i , j , z : int<32>
co s t : int<32>

means (x , y : int<32>, c : int<32>[N]) : int<32> : :=
15 (sum z with (z >= 0 and z < N and c [z] == x) { p [z , y] } /

sum z with (z >= 0 and z < N and c [z] == x) { 1 }) ;

exists co s t {
co s t == min for c {

20 sum i from 0 to N−1 { sum j from 0 to M−1 { abs (means (c [i] , j , c) − p [i , j]) } } ˆ 2
}

} ;

18

D.4 Integer sorting

1 domain : :
N : int<32>
x : int<32>[N]

range : :
5 y : int<32>[N]

relation : :
n : int<32>

exists y { f o ra l l n from 0 to N−2 { y [n] <= y [n+1] } and y >=< x } ;

D.5 Minimum-cost network flow

1 typedef : :
edge : struct {
capac i ty : real<32>
f low : real<32>

5 co s t : real<32>
}

domain : :
V : nat<32> //# Vert ices
inmatr ix : edge [V,V] //Adjacency matrix with edges

10 source : nat<32> //Index of source ver tex in adjacency matrix
s ink : nat<32> //Index of s ink ver tex
d : real<32> //Required f low

range : :
outmatrix : edge [V,V] //Output matrix with edges

15 relation : :
c o s t : real<32>
u : nat<32> = <0 to V−1> //Range u , v , and w over a l l v e r t i c e s
v : nat<32> = <0 to V−1>
w : nat<32> = <0 to V−1>

20

//Capacity cons t ra in t : A f low can never exceed the capaci ty
fun c apa c i t y c on s t r a i n t (mat : edge [V,V]) : bool<1> : :=

f o ra l l u , v { mat [u , v] . f low <= mat [u , v] . capac i ty } ;

25 //Skew symmetry : f low u−>v i s −f low v−>u
fun skew symmetry (mat : edge [V,V]) : bool<1> : :=

f o ra l l u , v { mat [u , v] . f low == −mat [v , u] . f low } ;

//Flow conservat ion : Kirchoff ’ s Law, t o t a l f low of a ver tex (except source/ sink) i s 0
30 fun f l ow con s e rva t i on (mat : edge [V,V]) : bool<1> : :=

f o ra l l u with u != source and u != s ink { sum w { mat [u ,w] . f low } == 0 } ;

//Required f low :
fun r e qu i r e d f l ow (mat : edge [V,V]) : bool<1> : :=

35 sum w { mat [s ink ,w] . f low } == d and sum w { mat [w, source] . f low } == d ;

//Capacity and cos t of in and out matrix are i den t i ca l , f low depends on severa l cons t ra in t s
fun a l l c o n s t r a i n t s (outmatrix : edge [V,V]) : bool<1> : :=

f o ra l l u , v { outmatrix [u , v] . capac i ty == inmatr ix [u , v] . capac i ty } and

40 f o ra l l u , v { outmatrix [u , v] . c o s t == inmatr ix [u , v] . c o s t } and

c apa c i t y c on s t r a i n t (outmatrix) and

skew symmetry (outmatrix) and

f l ow con s e rva t i on (outmatrix) and

r e qu i r e d f l ow (outmatrix) ;
45

//Objec t ive : minimize the t o t a l cos t of the output f low
exists co s t {
co s t == min for outmatrix with a l l c o n s t r a i n t s (outmatrix) {
sum u , v { outmatrix [u , v] . c o s t ∗ outmatrix [u , v] . f low }

50 } } ;

19

E Examples of compilation to Sal

Currently, a subset of the NCP problem language can be compiled to Sal. Listings 6 and 7 give an example
of a 3 × 3 integer matrix multiplication CP. The Sal implementation in Listing 7, generated using the
compiler, shows registers I0 to I17 on lines 2 to 21. These I-registers contain the domain variables A

and B, the #-character is a placeholder which the user replaces with input data. After execution, the
terminating statement on line 55 prints the values of the range variable C on the screen.

Listing 6: Integer matrix multiplication in NCP.

1 domain : :
A : int <32>[3∗3] = <0 to 4>
B : int <32>[3∗3] = <0 to 4>

range : :
5 C : int <32>[3∗3] = <0 to 16>

relation : :
n ,m, k : int<32> = <0 to 2>

exists C { f o ra l l n ,m {
10 C[n∗3+m] == sum k { A[n∗3+k] ∗ B[k∗3+m] }

} } ;

Listing 7: Compiled version of integer matrix multiplication to Sal.

1 −− A
I0 = #
I1 = #
I2 = #

5 I3 = #
I4 = #
I5 = #
I6 = #
I7 = #

10 I8 = #

−− B
I9 = #
I10 = #

15 I11 = #
I12 = #
I13 = #
I14 = #
I15 = #

20 I16 = #
I17 = #

−− A universe
U0 : integers = <0 . . . 4>

25 U1 = U0><U0><U0><U0><U0><U0><U0><U0><U0

−− B universe
U2 : integers = <0 . . . 4>
U3 = U2><U2><U2><U2><U2><U2><U2><U2><U2

30

−− C universe
U4 : integers = <0 . . . 16>
U5 = U4><U4><U4><U4><U4><U4><U4><U4><U4

35 −− n universe
U6 : integers = <0 . . . 2>

−− m universe
U7 : integers = <0 . . . 2>

40

−− k universe
U8 : integers = <0 . . . 2>

−− A input se t
45 S0 = {(I0 , I1 , I2 , I3 , I4 , I5 , I6 , I7 , I8)} : U1

−− B input s e t
S1 = {(I9 , I10 , I11 , I12 , I13 , I14 , I15 , I16 , I17)} : U3

50 P0 = f o ra l l n :U6 [1] f o ra l l m:U7 [1] (:U5 [(1 + ((n ∗ 3) + m))] == sum k :U8 [1] from

0 to 2 step 1 of (imem[0 + (((n ∗ 3) + k))] ∗ imem[9 + (((k ∗ 3) + m))]))

S2 = (P0 : U5)

55 echo ”Output S2 = ” print enum S2

20

Listings 8 and 9 show a second example of an NCP problem compiled to Sal4. This example uses
variables of type real and the min for operator. The Sal program this time contains registers R0 to R9,
on lines 2 to 13, for the two input arrays. The Sal floating-point comparison tolerances (after the delta
keyword on lines 16, 20, and 24 and using the @ symbol on line 38) are requested by the compiler during
the compilation process.

Listing 8: Example problem in NCP using the min for operator.

1 domain : :
c o s t : real <32>[5] = <0 to 1>
mu l t i p l i e r : real <32>[5] = <1 to 5>

range : :
5 optcos t : real<32> = <0 to 5>

relation : :
i : int<32> = <0 to 4>

exists optcos t { optcos t == min for i { co s t [i] ∗ mu l t i p l i e r [i] } } ;

Listing 9: Compiled version of the NCP problem in Listing 8.

1 −− cos t
R0 = #
R1 = #
R2 = #

5 R3 = #
R4 = #

−− mu l t i p l i e r
R5 = #

10 R6 = #
R7 = #
R8 = #
R9 = #

15 −− cos t universe
U0 : reals = <0.000000 . . . 1 .000000 de l t a 0.100000∗ i o ta>
U1 = U0><U0><U0><U0><U0

−− mu l t i p l i e r universe
20 U2 : reals = <1.000000 . . . 5 .000000 de l t a 0.100000∗ i o ta>

U3 = U2><U2><U2><U2><U2

−− optcos t universe
U4 : reals = <0.000000 . . . 5 .000000 de l t a 0.100000∗ i o ta>

25

−− i universe
U5 : integers = <0 . . . 4>

−− cos t input s e t
30 S0 = {(R0 , R1 , R2 , R3 , R4)} : U1

−− mu l t i p l i e r input s e t
S1 = {(R5 , R6 , R7 , R8 , R9)} : U3

35 P1 = f o ra l l j r i a :U5 [1]
((rmem[0 + (i)] ∗ rmem[5 + (i)]) <= (rmem[0 + (j r i a)] ∗ rmem[5 + (j r i a)]))

P0 = exists i :U5 [1] ((:U4 [1] == @0.050000 (rmem[0 + (i)] ∗ rmem[5 + (i)])) & P1)

40 S2 = (P0 : U4)

echo ”Output S2 = ” print enum S2

4This can be classified as a difficult-to-name CP according to [1]. From the NCP code it is clear what problem the
NCP description solves, but what name would one give such a CP?

21

F Compiler Command Line Reference

The program to compile NCP problem definitions to any of the supported target languages is cpc (the
Computational Problem Compiler). The program supports various command line options. The compiler
can be called as follows:

cpc [-v0|-v1|-v2|-p] [-I dir] [-d file] [-n file] [-s file] infile

F.1 Options

-v0 -v1 -v2

Verbose mode. -v0 and -v1 outputs additional information regarding the compiler steps. -v2 enables,
in addition to the information from -v1, printing of GNU Bison debugging information.

-I dir

Add the directory dir to the list of directories to search for header files (*.cpd).

-d file

Output the AST in dot-format to the file file.

-n file

Output the problem in the NCP language to the file file. This option is used for debugging the compiler.

-s file

Output the problem in Sal to file file.

-p

Disable check for unused variables.

22

G Vim Syntax Highlighting

Syntax highlighting for high-level NCP problems can be added to vim. In order to enable this, a file
describing the syntax is required by vim. The file ~/.vim/syntax/cp.vim must be created (the location
of the file may change with different operating systems or distributions) and the contents of the file are
given in Listing 10.

Listing 10: Contents of cp.vim to enable syntax highlighting in vim.

1 ” Vim Syntax F i l e
” CP notat ion
”
” IBM Research

5 ”
” Author : j r i
”

i f e x i s t s (”b : cu r r ent syntax ”)
10 f i n i s h

end i f

syn keyword CPBlockKeywords typede f domain range r e l a t i o n
syn keyword CPTypedefKeywords s t r u c t nat i n t r e a l char adjmatr ix bool

15 syn keyword CPRelationKeywords and or not f o r a l l e x i s t s sum prod from to with min max f o r fun
syn keyword CPBoolKeywords t rue f a l s e

syn match CPComment ”// .∗ $”

20 syn match CPInclude ”ˆ#\=inc lude .∗ $”
syn match CPDefine ”ˆ#\=de f i n e .∗ $”

syn match CPConst ’\d\+’
syn match CPConst ’[−+]\d\+’

25

syn match CPConst ’\d\+\.\d∗ f ’
syn match CPConst ’[−+]\d\+\.\d∗ f ’

l e t b : cu r r ent syntax = ”cp”
30

hi de f l i n k CPInclude PreProc
h i de f l i n k CPDefine PreProc
h i de f l i n k CPBlockKeywords Statement
h i de f l i n k CPTypedefKeywords Type

35 hi de f l i n k CPRelationKeywords Statement
h i de f l i n k CPBoolKeywords Constant
h i de f l i n k CPComment Comment
h i de f l i n k CPConst Constant
h i de f l i n k CPInt Type

The file ~/.vim/filetype.vim must be created or modified such that files with the .cp extension
are automatically highlighted. An example file is given in Listing 11.

Listing 11: Example filetype.vim for linking the .cp extension with the correct syntax file.

1 i f e x i s t s (” d i d l o a d f i l e t y p e s ”)
f i n i s h

end i f
augroup f i l e t y p e d e t e c t

5 au BufRead , BufNewFile ∗ . cp s e t f i l e t y p e cp
au BufRead , BufNewFile ∗ . cpd s e t f i l e t y p e cp

augroup end

23

