

RZ 3830 (# ZUR1208-006) 08/24/2012
Computer Science 26 pages

Research Report

A Linear Time Layout Algorithm for Business Process Models

T. Gschwind*, J. Pinggera‡, S. Zugal‡, H.A. Reijers#, B. Weber‡

*IBM Research – Zurich
8803 Rüschlikon
Switzerland

‡University of Innsbruck, Austria

#Eindhoven University of Technology, The Netherlands

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some re-
ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Almaden • Austin • Brazil • Cambridge • China • Haifa • India • Tokyo • Watson • Zurich

A Linear Time Layout Algorithm
for Business Process Models

Thomas Gschwinda,, Jakob Pinggerab, Stefan Zugalb, Hajo A. Reijersc,
Barbara Weberb

aIBM Research, Zurich, Switzerland
bUniversity of Innsbruck, Austria

cEindhoven University of Technology, The Netherlands

Abstract

The layout of a business process model determines how easily it can be under-
stood. Existing layout features in process modeling tools often rely on graph
representations, but do not take the specific properties of business process mod-
els into account. In this paper, we propose an algorithm that is based on a set
of constraints which are specifically identified towards establishing a readable
layout of a process model. Our algorithm exploits the structure of the process
model and allows the computation of the final layout in linear time. We explain
the algorithm, show its detailed run-time complexity, and demonstrate in an
empirical evaluation the acceptance of the layout generated by the algorithm.
The data suggests that the proposed algorithm is well perceived by moderately
experienced process modelers, both in terms of its usefulness as well as its ease
of use.

Keywords: layout, graph, workflow, workflow languages, business process
model

1. Introduction

Business process models serve a wide variety of purposes. In this context, a
distinction can be made between models that are to be read by humans versus
those to be read by machines [6]. In the latter case, one may think of workflow
specifications, as enacted by process-aware information systems, or simulation
models, which are used to estimate a certain measure’s effect. Our concern in
this paper, however, is with the former category, i.e., those models that are
studied by humans to make sense of how organizational operations are related
to one another. It is crucial that such models are understandable to end users
from a variety of backgrounds [6].

The graphical layout of a process model has been named as affecting the
ease with which a human reader can access the information in such a model [27,

∗Corresponding author

Preprint submitted to Elsevier July 31, 2012

24]. When one is concerned with simplifying the task of reading a process
model, layout seems a highly attractive angle. After all, in many situations, the
graphical positioning of model elements is at the discretion of the modeler, who
is creating the model, or even the user, who wants to read the model. Also,
layout, as part of what is known as a model’s secondary notation [20], does
not affect the formal meaning of the model. In this way, focusing on a model’s
layout allows for a separation of concerns with respect to other quality aspects
(e.g., a model’s semantic quality).

A considerable body of knowledge exists on how to layout graphical models
in order to improve their readability [22, 23]. What is currently missing is a clear
understanding of how the specific characteristics of business process models can
be taken into account when applying these insights. This hampers the transfer
of such knowledge to its practical application. In that respect, it is telling
that despite a huge availability of advanced process modeling tools (e.g., IBM
Blueworks, Oryx, BPM|one), none of these provide automated layout features
beyond elementary alignment operations.

To pick up on this demand, this paper presents an efficient algorithm for
clearly laying out business process models. Our approach has been to identify a
set of favorable layout constraints from literature, which we subsequently used
as the basis for the development of an algorithm that enforces these constraints.
The process structure tree as presented in [30] plays an important role in this
algorithm, as it provides the hierarchical abstraction of the semantics of the
underlying business process. Furthermore, we have validated in an empirical
setting whether and to what extent the proposed algorithm is perceived as
useful and easy to use by moderately experienced business process modelers.

The contribution of the proposed algorithm is to ensure the application of
state-of-the-art knowledge to display business process models in a clear and
concise way. The approach has been developed for BPMN models that are
modeled from left-to-right, but the presented insights can be easily transferred to
other flow-oriented languages as well as other model orientations. Our vision is
that the algorithm is picked up to be implemented in various electronic modeling
environments, in this way improving the quality of the models being created
without putting an extra load on the modelers themselves. In fact, the provided
support may even alleviate a modeler’s task, particularly in situations when her
modeling experience is limited. When process models are being used within
an electronic environment, which is an increasingly realistic option [19], the
proposed algorithm directly supports the reader herself in arranging the model
in a highly readable form (regardless of the original layout).

The remainder of this paper is structured as follows. Section 2 introduces
basic concepts needed for the further understanding of the paper. Section 3 then
elaborates on the layout constraints that seem wise to follow when laying out
business process models. Section 4 introduces the algorithm that takes these
constraints into account to provide automated layout support and discusses the
algorithm’s complexity. Subsequently, Section 5 reports our evaluation of the
use of the constraints. Section 6 examines related work. Finally, Section 7
concludes the paper with a summary and outlook.

2

a b c

d

A B C

D
g h

ji

g h

ji

Figure 1: A Process Model and its Major Sub-Fragments

2. Background

Process models typically describe in a graphical way the activities, events,
states, and control flow logic that constitute a business process [3]. Addition-
ally, process models may also include information regarding the involved data,
organizational and IT resources, and even other artifacts such as external stake-
holders and performance metrics, see e.g. [26].

The process model depicted in Figure 1, for example, consists of a start
event, and an end event, four activities (i.e., a, b, c, and d), four gateways, and
a set of control-flow edges connecting these elements. Gateways can be either
splitting nodes (i.e., nodes with one incoming and multiple outgoing arcs, like
gateways g and j) or joining gateways (i.e., nodes with multiple incoming and
one outgoing arc, like gateways h and i).

Similar to other forms of conceptual modeling, process models are often
required to be intuitive and easily understandable, especially in information
systems project phases that are concerned with requirements documentation
and communication [6, 10].

The graph layouting algorithm proposed in this paper is based on the idea
of decomposing a process model into single-entry single-exit (SESE) fragments.
Figure 1 shows an exemplary SESE decomposition, which we will use through-
out this paper. The decomposition of this model results in SESE fragments A,
B, C and D. As the name suggests, each SESE fragment has exactly one in-
coming and exactly one outgoing edge, irrespective of the internal structure of
the fragment. For instance, the internal structure of fragment C is a sequence
of activities, whereas fragment D consists of a branched construct. Further-
more, SESE fragments can be embedded in other SESE fragments: note how
fragment B aggregates fragment C and fragment D to a SESE fragment.

SESE fragments can be characterized as structured or unstructured. Struc-
tured fragments are composed of blocks, which may be nested, but must not
overlap; i.e., their nesting must be regular [30]. Thereby, a block refers to a
SESE fragment. In general, structured fragments can be classified as sequences,
branching fragments, atomic, and structured loops. Sequences consist of a se-
quence of activities or fragments (cf. fragments A and C in Figure 1). Branching
fragments consist of a diverging (i.e., splitting) gateway as entry and a converg-
ing (i.e., joining) gateway as exit. To illustrate a branching fragment, we refer
to fragment B in Figure 1. Atomic fragments cannot be further subdivided into
fragments and represent gateways and individual nodes. Structured loops con-

3

sist of a converging gateway followed by an optional fragment, in turn, followed
by a diverging gateway. The latter has an exit branch and one or more branches
that loop back (cf. fragment D in Figure 1).

Within unstructured fragments, on the other hand, not all blocks are reg-
ularly nested. Depending on whether or not they can be laid out without
edge-crossings, they are denoted as either planar or non-planar.

3. Constraints for Laying Out Process Models

An important consideration when laying out business process models is the
set of constraints that should be followed. After a review of the literature, we
have identified constraints for laying out business process models [27, 22, 18, 15],
as well as trees [28]. Based on this surveys, we have extended and refined these
constraints and verified their validity in [11]. In the following, we summarize
and motivate these constraints.

C1. Edges should be drawn in the direction of the process’s flow. Edges running
in the opposite direction of the flow of the process make it hard for humans to
understand the process, since it is no longer sufficient to scan the process in one
direction. One exception to that rule are edges that are part of a cycle. In such
a case, a single edge of that cycle, the back edge, has to flow backwards. This
constraint is implicitly present in [27, 22].

C2. Incoming and outgoing edges must be separated. Incoming and outgoing
edges can be grasped more easily if they are separated, especially if the diagram
is large and has been zoomed out to such a degree that the arrowheads can no
longer be identified clearly. Commonly, incoming edges are drawn on the left
side of a node, whereas the outgoing edges are drawn on its right side. This
constraint has been implemented in commercial modeling tools such as [15] and
serves to support the flow of the business process.

C3. Edge crossings should be minimized. The number of edge crossings should
be minimized because edge crossings are known to have a significant impact on
the understandability of business process models [27, 22]. Specifically, upward
planar graphs should be drawn in a planar way. Upward planar graphs are
similar to planar graphs (i.e., graphs that can be drawn without crossing edges),

(a) Avoid to Route Edges Around the
Process

(b) Manhattan Lay-
out

(c) Relaxed Manhat-
tan Layout

Figure 2: Constraints

4

but allow edge crossings if these edges would have to encircle the entire process
to be drawn in a planar way (cf. Figure 2(a)).

C4. Bendpoints of edges should be minimized. Edges should be drawn with
as little bendpoints as possible [27, 22]. Each bendpoint changes the flow of
an edge and makes it harder to trace the source and destination of an edge,
especially, if edges have to cross other edges.

C5. A Manhattan layout of edges must be used. Edges should preferably use
an orthogonal layout that consists of horizontal and vertical lines. This makes
it easier to follow edge crossings. However, strictly following the Manhattan
layout can lead to edges with an unnecessary high number of bendpoints (cf.
Figure 2(b)), contradicting constraint C4 (i.e., bendpoints of edges should be
minimized). Hence, we slightly relax this constraint and allow the first or the last
segment of an arrow to be drawn diagonally (cf. Figure 2(c)). This constraint is
commonly present in business process modeling layout algorithms such as [18,
15].

C6. Minimality should be applied. The business process should consume as lit-
tle space as necessary [18]. In most cases, this constraint additionally achieves
symmetry—another desired property—by putting branches together as close as
possible from all sides. However, symmetry may be violated while minimizing
bendpoints, which also is considered more important in [27]. Hence, we do not
list symmetry explicitly as a constraint.

There is a small number of prominent constraints that we do not consider
explicitly. Clustering is generally accomplished through SESE decomposition
(cf. Section 4). However, the actual position of a modeling element frequently
depends on its semantics. Consequently, we did not include clustering in the
set of constraints underlying the layout algorithm. Edge length minimization is
intentionally not considered by our algorithm, because of its undesirable effects
on business process models. In particular, adherence to it would cause decisions
to be pushed away from related elements. For example, assume that elements a,
b, and c in Figure 3 belong together. To minimize edge length, however, deci-
sion c and the following elements would have to be pushed towards the right, in
this way separating elements a and b from c.

a

b c

Figure 3: Edge length minimization

5

4. Layout Algorithm

Up to this point, we have introduced desirable constraints for the layout of
business process models. In this section, we describe how these constraints are
taken into account by our algorithm. We will first provide a general overview of
the algorithm in Section 4.1. Next, we will go into more detail for the algorithm’s
more intricate parts in Sections 4.2, 4.3, and 4.4. Finally, we will reflect on the
intended use of the algorithm in Section 4.5.

4.1. Overall approach
Overall, the proposed algorithm follows three phases, as shown in Algo-

rithm 1. First, the process model to be laid out is pre-processed. Second, the
resulting process model is decomposed into Single-Entry Single-Exit (SESE)
fragments [30]. Third, based upon the SESE fragment’s structure, the layout is
computed. In the following, we will explain each phase.

Algorithm 1 Layout(g)
1: Preprocess(g)
2: p← DecomposePST(g)
3: LayoutFragment(p)

The Preprocess function of the algorithm pre-processes gateways with
multiple incoming and outgoing edges to facilitate the model’s decomposition
into SESE fragments. Respective gateways are split into two gateways: one
having all the originally incoming edges and the other covering all the originally
outgoing edges. Similarly, multiple incoming and multiple outgoing edges of
non-gateways (e.g., activities) are separated into an additional gateway. To
illustrate the pre-processing step, Figure 4 shows two exemplary pre-processing
transformations. In Figure 4 (a) an additional gateway is introduced to have
either multiple incoming or multiple outgoing edges. Similarly, in Figure 4 (b),
two gateways are introduced to make the join gateways and split gateways
explicit.

In order to preprocess the process (or graph), we have to visit every node and
check the number of incoming and outgoing edges which yields a performance
complexity of O(n).

(a)

(b)

pre−processing

x
1

2

3

4

1

2

3

4

Figure 4: Pre-Processing Steps Applied to the Business Process Model

By applying these transformations, the business process model remains se-
mantically equivalent to the original model but ensures constraint C2 (i.e., in-
coming and outgoing edges must be separated). The gateways introduced during

6

this pre-processing step are used for the computation of the edge ordering only;
they can be removed from the final layout of the business process model, i.e.,
the algorithm does not change the structure of the model.

Due to the pre-processing, each node has either multiple incoming edges or
multiple outgoing edges. The only correct edge orderings for the left gateway
are all permutations of {1, 2, x} and for the right {x, 3, 4}. This constrains the
permutations allowed for edges 1 to 4. to the permutations of {1, 2, {3, 4}} which
makes sure that edges 1 and 2 and edges 3 and 4 stay together. Since edges are
drawn in a clock-wise order, orderings {1, 2, 3, 4} and {2, 3, 4, 1} are the same.

The function DecomposePST uses the Process Structure Tree (PST) algo-
rithm to decompose the business process into SESE fragments 2 nad runs with
a complexity of O(n) (for a detailed description we refer to [30]).

Layout Computation. After the algorithm has pre-processed and analyzed the
process model’s structure, the actual computation of the layout is carried out
as shown in Algorithm 2.

The fragments function returns the fragments of a given process or frag-
ment as well as the nodes that are not part of a another fragment. For the
process model depicted in Figure 1, the function would return:

fragments(A) = {B}

fragments(B) = {C, D, g, h}

fragments(d) = fragments(g) = ∅

Algorithm 2 LayoutFragment(f)
1: for all f ′ ∈ fragments(f) do
2: LayoutFragment(f ′)
3: end for

4: if isAtomic(f) then
5: LayoutAtomic(f)
6: else if isSequence(f) then
7: LayoutSequence(f)
8: else if isBranching(f) then
9: LayoutBranching(f)

10: else if isLoop(f) then
11: LayoutLoop(f)
12: else
13: LayoutUnstructured(f)
14: end if

In particular, the algorithm makes use of the SESE’s tree-structuredness to
compute the layout recursively and bottom-up (lines 1–3). This part of the
algorithm runs in performance complexity of

∑
c(fi) that is the sum of the

7

complexity used for laying out each individual fragment. Overall, the following
steps are performed:

1. Categorize SESE fragment as structured or unstructured
2. According to this classification, compute the layout and size for the SESE

fragment (as detailed in Sections 4.2, 4.3 and 4.4)
3. Use the SESE fragment’s size to position it within the tree of SESE frag-

ments

As discussed above, the SESE decomposition partitions the process model
into fragments A, B, C and D. According to the nesting of SESE fragments, the
algorithm starts by classifying and laying out fragments C and D. Since the size
of fragments C and D is now known, it can be used for positioning the fragments
within fragment B. Finally, fragment A is laid out—in turn using the spatial
information about fragment B.

This concludes the description of the algorithm’s overall structure. In the
following we detail how the internal structure of SESE fragments is laid-out.

4.2. Structured Fragments
As described in Section 2 structured fragments can be classified as atomic,

sequences, branching fragments and structured loops. Atomic fragments are
individual nodes that cannot be split up any further. Sequences are laid out as
straight lines, ensuring that the exit of one fragment is on the same height as
the entry of the next fragment. Branching fragments, in turn, are laid out by
first arranging the individual branches vertically. Then, the diverging node is
put to the left of the branches and the converging node is put to the right, as
shown in Figure 5. When laying out the branches, they can be optimized by
using the actual shape of the branches and pushing them vertically together as
shown in Figure 5 to minimize the fragment’s area.

a

b

c

d e

f g

h

i

j

Figure 5: Layout of Branching Fragments

Since Structured loops and sequences are almost identical from a structural
perspective, we use a similar strategy for computing the layout. In particular, we
lay out the converging gateway, the optional body and the diverging gateway like
a sequence. In addition, the loop-back branches are laid out like the branches of

8

a branching fragment. The complexity of each algorithm is O(|f |) where |f | =
nodes(f)|+ |edges(f)| which is the size of the fragment at hand. The layout
computation of structured fragments is straight-forward and is not discussed
any further.

4.3. Unstructured Fragments
In this section, we assume that unstructured fragments are planar. That is

they can be laid out without any edges crossing each other. In the following
section, we will expand this algorithm to cover non-planar fragments as well.
Figure 6 explains the functions and global variables used by this and the follow-
ing algorithms. The samples used in the figure are based on the process shown
in Figure 1.

• entryNode returns the entry node of a given SESE fragment. That is
the node to which the single input of the SESE fragment is connected to.

entryNode(B) = g

• nodes returns the nodes within a given fragment.

nodes(B) = {g, C,D, h}

• edges returns the edges within a given fragment.

edges(B) = {gC,Ch, gD, Dh}

• outEdges returns the outgoing edges of a given node.

outEdges(g) = {gC, gD},outEdges(h) = ∅

• reverse reverses a given edge, i.e., the source and target of the edge are
exchanged. Internally, the edge is still marked as a back edge so that in
the final layout, the edge can be drawn correctly.

• source returns the source node of an edge.

• target returns the target node of an edge.

• nodex and nodey are two global arrays that at the end of the algorithm
contain the x and y coordinates of each node.

• edgey is a global array that contains the y coordinate of each edge at
the end of the algorithm. Each edge consists of a diagonal edge from its
source node to the y coordinate to a diagonal edge to the target node.

Figure 6: Function Overview

9

To layout planar structured fragments, we use Algorithm 3 which consists
of three stages. The first identifies back edges and computes the order of the
nodes. Not taking back edges into account, nodes have to be ordered such that
all prerequistes of a given node n are drawn farther to the left than node n itself.
The second stage computes the order in which the edges have to be drawn such
that edges do not cross each other. The third stage computes the layout based
on the information garthered in the first two stages.

S1. Back Edges and Node Order. This stage computes the order of the nodes
to ensure constraint C1 (edges should be drawn in the direction of the process’s
flow). It consists of three phases.

Back edges are identified using Algorithm 4, which is based on a depth-first
search algorithm (DFS). The algorithm uses three arrays, one to store the edge
types (edges are numbered consecutively) and two to identify when a node in
the DFS algorithm has been discovered and finished (nodes are also numbered
consecutively). When the IdentifyEdgeTypes function encounters a node
that has not yet been discovered, the edge is part of the graph’s spanning tree;
if it has not yet been finished, the edge is a back edge; otherwise it is either a
forward or a cross edge.

The depth first search algorithm is well known to run with a performance
complexity of O(|f |). Also by looking at the algorithm we identify that the
recursion is only invoked for nodes which have not yet been visited, hence, each
node and each edge is visited exactly once.

In the second phase, the topology order of the graph (without considering
back edges) is computed to ensure that nodes depending on other nodes are
drawn to the right of their prerequisite nodes [16]. This ensures that nodes
are ordered based on their dependencies. This is a prerequisite for fulfilling
constraint C1 (i.e., edges should be drawn in the direction of the process’s
flow).

Algorithm 5 shows the topology sort algorithm. It first computes the number
of incoming edges of each node not counting back edges (Setup). Otherwise the
following topology sort algorithm would not be able to correctly compute a
topology. The setup iterates over all out edges of all nodes and hence runs with
a complexity of O(|f |).

Next, it computes the topology (Topology sort). The first node in the topol-
ogy is the fragment’s start node. The next node in the topology is computed
by iterating over the nodes in the topology and by reducing the number of in
edges of the nodes reachable from the current node (n′ ← topology[i]). Once a
node has no more in edges, it must follow the nodes already identified and is
appended to the topology array. Since loop edges are ignored, every time the
outer loop executes at least one new node is being added to the topology order
until all nodes are processed. Hence this part of the algorithm also executes
in O(|f |) time.

In the third phase, a spanning tree, representing the longest path to each
individual node is computed. This is necessary for identifying the parts of the
graph that might be drawn in parallel to each other and for determining the

10

Algorithm 3 LayoutUnstructured(f)
1: {1. Identify back edges and compute the node order}
2: type← newArray
3: n← entryNode(f)
4: IdentifyEdgeTypes(n, type, newArray, newArray, 0)
5: topology ← TopologySort(f, n)
6: parent← newArray
7: length← newArray
8: LPSTree(topology, type, parent, length)

9: {2. Order edges to reduce number of crossings}
10: f ′ ← OrderEdges(f, n)

11: {3. Internally reverse back edges and compute layout}
12: for all e ∈ edges(f) do
13: if type[e] = BACKEDGE then
14: reverse(e)
15: end if
16: end for
17: ComputeBranchDimensions(n, parent)
18: PreliminaryLayout(n, parent, 0, 0)
19: CompactLayout(f)

Algorithm 4 IdentifyEdgeTypes(n, type, discovered, finished, t)
1: t← t + 1
2: discovered[n]← t
3: for all e ∈ outEdges(n) do
4: n′ ← target(e)
5: if discovered[n′] = 0 then
6: type[e] = TREEEDGE
7: t← IdentifyEdgeTypes(n′, type, discovered, finished, t)
8: else if finished[n′] = 0 then
9: type[e] = BACKEDGE

10: else if discovered[n′] > discovered[n] then
11: type[e] = FORWARDEDGE
12: else
13: type[e] = CROSSEDGE
14: end if
15: end for
16: return finished[n]← t + 1

11

Algorithm 5 TopologySort(f, n)
1: {1. Setup}
2: inedges← newArray
3: for all n′ ∈ nodes(f) do
4: for all e ∈ outEdges(n′) do
5: if type[e] 6= BACKEDGE then
6: inedges[n′] = inedges[n′] + 1
7: end if
8: end for
9: end for

10: {2. Topology sort}
11: topology ← newArray
12: i← 0
13: topology[i]← n
14: while i 6= |nodes(f)| do
15: n′ ← topology[i]
16: i← i + 1
17: for all e ∈ outEdges(n′) do
18: if type[e] 6= BACKEDGE then
19: t← target(n′)
20: inedges[t]← inedges[t]− 1
21: if inedges[t] = 0 then
22: topology[|topology|]← t
23: end if
24: end if
25: end for
26: end while

27: return topology

12

leftmost position a node might occupy. Using the topology sort alone would
be insufficient because it would simply return the ordering a, b, c, d, e without
indicating which nodes may be drawn in parallel of each other (cf. Figure 7).

dc

b

a

e

Figure 7: Longest Path Computation

The third phase identifies that node e has to be placed after node b and not
after node d, despite the fact that node d is more nodes away from the entry
node a. This is accomplished by computing the longest path to each node. The
longest path is measured by taking the width of a node and the gap inserted
between the node and its successor node. This step ensures that constraint C1
(i.e., edges should be drawn in the direction of the process’s flow) is satisfied.

Algorithm 6 shows the longest path spanning tree algorithm. It starts out
with the topology order and takes the width of edge nodes into account as well
as some extra space to allow for drawing the edges between the nodes. For each
node in the topology order, it checks all children and checks if the current path
is longer than the currently existing path to that node. If yes, it updates the
length to that child and the child’s parent.

The algorithm iterates over all out edges over all nodes in the topology
order which gives O(|topology| + |edges(f)|). Since |topology| = |nodes(f)|,
this algorithm has a runtime complexity of O(|f |).

Algorithm 6 LPSTree(topology, type, parent, length)
1: for all n ∈ topology do
2: w ← width[n] + space
3: for all e ∈ outEdges(n) do
4: if type[e] 6= BACKEDGE then
5: t← target(e)
6: if length[t] < length[n] + w then
7: length[t]← length[n] + w
8: parent[t]← n
9: end if

10: end if
11: end for
12: end for

S2. Order Edges. In the second step, our layout algorithm computes the order
in which the edges have to be drawn to fulfill constraint C3 (i.e., edge crossings
should be minimized). A planar order for the edges of the graph is computed
using a left-right planarity checker [13]. This checker computes a spanning

13

tree of the business process’s underlying undirected graph and partitions the
remaining edges into left and right partitions such that they do not generate
conflicts (i.e., edge-crossings).

Figure 8: Artificial Edge Added to Each Fragment

Before passing a fragment to the planarity checker, it is pre-processed such
that edges are no longer permitted to be drawn around the entire process (cf.
Figure 2(a)). We accomplish this by adding an artificial edge from a fragment’s
entry node to the fragment’s exit node (cf. Figure 8) which prohibits an edge on
either the upper or the lower side of a fragment to be drawn around the entry
or exit nodes since it would need to cross the artificial edge.

The planarity checker returns a planar order for edges indicating how to draw
them in order to avoid edge crossing. In this stage all edges (i.e., including back
edges that were omitted previously) are considered. The planar order will be
used in subsequent stages. If a graph is non-planar we perform some extra
processing to find an optimal edge order. This modification will be discussed in
Section 4.4.

For the details of this algorithm, we refer the interested reader to [13] where
Hopcroft et al. show that the algorithm runs with a complexity of O(|f |).

S3. Compute Layout. The third and last step computes the layout of the graph.
It consists of four phases. In the first phase, all back edges are reversed, so that
they are treated like cross and forward edges. These edges need to be marked
in some table such that in the final drawing of the process, they can again be
drawn in their correct direction.

Phases two and three compute a preliminary tree layout on the basis of the
longest path spanning tree. Each branch is put into its own horizontal section
such that the branches are not overlapping each other (cf. Figure 9).

a b c

fe
Branches

Compaction Potential

d

Figure 9: Layout of the Branches of the Spanning Tree

All non-tree edges are considered to be branches of zero height that run up
to the point where they merge with another branch. For instance, the branch
with e and f in Figure 9, extends up to the converging gateway d due to the
cross edge from d to e. This ensures that edges can be drawn in a straight

14

manner up to the branch with which they are to be connected to. This is also
the reason why it is sufficient to store only the y position of the edges in edgey.

Algorithm 7 ComputeBranchDimensions(n, parent)
1: (h, w)← (0, 0)
2: k ← 0
3: for all e ∈ outEdges(n) do
4: if parent[target(e)] = source(e) then
5: ComputeBranchDimensions(parent,target(e))
6: (h′, w′)← (branchheight[target(e)], branchwidth[target(e)])
7: else
8: (h′, w′)← (0, 0)
9: end if

10: (h, w)← (h + k ∗ space + h′,max(w, w′))
11: k ← 1
12: end for
13: (h, w)← (max(height[n], h), width[n] + k ∗ space + w)
14: branchheight[n]← h
15: branchwidth[n]← w

Phase two computes the height of each branch in the tree (Algorithm 7).
The algorithm first assumes the branch to be of size 0, goes over all outedges
of the current node, and adds the height of each subbranch plus some extra
space for aesthetic reasons. Line 4 covers tree edges which point to paths in the
process having other nodes. Line 7 covers other edges which connect in the tree
to other branches. At the end we check whether the height of the current node is
higher than all the branches and expand the height of the branch (branchheight)
if necessary (max(height[n], h)). We also compute the width of the branches
which is not used in this presentation of the algorithm but could be used for
future optimization purposes.

Once we have computed the dimensions of the branches, we can compute a
preliminary layout of the process (phase three). Preliminary, because the layout
is not yet compact.

Algorithm 8 shows this part of the algorithm. After the algorithm has com-
pleted, the global arrays nodex and nodey contain the coordinates of where
to draw the nodes and the global array edgey contains the y coordinate where
to draw the corresponding cross, forward, or back edges. The edges’ start and
end x coordinates are derived from the source and target nodes.

This is very similar to Algorithm 7. We first compute the location of the
current node and then the height of the subsequent branches (not taking the
current node into account). If memory is not of concern this intermediary result
could have been maintained by Algorithm 7 in an extra table.

The height of the subsequent branches is necessary because the current node
could be higher then the height of all the subbranches combined. In this case
we need to offset the subsequent branches (line 14). This, together with the

15

Algorithm 8 PreliminaryLayout(n, parent, x, y)
1: nodex[n]← x
2: nodey[n]← y + (branchheight[n]− height[n])/2
3: h← 0
4: k ← 0
5: for all e ∈ outEdges(n) do
6: if parent[target(e)] = source(e) then
7: h← h + k ∗ space + branchheight[target(e)]
8: else
9: h← h + k ∗ space

10: end if
11: k ← 1
12: end for

13: x← x + width[n] + space
14: y ← y + max(0, (branchheight[n]− h)/2)
15: for all e ∈ outEdges(n) do
16: if parent[target(e)] = source(e) then
17: PreliminaryLayout(target[e], parent, x, y)
18: y ← y + branchheight[target[e]] + space
19: else
20: edgey[e]← y
21: y ← y + space
22: end if
23: end for

fact that in the current version of the algorithm, the coordinates are absolute
within a given fragment, is the reason that these two algorithms are separate.
If locations are relative to their branches and branch information is stored until
all fragments have been computed, these two algorithms could be combined.

Both algorithms (7 and 8) iterate over every out edge in the spanning tree
of the process. The latter actually twice, which yields a combined runtime
complexity of O(3|f |) for phases two and three.

Edges are laid out with the relaxed Manhattan layout (i.e., constraint C5).
Tree edges are laid out with at most one bendpoint. All other edges have a
maximum of two bendpoints ensuring C4 (i.e., bendpoints of edges should be
minimized). Depending on the modeler’s personal aesthetic preferences, back
edges may be laid out with more than two bendpoints.

In the fourth phase, we compute how much closer a given branch might
be moved to the branch drawn directly above it, ensuring constraint C6 (i.e.,
minimality should be applied). Second, the tree is compacted to ensure con-
straint C6 (i.e., minimality should be applied). In Figure 9, this stage would
shift nodes e and f closer to nodes a to c since the lower branch ends before the
upper branch requires more space to fit in the final nodes.

The detailed algorithm to accomplish this part would be a lengthy discussion

16

of all the different combinations of when an element can be moved closer to
another. Hence, we limit the discussion to presenting the overall approach and
to deriving the runtime complexity from this discussion.

A spanning tree and the spaces between the elements of neighboring branches
are computed. For computing the runtime complexity of the compaction algo-
rithm, let us represent the space between neighboring elements as a graph such
as the double-headed arrows in Figure 9. These arrows form a planar graph
and a planar graph is know to have a maximum of 3v − 6 edges, where v is the
number of vertices for graphs with three or more vertices [13] (v < |f |). During
the compaction phase we iterate over this graph twice, assessing how much each
element may be moved (once to compute the minimum for moving the entire
branch, and once for the actual compaction). Hence, this part of the algorithm
runs in O(6 ∗ |f |) = O(|f |) time.

So far, we have presented the runtime complexity of each individual phase for
laying out unstructured fragments. Each phase has a linear runtime complexity
and as shown in Algorithm 3, the phases are executed sequentially giving us a
runtime complexity of O(|f |) + O(2|f |) + O(|f |) + O(|f |) + O(|f |) + O(3|f |) +
O(6|f |) = O(15|f |) = O(|f |).

4.4. Non-Planar Unstructured Fragments
In order to adapt the algorithm presented for planar fragments to non-planar

ones, stage S2 (i.e, order edges) has to be modified to find an edge ordering pro-
ducing a minimal number of edge crossings. The general problem of minimizing
edge crossings is known to be NP complete [9]. Hence, we use a heuristic that is
based on the edge ordering algorithm itself. When the planarity checker iden-
tifies a conflict, we ignore it and continue to sort edges eliminating crossings of
the remaining edges. This approach does not change the algorithmic behavior
of the planarity tester and hence has the same runtime complexity of O(|f |).

To verify that this heuristic has a positive effect on the number of edge
crossings, we compared it to a random order of the edges using a collection
of 850 insurance processes. After a visual inspection, we observed that using
our heuristic the non-planar fragments looked better than with random edge-
ordering since our heuristic managed to remove many of the unnecessary edge
crossings present when using a random edge order.

Surprisingly, however, even the random edge ordering produced fragments
that looked clean and are easy to understand. The reason for this is, that
unstructured fragments in business processes are relatively rare and contain a
small number of nodes limiting the number of potential crossings. This finding
has also been observed in [31].

Figure 10: K5 and K3,3 graphs

17

Due to the positive results we have received so far with our simple heuristic,
we have not invested more efforts in further improving it. Possible extensions
would be to identify the K3,3 and K5 subgraphs (cf. Fig. 10), which are respon-
sible for the non-planarity. The planarity tester can be extended to compute
these in linear time and to minimize edge crossings introduced by these sub-
graphs. Another approach would be to use the heuristics presented in [32],
which also produce attractive results [8].

4.5. Complexity Analysis
The proposed layout algorithm is intended to be used during business pro-

cess modeling, not only as a post-processing step. The modeler of the process is
envisioned to be empowered to automatically layout the process model at any
time, for example by calling a layout service through the push of a button of
the modeling tool’s GUI. In other words, modeling actions and layout invoca-
tions can be interwoven. In this way, the modeler herself can benefit from the
increased clarity during the modeling session itself.

To ensure the feasibility of this intended use it is paramount that the in-
vocation of the automated layout is not perceived as a nuisance: the layout’s
computation must be performed efficiently, not wasting the modeler’s time to an
unacceptable degree. In order to validate that our algorithm fulfills this require-
ment, we have performed a complexity analysis and described the algorithm’s
runtime behavior using the O-Notation [5].

Table 1 summarizes the results of the individual parts of the algorithm which
have been presented in the previous sections. In the table n is the sum of number
of vertices of all nodes and edges and fi the number of vertices and edges of a
given fragment.

Phase Runtime
Phase 1: Pre-Processing O(n)
Phase 2: SESE Decomposition O(n)
Phase 3: Computation of Layout

∑
c(fi)

Structured Fragments O(|fi|)
Unstructured Fragments O(|fi|)
Non-planar Unstructured Fragments O(|fi|)

Total O(n)

Table 1: Complexity Analysis

So far, we considered complexities for each phase individually. To obtain the
overall performance complexity of the layout algorithm these numbers have to
be combined. For this, we will now expand the runtime complexity of phase 3,
which is the sum of the complexities of the layout computations of the different
fragments. Since the complexity of all the different fragments is the same, hence
we get

∑
c(fi) =

∑
O(|fi|). Since

∑
|fi| = n, we get an overall complexity of

O(n) for phase 3. Since each individual phase has a complexity of O(n) and the
phases are executed sequentially, the total runtime complexity is O(3n) = O(n).

18

With a resulting overall complexity of O(n) we can conclude that the pro-
posed layout feature is suitable to be used by implementors of process models
at any time during process modeling.

5. Evaluation

This section discusses the empirical evaluation of the layout algorithm. For
this purpose, a modeling session with students following a graduate course on
Business Process Management was conducted. The evaluation builds on classic
notions of perceived usefulness and perceived ease of use measures, as described
in [4], to evaluate the acceptance of the layout algorithm. In essence, the un-
derlying theory in [4] postulates that actual usage of an information technology
artifact—an automated layout feature in our context—is mainly influenced by
the perceptions of potential users regarding usefulness and ease of use. Accord-
ingly, a potential user who perceives the feature to be useful and easy to use
would be likely to actually adopt it when modeling business processes. Simi-
lar set-ups have been applied in the evaluation of other artifacts in the field of
business process modeling, see e.g. [25].

5.1. Subjects
For our evaluation, we were targeting subjects who would be at least mod-

erately familiar with imperative process modeling languages, preferably with
BPMN. Without such experience, the effects would be blurred by subjects strug-
gling with the modeling notation itself. In a similar vein, the subjects needed
to represent a rather homogeneous group in terms of prior domain knowledge
as this might affect their modeling behavior [17].

5.2. Objects
The object of our study is a process modeling task, starting from an empty

canvas using a subset of BPMN. Subjects received a textual description of the
process model1 to be created, designed to reach a medium level of complexity
going well beyond a “toy-example”. To ensure that the process model is of ap-
propriate complexity and not misleading, the textual descriptions were refined
in several iterations. Additionally, we performed a pre-test involving ten stu-
dents with a similar background. The gathered feedback allowed us to further
refine the modeling task, e.g., remaining ambiguous parts of the descriptions
were clarified. In the end, the process model to be created consisted of 25 activ-
ities covering several basic control-flow patterns, i.e., sequence, structured loop,
parallel split, synchronization, exclusive choice and simple merge [29].

1Material available at http://bpm.q-e.at/experiment/AutomatedLayoutSupport

19

5.3. Response Variables
In order to asses the usability of the layout algorithm we assess perceived

usefulness and perceived ease of use. For the assessment, we followed the ap-
proach proposed in [4]. Perceived usefulness is defined as “the degree to which
a person believes that using a particular system would enhance his or her job
performance”. Perceived ease of use, on the contrary, focuses on “the degree to
which a person believes that using a particular system would be free of effort”.
We strove for keeping changes to the questions proposed in [4] to a minimum to
avoid introducing any bias. Therefore, we only changed the name of the tool un-
der consideration. For example, “I would find it easy to get CHART-MASTER
to do what I want it to do”, proposed in [4], was changed to “I would find it easy
to get the automated layout feature to do what I want it to do” for the current
evaluation.

5.4. Instrumentation and Data Collection.
We utilized the Cheetah Experimental Platform (CEP) [21] to collect the

data for the assessement of the usability of our layout algorithm. The utilization
of CEP minimizes the danger of misunderstandings and students accidentally
disobeying the setup by guiding them through the evaluation [21]. Additionally,
all data was automatically transferred and stored on a central database server
preventing potential data loss.

In particular, we employed CEP’s BPMN modeling editor to provide subjects
with a modeling environment that allowed them to focus on the task of modeling
without being distracted by an abundance of software features. The built-in
modeling tutorial informed the subjects on how the modeling editor and the
provided layout feature could be used.

Figure 11 illustrates how the layout algorithm was implemented in Cheetah
Experimental Platform for the empirical evaluation.

Figure 11: Layout Feature in Cheetah Experimental Platform

20

5.5. Execution
The evaluation was conducted in October 2011 at Eindhoven University of

Technology as part of a graduate course on Business Process Management. 64
students participated in the evaluation, which resulted in the creation of 64
business process models. The evaluation was guided by CEP’s experimental
workflow engine [21], leading students through an initial questionnaire collect-
ing demographic data, the modeling task, a subsequent survey containing the
perceived usefulness and perceived ease of use questions, and a feedback ques-
tionnaire.

5.6. Data Validation
To ensure that the subjects match the targeted profile, i.e., modelers who

are at least moderately familiar with BPMN, we used a questionnaire to assess
familiarity with BPMN, confidence in understanding BPMN, and competence
in using BPMN. To quantify these factors, we used a seven-point Likert-Scale,
ranging from strongly disagree (1) over neutral (4) to strongly agree (7). The
subjects have been moderately familiar with BPMN (mean value: 4.13), moder-
ately confident in understanding BPMN (mean value: 4.64) and consider them-
selves moderately competent in using BPMN (mean value: 4.17). Thus, we
conclude that the subjects are reasonably representatives for average process
modelers, i.e., the targeted profile. As domain knowledge is known to influence
problem solving tasks [17], we controlled the students’ familiarity with the prob-
lem domain by asking them whether they are familiar with mortgage processes.
The same Likert-Scale as before was utilized resulting in an average familiar-
ity of 3.11. The standard deviation was relatively low (1.48). Therefore, we
conclude that the students represented a rather homogeneous group in terms of
prior domain knowledge. Only one student reported very high familiarity with
mortgage processes (strongly agree) and another one reported high familiarity
(agree). Additionally, we controlled for the actual usage of the layout feature
since feedback on perceived usefulness and perceived ease of use of students who
did not use the layout feature cannot be considered meaningful.

5.7. Data Analysis and Results
In line with the data validation, we dropped the two students who reported

high familiarity with the problem domain. Similarly, we did not consider one
student for further analysis who did not utilize the layout feature at all. The
remaining 61 students, who comprise our core data set, invoked the layout
feature between 1 and 10 times during the entire session, with an average of
3.52. Taking into account that the average modeling session lasted 35 minutes,
this relates to an average student invoking the layout feature every 10 minutes.
These figures suggest that a reasonable basis is present for the further evaluation
of the data.

To assess the perceived usefulness and perceived ease of use of the layout fea-
ture, we averaged for each subject the scores for the six questions that were used
for each of these variables. Recall that all questions were measured on a Likert

21

scale that ranged from 1 to 7 (with 4 as the neutral value). This computation
led to average values for perceived usefulness of 4.89 and for perceived ease of
use of 5.24. The median values are higher, respectively 5.67 and 5.33. In other
words, 50% of the respondents see it as ‘likely’ that the layout feature is useful,
and the same amount of respondents find it ‘slightly likely’ that the layout fea-
ture is easy to use. Since the median values are higher than the average values,
the distributions seem skewed. To analyze the distribution of the evaluation of
the layout feature in more detail, we we will be using the histogram as shown
in Figure 12.

Figure 12: Distribution of perceived usefulness and perceived ease of use

Depicted in the histogram are the frequencies of the various values for per-
ceived usefulness and perceived ease of use, in 12 equally distributed bands.
What can be observed clearly is that the bulk of respondents deliver a value
of 4.5 or higher, both for perceived usefulness and ease of use. These insights
corroborate with the high median values we noted before. Yet, while the ap-
preciation of usefulness seems even higher than that of ease of use, it is also
characterized by more variation across the subjects. Overall, the modelers can
be seen to be quite positive about both the usefulness and ease of use of the
layout feature.

5.8. Limitations
Our empirical findings are presented with the explicit acknowledgement of

a number of limitations. First of all, our subjects represented a rather ho-
mogeneous group. More experienced process modelers may have laid out the
process models differently, following different constraints than the constraints
underlying the layout algorithm presented in this paper.

Secondly, all students were working on the same process model that might
favor the satisfaction of some constraints. We tried to compensate for this
problem by including a variety of model constructs when designing the process
modeling task. Specifically we referred to the workflow patterns [29] to include

22

sequence, parallel split, synchronization, exclusive choice, simple merge, and
structured loop constructs.

6. Related Work

The importance of laying out business process models has been identified
in [27]. While this work confirms the importance of a good layout of business
process models for their understandability, we presented an algorithm for au-
tomatically laying out business process models and verify that the underlying
layout characteristics improve over the modeling behavior of process modelers,
hence complementing that work.

A simple algorithm to automatically lay out business process models has
been presented in [18]. This is done by arranging elements in a topological
order and using a grid that allows to insert new elements by inserting rows
and hence pushing other elements aside to make room for new elements. This
approach by itself may create space-consuming layouts, hence heuristics are used
to improve on this situation. The runtime complexity of this approach has not
been assessed.

Also related to our approach, although not directly related to business pro-
cess models, are general-purpose graph layout algorithms. In this context,
graphviz, utilizing the dot algorithm [8], is one of the most popular open-source
tools. The dot algorithm uses a four stage approach for laying out graphs.
First, ranks are assigned to the nodes and the vertex order is determined for
minimizing edge crossings. Afterwards, positions are assigned to the nodes be-
fore computing splines for laying out the graph’s edges. However, the usage of
splines (i.e., curved edges) is not desirable for business process models which are
typically laid out with Manhattan layout (i.e., orthogonal edges). Additionally,
the dot algorithm tries to minimize the length of edges, another characteristic
not necessarily desirable for laying out business process models (cf. Section 2).

In [1], Di Battista presents a set of algorithms for plane representations of
acyclic digraphs, supporting visibility graphs, grid drawings, and straight line
drawings ranging from O(n) to O(n log n). The grid drawings are similar to our
approach, but do not support cyclic or non-planar graphs. Similar approaches
can be found in [14, 2].

A problem related to laying out business process models is the layout of
trees. In [12], Hasan presents an algorithm to draw a tree in a compact form.
We use this algorithm for laying out the spanning tree of unstructured fragments
and extended it to support the layout of non-tree edges (cf. Section 4.3).

The ILOG JViews Component Suite is a set of components for Web-based
user interfaces, including a component specifically designed for building graph-
ical user interfaces for workflow applications [7]. It is a general-purpose graph
drawing tool based on a constraint system allowing, among others, the defi-
nition of relations between node positions and the placement of incoming and
outgoing edges. Similarly, the layout algorithm presented in this paper relies
on a set of pre-defined constraints specifically tailored for the needs of business
process models (cf. Section 2).

23

yFiles is an extensive Java class library that provides algorithms and compo-
nents enabling the analysis, visualization, and the automatic layout of graphs,
diagrams, and networks [33]. yFiles is used by WebSphere Business Modeler
for laying out business process models, even though it does not provide a spe-
cific algorithm for business process models. The underlying layout algorithm is
proprietary and its runtime behavior is unknown.

7. Conclusions

In this work we presented an automated layout algorithm that is specifically
tailored to the characteristics of business process models. In particular, we
improved over state-of-the-art generic layout algorithms by following a three-
phase approach to pre-process, structure and layout business process models.
The proposed algorithm partitions the model into SESE fragments that can
be laid out using a bottom-up approach. Additionally, we have combined ideas
used for laying out graphs with those for laying out trees, essentially, computing
a spanning tree and treat cross and forward edges like branches in the tree. In a
run-time complexity analysis, we have shown that our algorithm runs in O(n),
i.e., linear time, which ensures that its on-demand application is also feasible in
real-world modeling settings.

Furthermore, we performed an empirical evaluation of the proposed algo-
rithm. We established that the automatic layout algorithm is perceived both
useful and easy to use by process modelers with moderate modeling experi-
ence. Based on these findings, we argue that our algorithm is both effective and
attractive to create process models that are more easily read and understood.

Additional potential benefits that have not been discussed so far are that an
automatic layout can be utilized for computer-generated models when no human
modeler is available at all. Furthermore, the use of the algorithm will allow for
a consistent layout across models, i.e., all constraints are fully supported. This
may be particularly beneficial in the context of large process modeling initiatives
where several process modelers create process models, which are to be read by
many different stakeholders. Establishing whether this benefit materializes and,
if so, to what extent will be a topic for further research.

Acknowledgements. Research on Cheetah Experimental Platform, which was used for
the empirical evaluation, was funded by the Austrian Science Fund (FWF): P23699-N23. The
authors thank all the students who participated in the evaluation and are particularly grateful
for the assistance of Heidi Romero and Ronny Mans in its execution.

References

[1] Giuseppe Di Battista and Roberto Tamassia. Algorithms for plane representations of
acyclic digraphs. Theoretical Computer Science, 61(2–3):175–198, 1988.

[2] Paola Bertolazzi, Giuseppe Di Battista, Carlo Mannino, and Roberto Tamassia. Opti-
mal upward planarity testing of single-source digraphs. SIAM Journal on Computing,
27(1):132–169, 1998.

24

[3] Bill Curtis, Marc I. Kellner, and Jim Over. Process modeling. Communications of the
ACM, 35(9):75–90, 1992.

[4] Fred D. Davis. Perceived usefulness, perceived ease of use, and user acceptance of infor-
mation technology. MIS Quarterly, 13(3):319–340, 1989.

[5] Nicolaas Govert de Bruijn. Asymptotic Methods in Analysis. Dover Publications, 1958.

[6] Juliane Dehnert and Wil M. P. van der Aalst. Bridging the gap between business models
and workflow specifications. International Journal of Cooperative Information Systems,
13(3):289–332, 2004.

[7] Gilles Diguglielmo, Eric Durocher, Philippe Kaplan, Georg Sander, and Adrian Vasiliu.
Graph layout for workflow applications with ILOG JViews. In Stephen G. Kobourov and
Michael T. Goodrich, editors, Revised Papers from the 10th International Symposium
on Graph Drawing, pages 362–363. Springer-Verlag, 2002.

[8] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-Phong Vo. A
technique for drawing directed graphs. IEEE Transactions on Software Engineering,
19(3):214–230, 1993.

[9] Michael R. Garey and David S. Johnson. Crossing number is NP-complete. SIAM Journal
on Algebraic and Discrete Methods, 4(3):312–316, 1983.

[10] George M. Giaglis. A taxonomy of business process modeling and information sys-
tems modeling techniques. International Journal of Flexible Manufacturing Systems,
13(2):209–228, 2001.

[11] Thomas Gschwind, Jakob Pinggera, Stefan Zugal, Hajo A. Reijers, and Barbara Weber.
Edges, structures, and constraints: The layout of business process models. Technical
Report RZ 3825, IBM Research, Zurich, 2011.

[12] Masud Hasan, Md. Saidur Rahman, and Takao Nishizeki. A linear algorithm for compact
box-drawings of trees. Networks, 42(3):160–164, October 2003.

[13] John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of the ACM,
21(4):549–568, 1974.

[14] Michael D. Hutton and Anna Lubiw. Upward planar drawing of single source acyclic
digraphs. In Allok Aggarwal, editor, Proceedings of the second annual ACM-SIAM sym-
posium on Discrete algorithms, pages 203–211, 1991.

[15] IBM. WebSphere Business Modeler, accessed 03/14/2011.
http://www.ibm.com/software/integration/wbimodeler.

[16] A. B. Kahn. Topological sorting of large networks. Communications of the ACM,
5(11):558–562, 1962.

[17] Vijay Khatri, Iris Vessey, Paul Clay V. Ramesh, and Sung-Jin Park. Understanding
conceptual schemas: Exploring the role of application and IS domain knowledge. Infor-
mation Systems Research, 17(1):81–99, March 2006.

[18] Ingo Kitzmann, Christoph König, Daniel Lübke, and Leif Singer. A simple algorithm for
automatic layout of bpmn processes. In Birgit Hofreiter and Hannes Werthner, editors,
Proceedings of the 2009 IEEE Conference on Commerce and Enterprise Computing,
pages 391–398, 2009.

[19] Agnes Koschmider, Minseok Song, and Hajo A. Reijers. Social software for business
process modeling. Journal on Information Technology, 25(3):308–322, 2010.

25

[20] Marian Petre. Why looking isn’t always seeing: readership skills and graphical program-
ming. Communications of the ACM, 38(6):33–44, 1995.

[21] Jakob Pinggera, Stefan Zugal, and Barbara Weber. Investigating the process of process
modeling with cheetah experimental platform. In Proceedings of Empirical Research in
Process-Oriented Information Systems (ER-POIS 2010), pages 13–18, 2010.

[22] Helen C. Purchase. Which aesthetic has the greatest effect on human understanding? In
Giuseppe Di Battista, editor, Proceedings of the 5th International Symposium on Graph
Drawing, pages 248–261, 1997.

[23] Helen C. Purchase, David A. Carrington, and Jo-Anne Allder. Empirical evaluation of
aesthetics-based graph layout. Empirical Software Engineering, 7(3):233–255, 2002.

[24] Hajo A. Reijers and Jan Mendling. A study into the factors that influence the un-
derstandability of business process models. IEEE Transactions on Systems, Man and
Cybernetics, Part A, 41(3):449–462, 2010.

[25] Marcello La Rosa, Arthur H. M. ter Hofstede, Petia Wohed, Hajo A. Reijers, Jan
Mendling, and Wil M. P. van der Aalst. Managing process model complexity via concrete
syntax modifications. IEEE Transactions on Industrial Informatics, 7(2):255–265, 2011.

[26] August-Wilhelm Scheer. ARIS—Business Process Modeling. Springer-Verlag, 2000.

[27] Matthias Schrepfer, Johannes Wolf, Jan Mendling, and Hajo A. Reijers. The impact of
secondary notation on process model understanding. In Anne Persson and Janis Stirna,
editors, Proceedings of 2nd Working Conference on The Practice of Enterprise Modeling,
pages 161–175, 2009.

[28] Benno Stein and Frank Benteler. On the Generalized Box-Drawing of Trees: Survey and
New Technology. In Proc. I-KNOW ’07, pages 408–415, September 2007.

[29] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Alistair P.
Barros. Workflow patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[30] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The Refined Process Structure Tree.
DKE, 68(9):793–818, 2009.

[31] Jussi Vanhatalo, Hagen Völzer, and Frank Leymann. Faster and More Focused Control-
Flow Analysis for Business Process Models Through SESE Decomposition. In Proc.
ICSOC ’07, pages 43–55, 2007.

[32] John Warfield. Crossing theory and hierarchy mapping. IEEE Transactions on Systems,
Man, and Cybernetics, 7(7):505–523, 1977.

[33] yWorks. yFiles for Java, accessed 03/14/2011.
http://www.yworks.com/en/products_yfiles_about.html.

26

