RZ 3834 (#Z1211-001) 11/13/2012
Computer Science 8 pages

Research Report

A Tool for Analysis and Visualization of Application Properties

Victoria Caparros Cabezas

IBM Research — Zurich
8803 Rischlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

esearch
Imaden ¢ Austin « Brazil « Cambridge ¢ China « Haifa ¢ India « Tokyo » Watson ¢ Zurich

>0

A Tool for Analysis and Visualization of
Application Properties

Victoria Caparrés Cabezas
IBM Research—Ziirich
CH-8803 Riischlikon, Switzerland

Abstract—Performance modeling comprises two important
areas. First, it is necessary to identify and theoretically
analyze what are the properties of the applications that
impact performance, and how they impact performance.
This requires the definition of mathematical or probabilistic
models of the applications properties, or the application of
advanced techniques, such as machine learning, to model
and predict their impact in performance. The other aspect
of performance analysis is to define the mechanisms to
actually measure application properties. These approaches
range from analysis of algorithms complexity to evaluation
of the application execution on real hardware.

This report addresses the last topic and presents a tool
developed within IBM for quantification of application
properties. It integrates, in a single tool, several analyses
of properties that were previously done independently—
parallelism and data reuse—, and it extends traditional
single-value metrics and reports properties over the entire
execution. It is based on the LLVM compiler infrastructure as
it enables an analysis that is language- and microarchitecture-
independent.

This document serves as the deliverable for the documen-
tation of characterization tools (item 3.15 in version 4 of the
planning Gantt charts), and the tool described herein is part
of the deliverables in Milestone 5 in version 4 of the planning
Gantt charts.

I. INTRODUCTION

Techniques for measuring application’s properties for
performance evaluation and prediction range from the-
oretical analysis of computation and communication of
algorithms [8, 19], to detailed microarchitectural simula-
tion [2], or collection of empirical data on the application
running on a specific platform using hardware perfor-
mance counters [9].

Our characterization tool for understanding applica-
tion’s inherent properties is based on previous studies
that use a microarchitectural simulator to emulate a
machine with unlimited hardware resources, and quan-
tify application behavior from the analysis of the data
dependences and data movement properties of the dy-
namic instruction trace during execution on the sim-
ulator [6, 17]. This approach has several advantages
with respect to the aforementioned techniques. First,
application properties are measured for the particular
input considered, as opposed to theoretical analysis of
the algorithm, which do not consider input size or model
it statistically. Second, it provides a better insight into

application behavior, since it exposes a broader range
of application properties, not only those that are ex-
ploitable with existing microarchitectural features (what
would have been measured with hardware performance
counters), but also properties that may require new
hardware architectures in order to be exploited. Finally,
this approach enables us to reason about application’s
performance across different platforms with just a sin-
gle pass of the analysis, not requiring to repeat the
analysis for every hardware configuration of interest. A
precursor of the characterization framework presented
in this work was actually built using SimpleScalar [4],
a microarchitectural simulator that has extensively been
used for microprocessor design evaluation. It was a
useful previous step because SimpleScalar had been used
in previous limit-case parallelism studies [12], and we
could verify the output of our characterization against
previous published results.

Whereas these data-flow and data reuse analyses are
microarchitecture-independent, still are performed on
a particular ISA (MIPS in the cited references), which
introduces some dependences in the analyzed binary.
For example, the limited number of registers in the
MIPS architecture will generate some register spills—
and, hence, some extra memory accesses—that, in a dif-
ferent machine with enough number of registers, would
have not been measured, impacting the data movement
properties of the application. The new characterization
tool attempts to overcome this ISA dependence by doing
the analysis on an interpreter that executes a dynamic
trace of instructions expressed in an Intermediate Rep-
resentation (IR). This IR is an intermediate stage in the
translation process from source code to machine code,
and can be viewed as a platform-independent assembly
language. We will take advantage of this language- and
machine-agnostic representation to quantify application
properties, and keep the analysis free from specific fea-
tures of the programming language in which applica-
tions have been implemented (so far, the tool works with
C and C++ sources), and from low-level architectural
details such as memory addressing modes or calling
conventions.

The characterization tool consists of the following
components:

o A graphical interface implemented in Mathematica

Mathematica
graphical interface
to configure and
launch execution

INPUT

Execution of
application in
LLVM interpreter

RUNTIME 1
ANALYSIS |

OFFLINE 1
PROCESSING |
1

Visualization of
characterization

OUTPUT 1 | Jata with E l ;FE
! athematica ! ¢=
(a) (b)
Fig. 1. (a) Stages of the application analysis flow . (b) Graphical

interface that simplifies the tool usage.

to configure and launch the execution of the appli-
cation in the interpreter.

o A set of C++ files that are integrated into the
LLVM compiler infrastructure and implement the
application analysis at the LLVM IR level when the
application is executed in the interpreter.

o A set of routines included in a Mathematica package
that process the LLVM output and generate the
graphics.

o Visualization of the characterization output in Math-
ematica.

Figure 1(a) depicts these components and shows the
general flow of the tool. Note that stages one, three, and
four can be omitted and the analysis can be done directly
with the LLVM interpreter command line. However,
the framework usage can be simplified by using the
graphical interface (Figure 1(b)).

A. Contributions

The contributions of this work are the following:

o A characterization framework that quantifies two
properties that traditionally have been studied
independently—parallelism and data reuse. Al-
though within the framework they are analyzed
separately, i.e., their interaction is not studied, it is
important to simultaneously have these two prop-
erties, which we consider may be the main limiters
to performance and power scaling on future com-
puting platforms.

o The characterization is done at a language- and
machine-agnostic level of abstraction of the appli-
cation, what enables us to reason about inherent
properties, i.e., properties that are independent from
the hardware.

o Finally, application properties are reported as dis-
tributions, as opposed to existing characterization
approaches that report average values. These met-

Optimizations/
Transformations

S ——
%86, PowerPC,
ARM, MIPS...

e —
Jlia

—
LLVM IR
Interpreter

Dynamic program
analysis

LLVM IR

1

Static program
analysis

N\
C/C++ |y
Code ||

Fig. 2. Overview of the LLVM compiler infrastructure. The shadowed
elements are the components from the infrastructure that are used in
our characterization process.

rics provide a better understanding and insight into
applications properties over the entire execution.

This document is intended to provide an overview of
the characterization framework, its functionality, some
aspects of its implementation, and information about
how to use it and install it. Section II presents a de-
scription of the LLVM compiler infrastructure—upon
which the characterization framework is built—and the
properties that make it a suitable platform for analysis
of application properties (section III). It is followed by
a description of how the application analysis is done
within LLVM, and how the analysis is integrated into the
LLVM infrastructure, in sections IV and V, respectively.
Finally, section VI provides instructions about the instal-
lation and usage of the characterization framework, and
section VII discusses some other miscellaneous aspects
of the tool.

II. LLVM COMPILER INFRASTRUCTURE

LLVM (Low Level Virtual Machine) [11] is a compiler
infrastructure that generates production quality code,
in some cases comparable to that produced by gcc or
icc. Its success comes from its modular design, that
enables aggressive transformations and optimizations at
compile-time, link-time and run-time. Although initially
was developed as a research platform for dynamic opti-
mizations, currently is the default compiler provided in
Mac OS X and iOS, and is used in a number of produc-
tion and research projects. It is a well-documented tool,
actively maintained, widely used by both industry and
academic community, and publicly available under an
open source License.

Figure 2 illustrates the structure of the LLVM infras-
tructure. The first stage in the compilation flow consists
of a front-end that translates source code to LLVM IR.
There exist LLVM front-ends for a number of high-level
programming languages, including C, C++, Objective-
C, Java, Scala, Ada, Fortran, Python, Ruby, or Haskell.
In the next stage of the compilation process, LLVM
implements the different optimizations, and provides an

extensive set of libraries for static analysis of applica-
tion’s binaries in LLVM IR form (also known as bitcode).
After the corresponding optimizations, LLVM contains
different back-ends that support code generation for the
most popular microarchitectures, namely, x86, PowerPC,
ARM, SPARC, and PTX, which can be then executed in
the corresponding CPU. Alternatively, LLVM provides a
Just-In-Time compiler, that enables dynamic translation
of bitcode into machine native code, and an interpreter
which can directly execute LLVM bitcode. Our charac-
terization tool extends the LLVM interpreter by adding
a number of libraries that analyze the bitcode properties
while it is being interpreted. The shadowed elements in
Figure 2 are those components of the LLVM infrastruc-
ture that are used in our characterization framework.

III. PROPERTIES OF LLVM IR

This section describes some of the features that make
the LLVM IR a convenient level of abstraction for quan-
tifying application properties.

A. Virtual Instruction Set

The LLVM Instruction Set represents a virtual archi-
tecture that captures the key operations of traditional
computing systems, but avoids machine specific con-
straints such as physical registers, or low-level calling
conventions. LLVM instructions can be broadly classified
in five groups: control instructions, binary instructions,
bitwise binary instructions, memory instructions and
other instructions. Most LLVM operations are in three-
address form and they are polymorphic, that is, a single
instruction can operate on several different types of
operands.

Figure 3 illustrates an example of how the LLVM
virtual instruction set may abstract some of the arti-
facts introduced by an ISA. Figure 3(a) shows a MIPS
instruction trace that loads an element from memory
and multiplies it with a previously loaded element.
From the ten instructions that are executed, only two
correspond to the actual load and multiplication; the
rest of instructions implement the arithmetic necessary
to calculate the address of the memory access. This
sequence of instructions is not constant across ISAs—it
depends on the available instructions in the ISA—, and
is also highly dependent on the level of optimization of
the application. Whereas these instructions are actually
executed during an application’s run, they are not inher-
ent to the algorithm, and including them in the analysis
may provide a mistaken insight into the application’s
inherent properties. The LLVM virtual instruction set
gets over this problem by defining a new instruction,
the getelementpointer instruction, that generates the
address of the element that is going to be accessed
(Figure 3(b)).

1w $5,8($30)
1w $6,32($30)
mult $5,%6
mflo $5

1w $6,4($30)
addu $5,$5,$6
addu $6,$0,$5
sll $5,$6,0x3
1w $6,40($30)
addu $5,$5,5$6
1.d $£2,0($5)
mul.d $£0,$£0,$£f2

(@)

%arrayidxl6é = getelementptr inbounds double* %b, i64 1
%16 = load double* %arrayidxl6, align 8
gmul = fmul double %0, %16

(b)

Fig. 3. Illustrative example of how some artifacts of the MIPS ISA,
such as all the arithmetic related to address computation (a), can be
abstracted with the LLVM virtual instruction set (b).

B. Single-Static Assignment Form

LLVM IR is in Single-Static Assignment (SSA) form,
that is, every value is guaranteed to have only a single
definition point. SSA form enables, hence, an analysis
that is independent from the number of architected
registers, and simplifies the iteration over def-use chains.
This, in turns, facilitates tracking the last usage of data
elements, which is relevant to both, parallelism and data
reuse analysis.

C. Data Types

LLVM provides support for arbitrary width integers,
as well as vector and SIMD data types, increasingly
being used in high-performance applications. This par-
ticular feature allows us not to restrict the analysis to
existing data types, but to capture exactly those data
types required by the application. So, for example, if an
application operates only on 11-bit integers, the analysis
is done with 11-bit width data types, and not the typi-
cally defined 16-, 32- or 64-bit integers.

D. Use of Intrinsics

Intrinsics are a mechanism available in LLVM to ab-
stract some common functionalities that have different
implementations in different platforms. An example of
an intrinsic is the operation unsigned multiplication
with overflow, 11vm.umul.with.overflow.1i64. It is not
implemented as an instruction, but as an LLVM intrinsic.
In some platforms, there is a single instruction that im-
plements this multiplication, whereas in other platforms,
up to four instructions are needed. By defining it as
an intrinsics, LLVM makes this operation independent
from the specific target where it is going to be executed.
Then, during compilation to native code, when the code
for a specific target platform is generated, intrinsics

rﬁoid Interpreter::run() {
//Initialize ApplicationAnalyzer with the options
specified in the command line
ApplicationAnalyzer = new ApplicationAnalysis(
TargetFunction, AnalyzeIlP,...);
while (!ECStack.empty()) {
// Interpret instruction & increment the
ExecutionContext &SF = ECStack.back();
Instruction &I = *SF.CurlInst++;
visit(I);
// Dispatch analyzer
if (AnalyzeApplication)
(ApplicationAnalyzer->+ApplicationAnalyzer—>
ApplicationAnalysisMemFn) (I, SF, Address);
}

npcn,

Fig. 4. Interpreter main loop.

are converted to the most appropriate instruction or
sequence of instructions on the native architecture.

E. Vector Support

LLVM has vector support in its intermediate repre-
sentation. This is an interesting feature because many
contemporary architectures support vector instructions,
and an increasing number of programmers rely on vec-
torization to speed up their computations. It is probable,
hence, that applications that are going to be analyzed in
the characterization framework are written with support
for vector instructions. By having vector support, a
broader range of applications can be analyzed without
any modifications to the source code.

IV. ANALYSIS OF APPLICATIONS WITH THE LLVM
INTERPRETER

The LLVM interpreter executed the application bit-
code. It consists of a loop in which every iteration imple-
ments the execution of an instruction. Figure 4 outlines
the main structure of this loop. All the instructions
defined in the LLVM Instruction Set are implemented
as a C++ routine, in which the content of the register or
memory location corresponding to the output operand
is modified according to the input operands and the
operation code. The visit (I) call in line 10 is a call to
the code that implements the instruction functionality.
As shown in the code, in addition to the execution of
the instruction, the interpreter initializes the application
analyzer according to the options specified in the com-
mand line, and call the corresponding analysis routines.

The output of the interpreter is a text file with a
summary of the statistics of the application execution,
such as instruction breakdown or execution time, and,
depending on the configuration flags, the distribution
and cumulative distributions of ILP, TLP, etc. The details
of the format of the framework output are described
in [5].

A. Configuration of Application Analysis

The analysis of application’s properties is controlled
by a number of flags that are activated with the

command-line options listed in Table I. The flags can
be classified into the following categories:

Selection of the type of analysis: the framework
implements a number of boolean flags that deter-
mine which of the following properties should be
analyzed: instruction-level parallelism (-analyze-ilp),
basic-block-level parallelism (-analyze-tlp), task par-
titioning (-analyze-task-partitioning), data reuse
(-analyze-data-temporal-reuse), or instruction reuse
(-analyze-inst-temporal-reuse.) When no applica-
tion analysis flag is specified, only instruction mix is
reported.

Ignore variables: the LLVM infrastructure allows us to
specify source code lines (-ignore-source-code-lines
flag) such that variables defined in these lines are ig-
nored (for data dependence or data reuse analysis). If
the code is written in a way that more than one variable
are defined in the same source code line, and only one of
them is to be ignored, in general it requires just a slight
modification to the source code to separate variable
definitions such that it is easy for the framework to treat
them accordingly. This feature of the tool is specially
useful for removing the impact of loop-carried depen-
dences in the parallelism analysis. Identifying loop index
variables in a dynamic instruction trace is in general
a non-trivial task. With this feature, we can identify
and remove them from the analysis by simply ignoring
dependences on those variables defined in the specified
lines.

Note that this feature requires the application to be
compiled with debugging information, i.e., that —g flag
should be activated during compilation to bitcode.

Restrict the analysis to a specific fraction of the
code: the analysis can be applied to the entire application
(-function main), or to a fraction of it that implements
a specific function. The analysis is triggered by call to
the target function, and the data is collected when the
function returns. If there are several calls to the same
function and it is desired to collect data from all the calls,
then the code should be modified to define an auxiliary
function that includes all the calls to the original target
function, and make this auxiliary function the target of
the analysis.

Reuse granularity: as described in section III, one
of the advantages of LLVM IR is its comprehen-
sive representation of data types. To fully exploit that
characteristic of the LLVM IR, the data reuse anal-
ysis can be configured and applied to data items
of different granularities (-reuse-granularity-int-32,
-reuse—granularity—-fp-64, etc.).

B. Analysis of Parallelism

Ideal-case parallelism is analyzed at two different
granularities, at the instruction level and at the basic-
block level. Parallelism is quantified by monitoring
all registers and memory usage, and tracking the

TABLE I
LLI COMMAND LINE OPTIONS FOR APPLICATION ANALYSIS.

Example

Instruction window issue size (number of instructions)
Enable analysis of inter-basic-block communication for
Analyze reuse of 32-bit integer memory accesses
Analyze reuse of 64-bit integer memory accesses
Analyze reuse of 32-bit floating-point memory accesses

Analyze reuse of 64-bit floating-point memory accesses

Print reuse distribution with distances rounded up

Option Default Description
-analyze-application True Enable application characterizations
-function main Specify function to analyze
—~ignore-source-code-lines - Specify function to analyze
—analyze—ilp False Enable ILP analysis
-perfect-branch-prediction True Perfect branch prediction for analysis of ILP
—inst-window-issue-size Infinity
—analyze-tlp False Enable TLP analysis
-analyze-task-partitioning False

task partitioning
-analyze-data-temporal-reuse False Enable data temporal reuse analysis
—reuse—granularity-int-32 False
-reuse—-granularity-int-64 False
-reuse—granularity-fp-32 False
-reuse—-granularity-fp-64 False
—analyze-inst-temporal-reuse False Enable instruction temporal reuse analysis
-print-filtered-reuse-distribution True

to the nearest power of two
—-cache-line-size 4B Specify the cache line size (B)
-memory-word-size 4B Specify the memory word size (B)
-nsets 1

inter-instructions and inter-basic-blocks read-after-write
(RAW) dependences. These dependences determine the
earliest cycle in which an instruction or basic-block
can be executed because all its dependences have been
satisfied. This information can be used to build the
data dependence graph, and best-case parallelism can
be estimated as the ratio of the work—total graph
size— and span—length of the critical path [7]. Since
the dependence graph contains information about how
many instructions/ basic-blocks can be executed in every
cycle, more detailed statistics about parallelism can be re-
ported, such as the distribution of parallelism over time,
or the cumulative distribution. Figures 5(a) and 5(b)
show examples of the reported parallelism. In the case
of instruction-level parallelism, the data can be further
broken down into instruction types, and per-instruction-
type distributions can be also obtained (Figure 5(c)).

C. Analysis of Locality

Locality has traditionally been defined in qualitative
terms [10]. Several studies attempt to define a single-
value metric that quantifies locality [14, 18]. These met-
rics, however, do not provide enough insight into how
the actual memory access pattern of the application
is, or how these patterns actually impact applications’
performance. We use the reuse distance distribution as
the metric to quantify locality, where the reuse distance
is defined as the number of distinct intervening memory
access between two consecutive accesses to the same
memory location. The first algorithm to calculate reuse
distance [13] was based on a stack data structure, such
that whenever a new data element was referenced (mem-
ory page, cache block, or memory word, depending on
the granularity at which the analysis is being done), this
element is located on top of the stack, and the rest of ele-
ments in the stack are down-shifted. This reuse distance
analysis technique is also known as LRU stack distance, as
it models the cache behavior of a fully-associative cache
memory with least-recently used replacement policy.

Specify the number of sets in a set associative cache

Given the inefficiency and complexity of early proposed
stack algorithms, several optimizations of the algorithm
have been proposed [1, 3]. The characterization tool
implements the algorithm described in [16], which uses
a splay tree to efficiently calculate reuse distances. The
result of such algorithm is a trace of stack distances
that can be represented as an histogram or, equivalently,
cumulative distribution, and this reuse distance cumu-
lative distribution can be used to directly predict the hit
rate (or miss rate) for every cache size, assuming LRU
replacement policy and fully associativity. Figure 5(d)
shows an example of such cumulative distribution.

V. INTEGRATION OF THE APPLICATION ANALYSIS TOOL
INTO THE LLVM INFRASTRUCTURE

As mentioned in Section II, one of the benefits of
using LLVM is its modular design. A premise during
the design of the characterization tool was to minimize
the LLVM source code that had to be modified; that
would make the characterization tool less sensitive to the
continuously changing LLVM source code, and would
facilitate its integration and installation. The tool, hence,
has been implemented as another LLVM module or
library whose routines are invoked by the interpreter
when required. Figure 6 describes the interaction of
the LLVM source code and the files that have been
added. The only LLVM source file that is modified is
the interpreter—Interpreter/Execution.cpp—, which
has been extended to parse the new command line
options that specify which analyses must be done, and
to invoke the application analyzer —implemented in
Support/ApplicationAnalysis.cpp—when the analy-
sis has been activated in the interpreter invocation com-
mand line.

Parallelism analysis is implemented in
ParallelismAnalysis.cpp, which implements general
routines, and ILP.cpp and TLP.cpp, which implement
aspect of the analysis that are particular to each kind of
parallelism. Similarly, locality routines are implemented

—ignore-source-code-lines={88,102}

mmrn—emit—lIvm—c—g—OD‘—maaneg.bc—M—mm‘m

mmm-emit—llvm-c—-g—-00-mem2reg.bc—64—mmm

100f i 1.0f
© 208}
-
S X 06
105, 2 v 0.br
o 1
3 =
Sk 04t
8
104+ & 02t
1 e o o o o o o0 o 0.0 0000000
| | | I 0.0 . i L .
0 50 100 150 10000 15000 20000 30000
Issue Cycle XTLP
(a) ILP distribution over execution cycles. (b) TLP cumulative distribution.
LD _FP 643|TS TYPE
1.0
105}
104 T o8
10° :
o §06
= 100} 2
10! g 0.4
e
1t z o2
Ot :
0 50 100 150 0'00 1 2 22 23 o4 95 96 of 28 29 10 ol oi2 13 ol4 515 Hi6
Issue Cycle Reuse Distance, d (# of distinct intervening memory accesses)

(c) ILP of load operations
Fig. 5.

LLVM_SRC

Support

ApplicationAnslysis.cpp |

ExecutionEngine
Interpreter

Execution.cpp

ParallelismAnalysis.cpp |

LocalityAnalysis.cpp |

Fig. 6. Integration and interaction of application analysis source code
into the LLVM infrastructure. Rectangles represent directories of the
original LLVM source code infrastructure, the red documents are the
new files added to implement the application analysis, and the red-
blue document is an LLVM original file that has been modified.

in LocalityAnalysis.cpp, StackReuseDistance.cpp,
and OptReuseDistance.cpp.

VI. INSTALLATION AND USE

The characterization tool is provided as:

e A Mathematica Workbench project, called
ApplicationCharacterization, which contains
a notebook with the user interface to configure
the analysis, and a package that implements
the routines for post-processing the data and
generating the results (components 1, 3, and 4
in Figure 1(a)). If used, it must be located in the
directory MATHEMATICA, as shown in Figure 7(b).

(d) Cumulative reuse distributions

Examples of application’s properties reported by the characterization framework.

o A patch to the LLVM compiler infrastructure that
adds the support for the application analysis to the
LLVM infrastructure (component 2 in Figure 1(a)).
The patch and installation instructions are provided
in 1lvm-app-analysis.tar.gz.

Figure 7 illustrates the Mathematica interface and
the directory structure in which the tool relies for its
execution. It requests the root of the underlying direc-
tory structure (Figure 7(b)), the path to the application
bitcode!, the input of the applications execution, as well
as the function name—if any—to be analyzed. The check
boxes allow the user to select which of the available
analysis should be executed, and other configuration
options, should be entered in the Additional execution flags
field.

VII. SOME COMMENTS ABOUT THE TOOL
A. Tool Scalability and Execution Time

Execution of applications in interpreted mode incurs
in performance losses. For large applications in which
performance is critical even in native execution, the
slowdown due to the execution on a simulator and
the overhead added by the data flow analysis, might
become an inhibitor of this technique. Therefore, during
the tool design process, special attention was put in the
efficient implementation of data-flow-track algorithms
and the election of the most appropriate data structures
depending on their size and access pattern.

IThe characterization framework assumes applications have been
compiled into LLVM bitcode, and the bitcode is located in the corre-
sponding bin directory. The command line for compiling applications
is: clang —emit-1llvm -c -g -00 *.c -0 *.bc

Application Properties Analysis Framework

Execution-driven Simulation

{2 BENCHMARKS
[BENCHMARK_NAME
@ bin

- Ve N [corei7
0 Enter tree root directory uNVCRVCA_ALGSMACHINES Browse... £ LM
9 Choose analysis framework: [simpleScalar @ LLVM _4 ppce500mc
()] SS-MIPS
8 Enter application binary uVEAVCA_ALGSMACHINES/BENCHMARKS/KERNELS/mmmbin/LLVM/mmm (Browse...) [data
~—
emit-Iivm-c-g-04.bc (2] output
= run-appchar.sh
@ Enter Input(s) Mathematica Expression |_| 256 PP
il src
6 Function(s) name (separated by space) mmm M Makefile
& SCRIPTS

@ Additional execution flags

(7]

reuse-granularity-fp-64|

Select properties to be analyzed:

Instruction-level Parallelism Data Dependence Graph

in #instructions)

Thread-level Parallelism [} Filter DDG (consider on ly FP ops.) #FP ops.)

| Comm-Minimizing Task Partitioning

[_] Memory References

g § 8 §

(] Inter-thread Communication ™ euse (distance in

(‘Start Analysis)
)

#distinct mem. refs.)

#distinct cache lines)

filter-parchar.sh
setup_env.sh
] MATHEMATICA
] ApplicationCharacterization
=] [RESULTS
[APP-CHAR
] DATA
| FIGURES
[TOOLS
(3 LLVM_SRC

(a)
Fig. 7.
characterization framework relies.

B. Modifications to Applications

In some cases, running applications through the char-
acterization framework might not be straightforward,
either because applications cannot be compiled to bit-
code, because when the bitcode is executed there is an
error in the LLVM interpreter, or because the properties
reported in the analysis do not match the expected
properties. These cases are typically solved by doing
some minor modifications to the source code. These
modifications do not change the functionality of the
code, but simply help the compiler to generate bitcode
that contains all the necessary features for the analysis.
In general, is it recommended that the source code does
not use complex data structures. Also, if the code is
compiled to bitcode with the optimization flag -04, it
is possible that functions are inlined and, hence, it is not
possible to track properties per function. In these cases, it
is recommended to add __attribute__ ((noinline))
to the function to be analyzed. Finally, If the execution
process fails, running the interpreter with the -debug
flag will print out the instruction execution trace, and
some other debugging information, what will help to
find the part of the application is creating the problem.

REFERENCES

[1] G. Almasi, C. Cascaval, and D. A. Padua. Calculat-
ing stack distances efficiently. SIGPLAN Not., 38:37—
43, June 2002.

[2] T. Austin, E. Larson, and D. Ernst. Simplescalar:
An infrastructure for computer system modeling.
Computer, 35(2):59-67, Feb. 2002.

[3] B. T. Bennett and V. J. Kruskal. LRU stack process-
ing. IBM Journal of Research and Development, 19:353—
357, 1975.

[4] D. Burger and T. M. Austin. The simplescalar tool
set, version 2.0. SIGARCH Comput. Archit. News,
25:13-25, June 1997.

(b)

(a) Mathematica interface to enter application analysis configuration and launch the analysis (b) Directory structure on which the

[5] V. Caparrés Cabezas. File format description of
analysis framework output. DOME - TN1, 2012.

[6] V. Caparrés Cabezas and P. Stanley-Marbell. Par-
allelism and data movement characterization of
contemporary application classes. In Proceedings of
the 23rd ACM symposium on Parallelism in algorithms
and architectures, SPAA "11, pages 95-104, New York,
NY, USA, 2011. ACM.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

[8] K. Czechowski, C. Battaglino, C. McClanahan,

A. Chandramowlishwaran, and R. Vuduc. Balance

principles for algorithm-architecture co-design,

2011.

M. Ferdman, A. Adileh, O. Kocberber, S. Volos,

M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu,

A. Ailamaki, and B. Falsafi. Clearing the Clouds:

A Study of Emerging Scale-out Workloads on Mod-

ern Hardware. In 17th International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2012.

J. L. Hennessy and D. A. Patterson. Computer

Architecture, Fourth Edition: A Quantitative Approach.

Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2006.

C. Lattner and V. Adve. LLVM: A Compila-

tion Framework for Lifelong Program Analysis &

Transformation. In Proceedings of the 2004 Interna-

tional Symposium on Code Generation and Optimization

(CGO’04), Palo Alto, California, Mar 2004.

M. A. Postiff et al. The limits of instruction level par-

allelism in SPEC95 applications. SIGARCH Comput.

Archit. News, 27(1):31-34, 1999.

R. Mattson, J. Gecsei, D. Slutz, and I. Traiger.

Evaluation techniques for storage hierarchies. IBM

Systems Journal, 9(2):78 -117, 1970.

[9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

R. Murphy, A. Rodrigues, P. Kogge, and K. Under-
wood. The implications of working set analysis
on supercomputing memory hierarchy design. In
Proceedings of the 19th annual international conference
on Supercomputing, ICS ‘05, pages 332-340, New
York, NY, USA, 2005. ACM.

N. Nethercote and J. Seward. How to shadow every
byte of memory used by a program. In Proceedings
of the 3rd international conference on Virtual execution
environments, VEE "07, pages 65-74, New York, NY,
USA, 2007. ACM.

E. Olken. Efficient methods for calculating the success

function of fixed space replacement policies. 1982.

D. W. Wall. Limits of instruction-level parallelism.
SIGARCH Comput. Archit. News, 19(2):176-188, Apr.
1991.

J. Weinberg, M. O. McCracken, E. Strohmaier, and
A. Snavely. Quantifying locality in the memory
access patterns of hpc applications. In Proceedings
of the 2005 ACM/IEEE conference on Supercomputing,
SC ’05, pages 50—, Washington, DC, USA, 2005. IEEE
Computer Society.

S. Williams, A. Waterman, and D. Patterson.
Roofline: an insightful visual performance model
for multicore architectures. Commun. ACM,
52(4):65-76, Apr. 2009.

Y. Zhong, X. Shen, and C. Ding. Program locality
analysis using reuse distance. ACM Trans. Program.
Lang. Syst., 31:20:1-20:39, August 2009.

