

RZ 3841 (# ZUR1302-026) 02/18/2013
Computer Science 16 pages

Research Report

On Verifying the Consistency of Remote Untrusted Services

C. Cachin*, Olga Ohrimenko‡

*IBM Research – Zurich
8803 Rüschlikon
Switzerland

‡Brown University
Providence
RI 02912, USA

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some re-
ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich

On Verifying the Consistency of Remote Untrusted Services

Christian Cachin1 Olga Ohrimenko2

February 18, 2013

Abstract

A group of mutually trusting clients outsources a computation service to a remote server, which
they do not fully trust and that may be subject to attacks. The clients do not communicate with
each other and would like to verify the correctness of the remote computation and the consistency
of the server’s responses. This paper presents the Commutative-Operation verification Protocol
(COP) that ensures linearizability when the server is correct and preserves fork-linearizability in
any other case. Fork-linearizability ensures that all clients that observe each other’s operations are
consistent in the sense that their own operations and those operations of other clients that they see
are linearizable. COP goes beyond previous protocols in supporting wait-free client operations for
sequences of commutative operations.

1 Introduction

With the advent of cloud computing, most computations run in remote data centers and no longer on
local devices. As a result, users are bound to trust the service provider for the confidentiality and the
correctness of their computations. This work addresses the integrity of outsourced data and computa-
tions and the consistency of the provider’s responses. Consider a group of mutually trusting clients who
want to collaborate on a resource that is provided by a remote minimally trusted server. This could
be a wiki containing data of a common project, an archival document repository, or a groupware tool
running in the cloud. A subtle change in the remote computation, whether caused inadvertently by a
bug or deliberately by a malicious adversary, may result in wrong responses to the clients. Although the
clients generally trust the provider, they would like to assess the integrity of the computation, to verify
that responses are correct, and to check that they all get consistent responses.

In an asynchronous network model without communication among clients such as considered here,
the server may perform a forking attack and omit the effects of operations by some clients in her re-
sponses to other clients. Not knowing which operations other clients execute, the latter group cannot
detect such violations. The best achievable consistency guarantee in this setting is captured by fork-
linearizability, introduced by Mazières and Shasha [15] for storage systems. Fork-linearizability en-
sures that whenever the server in her responses to a client C1 has ignored a write operation executed
by a client C2, then C1 can never again read a value written by C2 afterwards and vice versa. From
this property, clients can detect server misbehavior from a single inconsistent operation, which is much
easier than comparing the effects of all past operations one-by-one.

Several conceptual [4, 14, 2, 3] and practical advances [19, 6, 13, 17] have recently been made that
improve consistency checking and verification with fork-linearizability and related notions for remote
storage and computation. The resulting protocols ensure that when the server is correct, the service is

1IBM Research - Zurich, CH-8803 Rüschlikon, Switzerland. cca@zurich.ibm.com.
2Brown University, Providence, RI 02912, USA. olya@cs.brown.edu.

1

linearizable and (ideally) the algorithm is wait-free, that is, every client’s operations complete indepen-
dently of other clients. It has been recognized, however, that read/write conflicts often cause such proto-
cols to block; this applies to consistency verification for storage with fork-linearizable semantics [15, 4]
and for other forking consistency notions [2, 3].

In this paper, we go beyond storage services and propose a new protocol for consistency verification
of remote computations on a Byzantine server, called the Commutative-Operation verification Protocol
or COP. It supports arbitrary functionalities, exploits commuting operations, and allows clients to oper-
ate concurrently and without blocking or aborting whenever feasible, while imposing fork-linearizable
semantics. Through this guarantee Byzantine behavior of the server can be exposed easily. Clients may
therefore verify the correctness of a service in an end-to-end way.

Support for wait-free operations is a key feature for collaboration with remote coordination, as
geographically separated clients may operate with totally different timing characteristics. Consequently,
previous work has devoted a lot of attention to identifying and avoiding blocking situations [15, 4, 11].
For example, read operations in a storage service commute and do not lead to a conflict. On the other
hand, when a client writes to a data item concurrently with another client reading from the item, the
reader has to wait until the write operation completes; otherwise, fork-linearizability is not guaranteed.
If all operations are to proceed without blocking, though, it is necessary to weaken the consistency
guarantees to fork-* linearizability [11] or weak fork-linearizability [3], for instance. COP is wait-free
and never blocks because it aborts non-commuting operations that cannot proceed. Abortable operations
have been introduced in this context by Majuntke et al. [14].

The Blind Stone Tablet (BST) protocol [19] supports an encrypted remote database hosted by an
untrusted server that is accessed by multiple clients. Its consistency checking algorithm allows some
commuting client operations to proceed concurrently, but only to a limited extent, as we explain below.
Furthermore, the protocol guarantees fork-linearizability for database state updates, but does not ensure
it for certain responses output by a client.

SPORC considers a groupware collaboration service whose operations may not commute, but can
be made to commute by applying operational transformations. Through this mechanism, different ex-
ecution orders still converge to the same state. All SPORC operations are wait-free and respect fork-*
linearizability.

1.1 Contributions

This paper considers a generic service executed by an untrusted server and investigates protocols for
consistency verification through fork-linearizable semantics. It explores the relation between commut-
ing operations in the service specification and client operations that may proceed concurrently.

More concretely, this paper introduces the Commutative-Operation verification Protocol (COP) and
makes three contributions:

1. COP is the first wait-free protocol that emulates an arbitrary functionality on a Byzantine server
with fork-linearizability and supports commuting operation sequences.

2. COP allows clients to proceed at their own speed, regardless of the behavior of other clients, when
they execute non-conflicting sequences of operations.

3. We formally prove COP correct and demonstrate that all completed operations and their responses
respect fork-linearizability.

COP follows the general pattern of most previous fork-linearizable emulation protocols. For deter-
mining when to proceed with concurrent operations, it considers sequences of operations that jointly
commute, in contrast to earlier protocols, which considered only isolated operations.

2

In COP, the server merely coordinates client-side operations but does not compute the results. This
conceptually simple approach can be found in many related protocols [19, 8, 6] and practical collab-
oration systems (git1, Mercurial2); it also represents the common trend of cloud computing to shift
computation to the client and coordination to the cloud.

1.2 Related work

Storage protocols. Fork-linearizability has been introduced (under the name of fork consistency) to-
gether with the SUNDR storage system [15, 10]. Conceptually SUNDR operates on storage objects with
simple read/write semantics. Subsequent work of Cachin et al. [4] improves the efficiency of untrusted
storage protocols. A lock-free storage protocol with abortable operations, which lets all operations
complete in the absence of step contention, has been proposed by Majuntke et al. [14].

FAUST [3] and Venus [17] go beyond the fork-linearizable consistency guarantee and model occa-
sional message exchanges among the clients. This allows FAUST and Venus to obtain stronger seman-
tics, in the sense that they eventually reach consistency (in the sense of linearizability) or detect server
misbehavior. In the model considered here, fork-linearizability is the best possible guarantee [15].

Blind Stone Tablet (BST). The BST protocol [19] considers transactions on a common database,
coordinated by the remote server. Clients first simulate a transaction on their own copy, potentially
generating local output, then coordinate with the server for ordering the transaction. From the server’s
response the client determines if his transaction commutes with other, pending transactions invoked by
different clients that were reported by the server. If they conflict, the client undoes the transaction and
basically aborts; otherwise, he commits the transaction and relays it via the server to other clients. When
a client receives such a relayed transaction, the client applies the transaction to its database copy.

BST has two limitations: First, because a client applies his own transactions only when all pending
transactions by other clients have been applied to his own state, state changes induced by his transactions
are delayed in dependence on other clients. Thus, he cannot always execute his next transaction from
the modified state and obtain a correct output. Second, the notion of “trace consistency” in the analysis
of the BST protocol considers only transactions that have been applied to the local state, not local output
generated by the client. Hence fork-linearizability is not shown for the service responses but only for
those transactions that clients have applied to their state (the former may occur long before the latter).

COP is strictly more general than BST, as it allows one client to execute multiple operations inde-
pendently of the other clients, as long as his sequence of operations jointly commutes with the sequence
of pending operations by other clients. Note that two operations o1 and o2 may independently commute
with an operation o3 from a particular starting state, but their concatenation, o1 ◦ o2, may not commute
with o3.

Non-blocking protocols. SPORC [6] is a group collaboration system where operations do not need
to be executed in the same order at every client by virtue of employing operational transforms. The
latter concept allows to shift operations to a different position in an execution by transforming them
according to properties of the skipped operations. Differently ordered and transformed variants of a
common sequence converge to the same end state.

SPORC achieves fork-* linearizability [11], which is closely related to weak fork-linearizability [3];
both notions are relaxations of fork-linearizability that permit concurrent operations to proceed without

1http://git-scm.com
2http://mercurial.selenic.com

3

blocking, such that protocols become wait-free. The increased concurrency is traded for weaker consis-
tency, as up to one diverging operation may exist between the views of different clients and cannot be
detected.

FAUST [3], mentioned before, never blocks clients and enjoys eventual consistency, but guarantees
only weak fork-linearizability.

In contrast to the SPORC and FAUST protocols, COP ensures the stronger fork-linearizability con-
dition, where every operation is consistent as soon as it completes. SPORC is not weaker nor stronger
than COP: On one hand, SPORC seems more general as it never blocks clients even for operations that
do not appear to commute; on the other hand, though, SPORC only supports functions with suitably
transformable operations and it has no provisions for handling conflicting operations, whereas COP
works for arbitrary functions.

In all above protocols for generic services (BST, SPORC, and COP), all clients execute all opera-
tions. This is not necessary for storage protocols (SUNDR and FAUST) because their operations are
simpler.

Last but not least, the protocol of Cachin [1] provides also fork-linearizable execution for generic
services like COP. However, the approach is inherently blocking and requires the service to satisfy a
cryptographic notion of “separated authenticated execution.”

1.3 Organization of the paper

The paper continues by introducing the notation and basic concepts in Section 2. The subsequent section
presents COP and Section 4 proves that COP emulates an arbitrary functionality on a Byzantine server
with fork-linearizability.

2 Definitions

System model. We consider an asynchronous distributed system with n clients, C1, . . . , Cn and a
server S, modeled as processes. Each client is connected to the server through an asynchronous, reliable
communication channel that respects FIFO order. A protocol specifies the operations of the processes.
All clients are correct and follow the protocol, whereas S operates in one of two modes: either she is
correct and follows the protocol or she is Byzantine and may deviate arbitrarily from the specification.

Functionality. We consider a deterministic functionality F (also called a type) defined over a set of
states S and a set of operations O. F takes as arguments a state s ∈ S and an operation o ∈ O and
returns a tuple (s′, r), where s′ ∈ S is a state that reflects any changes that o caused to s and r ∈ R is a
response to o:

(s′, r)← F (s, o).

This is also called the sequential specification of F .
We extend this notation for executing a sequence of operations 〈o1, . . . , ok〉, starting from an initial

state s0, and write
(s′, r) = F (s0, 〈o1, . . . , ok〉)

for (si, ri) = F (si−1, oi) with i = 1, . . . , k and (s′, r) = F (sk, rk). Note that an operation in O may
represent a batch of multiple application-level operations.

4

Commutative Operations. Commutative operations of F play a role in protocols that may execute
multiple operations concurrently. Two operations o1, o2 ∈ O are said to commute in a state s if and only
if these operations, when applied in different orders starting from s, yield the same respective states and
responses. Formally, if

(s′, r1) ← F (s, o1), (s′′, r2) ← F (s′, o2); and

(t′, q2) ← F (s, o2), (t′′, q1) ← F (t′, o1)

then
r1 = q1, r2 = q2, s

′′ = t′′.

Furthermore, we say two operations o1, o2 ∈ O commute when they commute in any state of S.
Also sequences of operations can commute. Suppose two sequences ρ1 and ρ2 consisting of opera-

tions inO are mixed together into one sequence π such that the partial order among the operations from
ρ1 and from ρ2 is retained in π, respectively. If executing π starting from a state s gives the same respec-
tive responses and the same final state as for every other such mixed sequence, in particular for ρ1 ◦ ρ2
and for ρ2 ◦ ρ1, where ◦ denotes concatenation, we say that ρ1 and ρ2 commute in state s. Analogously,
we say that ρ1 and ρ2 commute if they commute in any state.

Operations that do not commute are said to conflict. Commuting operations have been investigated
by Weihl [18] in the context of concurrency control. We define a Boolean predicate commuteF (s, ρ1, ρ2)
that is true if and only if ρ1 and ρ2 commute in s according to F .

Abortable services. When operations of F conflict, a protocol may either decide to block or to abort.
Aborting and giving the client a chance to retry the operation at his own rate has often advantages
compared to blocking, which might delay an application in unexpected ways.

As in previous work [14], we permit operations to abort and augment F to a functionality F ′ ac-
cordingly. F ′ is defined over the same set of states S and operations O as F , but returns a tuple defined
over S andR∪ {⊥}. F ′ may return the same output as F , but F ′ may also return ⊥ and leave the state
unchanged, denoting that a client is not able to execute F . Hence, F ′ is a non-deterministic relation and
satisfies

F ′(s, o) =
{

(s,⊥), F (s, o)
}
.

Since F ′ is not deterministic, a sequence of operations no longer uniquely determines the resulting state
and response value.

Operations and histories. The clients interact with F through operations provided by F . As opera-
tions take time, they are represented by two events occurring at the client, an invocation and a response.
A history of an execution σ consists of the sequence of invocations and responses of F occurring in σ.
An operation is complete in a history if it has a matching response.

An operation o precedes another operation o′ in a sequence of events σ, denoted o <σ o′, whenever o
completes before o′ is invoked in σ. A sequence of events π preserves the real-time order of a history σ if
for every two operations o and o′ in π, if o <σ o′ then o <π o′. Two operations are concurrent if neither
one of them precedes the other. A sequence of events is sequential if it does not contain concurrent
operations. For a sequence of events σ, the subsequence of σ consisting only of events occurring at
client Ci is denoted by σ|Ci (we use the symbol | as a projection operator). For some operation o, the
prefix of σ that ends with the last event of o is denoted by σ|o.

An operation o is said to be contained in a sequence of events σ, denoted o ∈ σ, whenever at least
one event of o is in σ. We often simplify the terminology by exploiting that every sequential sequence

5

of events corresponds naturally to a sequence of operations, and that analogously every sequence of
operations corresponds to a sequential sequence of events.

An execution is well-formed if the events at each client are alternating invocations and matching
responses, starting with an invocation. An execution is fair, informally, if it does not halt prematurely
when there are still steps to be taken or messages to be delivered (see the standard literature for a formal
definition [12]). We are interested in a protocol where the clients never block each other. Assuming the
server is correct, then every operation of a client should complete independently of the other clients, and
only through steps of the client and the server. We call such a protocol wait-free.

Consistency properties. Clients interact with F via operations. Recall that every operation at a client
Ci is associated with an invocation and a response event that occurs at Ci. We say that Ci executes an
operation between the corresponding invocation and completion events.

Definition 1 (View). A sequence of events π is called a view of a history σ at a client Ci w.r.t. a
functionality F if:

1. π is a sequential permutation of some subsequence of complete operations in σ;
2. all complete operations executed by Ci appear in π; and
3. π satisfies the sequential specification of F .

Definition 2 (Linearizability [9]). A history σ is linearizable w.r.t. a functionality F if there exists a
sequence of events π such that:

1. π is a view of σ at all clients w.r.t. F ; and
2. π preserves the real-time order of σ.

Definition 3 (Fork-linearizability [15]). A history σ is fork-linearizable w.r.t. a functionality F if for
each client Ci there exists a sequence of events πi such that:

1. πi is a view of σ at Ci w.r.t. F ;
2. πi preserves real-time order of σ; and
3. for every client Cj and every operation o ∈ πi ∩ πj it holds that πi|o = πj |o.

Definition 4 (Fork-linearizable Byzantine emulation [4]). We say that a protocol P for a set of clients
emulates a functionality F on a Byzantine server S with fork-linearizability if and only if in every fair
and well-formed execution of P , the sequence of events observed by the clients is fork-linearizable with
respect to F , and moreover, if S is correct, then the execution is linearizable w.r.t. F .

Cryptography. In this paper, we make use of several cryptographic primitives, namely hash functions
and digital signatures. A hash function hash maps a bit string x of arbitrary length to a short, unique
representation of fixed length. We use a collision-free hash function; this property ensures that it is
computationally infeasible to produce two different inputs x and x′ such that hash(x) = hash(x′). A
digital signature scheme provides two operations, sign and verify. We parametrize these operations for
each clientCi as signi and verifyi. The invocation of signi takes a bit stringm as a parameter and returns
a signature φ with the response. The verifyi operation takes a string m, and a putative signature φ as
parameters and returns a Boolean value. It satisfies that verifyi(m,φ) is true for all i and m if and only
if Ci has executed signi(m) = φ before. Only Ci may invoke signi(·), but every client and S may
invoke verifyi.

6

3 The commutative-operation verification protocol

The pseudocode of COP for the clients and the server is presented in Figures 1–3. We assume that the
execution of each client is well-formed and fair.

Notation. The function length(a) for a list a denotes the number of elements in a. Several variables
are dynamic arrays or maps, which associate keys to values. A value is stored in a map H by assigning
it to a key, denoted H[k]← v; if no value has been assigned to a key, the map returns ⊥. Recall that F ′

is the abortable extension of functionality F .

Overview. COP adopts the structure of previous protocols that guarantee fork-linearizable seman-
tics [15, 19, 1]. It aims at obtaining a globally consistent order for the operations of all clients, as
determined by the server.

When a client Ci invokes an operation o, he sends a INVOKE message to the server S. He expects to
receive a REPLY message from S telling him about the position of o in the global sequence of operations.
The message contains the operations that are pending for o, that is, operations that Ci may not yet know
and that are ordered before o by S. We distinguish between pending-other operations invoked by other
clients and pending-self operations, which are operations executed by Ci up to o.

ClientCi then verifies that the data from the server is consistent. In order to ensure fork-linearizability
for his response values, the client first simulates the pending-self operations and tests if o commutes with
the pending-other operations. If the test succeeds, he declares o to be successful, executes o, and com-
putes the response r according to F ; otherwise, O is aborted and the response is r = ⊥. According to
this, the status of o is either SUCCESS or ABORT. Through these steps the client commits o. Then he
sends a corresponding COMMIT message to S and outputs r.

The server records the committed operation and relays it to all clients via a BROADCAST message.
When the client receives such a broadcasted operation, he verifies that it is consistent with everything
the server told him so far. If this verification succeeds, we say that the client confirms the operation. If
the operation’s status was SUCCESS, then the client executes it and applies it to his local state.

Data structures. Every client locally maintains a set of variables during the protocol. The state s ∈ S
is the result of applying all successful operations, received in BROADCAST messages, to the initial
state s0. Variable c stores the sequence number of the last operation that the client has confirmed. H is
a map containing a hash chain computed over the global operation sequence as announced by S. The
contents ofH are indexed by the sequence number of the operations, such that entryH[l] is computed as
hash(H[l − 1]‖o‖l‖i) and represents operation o with sequence number l executed by Ci. A variable u
is set to o whenever the client has invoked an operation o but not yet completed it; otherwise u is ⊥.
Variable Z maps the sequence number of every operation that the client has executed himself to the
status of the operation.

The server also keeps several variables locally. She stores the invoked operations in a map I and
the completed operations in a map O, both indexed by the operations’ sequence numbers. Variable t
determines the global sequence number for the invoked operations. Finally, variable b is the sequence
number of the last broadcasted operation and ensures that S disseminates operations to clients in the
global order.

Protocol. When client Ci invokes an operation o, he stores it in u and sends an INVOKE message to
S containing o, c, and τ , a digital signature computed over o and i. In turn, a correct S sends a REPLY

message with the list ω of pending operations; they have a sequence number greater than c. Upon

7

Algorithm 1 Commutative-operation verification protocol (client Ci)
State

u ∈ O ∪ {⊥}: the operation being executed currently or ⊥ if no operation runs, initially ⊥
c ∈ N0: sequence number of the last operation that has been confirmed, initially 0
H : N0 → {0, 1}∗: hash chain (see text), initially containing only H[0] = NULL

Z : N0 → Z: status map (see text), initially empty
s ∈ S: current state, after applying operations, initially s0

upon invocation o do
u← o
τ ← signi(INVOKE‖o‖i)
send message [INVOKE, o, c, τ] to S

upon receiving message [REPLY, ω] from S do
γ ← 〈〉 // list of pending-other operations
µ← 〈〉 // list of successful pending-self operations
k ← 1
while k ≤ length(ω) do

(o, j, τ)← ω[k]
l← c+ k // promised sequence number of o
if not verifyj(τ, INVOKE‖o‖j) then

halt
if H[l] = ⊥ then

if H[l − 1] = ⊥ then
halt // server replies are inconsistent

H[l]← hash(H[l − 1]‖o‖l‖j)
else if H[l] 6= hash(H[l − 1]‖o‖l‖j) then

halt // server replies are inconsistent
if j = i ∧ Z[l] = SUCCESS then

µ← µ ◦ 〈o〉
else if j 6= i then

γ ← γ ◦ 〈o〉
k ← k + 1

if k = 1 ∨ o 6= u ∨ j 6= i then
halt // last pending operation must equal the current operation

(a, r)← F (s, µ) // compute temporary state with successful pending-self operations
if commuteF (a, 〈o〉, γ) then

(a, r)← F (a, o)
Z[l]← SUCCESS

else
r ← ⊥
Z[l]← ABORT

φ← signi
(

COMMIT‖u‖l‖H[l]‖Z[l]
)

send message [COMMIT, u, l,H[l], Z[l], φ] to S
u← ⊥
return r

8

Algorithm 2 Commutative-operation verification protocol (client Ci, continued)
upon receiving message [BROADCAST, o, q, h, z, φ, j] from S do

if not
(
q = c+ 1 and verifyj(φ, COMMIT‖o‖q‖h‖z)

)
then

halt // server replies are not consistent
if H[q] = ⊥ then // operation has not been pending at client

H[q]← hash(H[q − 1]‖o‖q‖j)
if h 6= H[q] then

halt // server replies are not consistent, operation is not confirmed
if z = SUCCESS then

(s, r)← F (s, o) // apply the operation and ignore response
c← c+ 1

Algorithm 3 Commutative-operation verification protocol (server S)
State

t ∈ N0: sequence number of the last invoked operation, initially 0
b ∈ N0: sequence number of the last broadcasted operation, initially 0
I : N→ O× N0 × {0, 1}∗: invoked operations (see text), initially empty
O : N→ O× {0, 1}∗ ×Z × {0, 1}∗ × N: committed operations (see text), initially empty

upon receiving message [INVOKE, o, c, τ] from Ci do
t← t+ 1
I[t]← (o, i, τ)
ω ← 〈I[c+ 1], I[c+ 2], . . . , I[t]〉 // include non-committed operations and o
send message [REPLY, ω] to Ci

upon receiving message [COMMIT, o, q, h, z, φ] from Ci do
O[q]← (o, h, z, φ, i)
while O[b+ 1] 6= ⊥ do // broadcast operations ordered by their sequence number

b← b+ 1
(o, h′, z′, φ′, j)← O[b]
send message [BROADCAST, o, b, h′, z′, φ′, j] to all clients

9

receiving a REPLY message, the client checks that ω is consistent with any previously sent operations
and uses ω to assemble the successful pending-self operations µ and the pending-other operations γ. He
then determines whether o can be executed or has to be aborted.

In particular, during the loop in Algorithm 1, for every operation o in ω, Ci determines its sequence
number l and verifies that o was indeed invoked by Cj from the digital signature. He computes the entry
of o in the hash chain from o itself, l, j, and H[l − 1]. If H[l] = ⊥, then Ci stores the hash value there.
Otherwise, if H[l] has already been set, Ci verifies that the hash values are equal; this means that o is
consistent with the pending operation(s) that S has sent previously with indices up to l.

If operation o is his own and its saved status in Z[l] was SUCCESS, then he appends it to µ. The
client remembers the status of his own operations in Z, since commuteF depends on the state and that
could have changed if he applied operations after committing o.

Finally, when Ci reaches the end of ω (i.e., when Ci considers o = u), he checks that ω is not empty
and that it contains o at the last position. He then creates a temporary state a by applying µ to the current
state s, and tests whether o commutes with the pending-other operations γ in a. If they do, he records
the status of o as SUCCESS in Z[l] and computes the response r by executing o on state a. If o does not
commute with γ, he sets status of o to ABORT and r ← ⊥. Then Ci signs o together with its sequence
number, status, and hash chain entry H[l] and includes all values in the COMMIT message sent to S.

Upon receiving a COMMIT message for an operation o with a sequence number q, the server records
its content as O[q] in the map of committed operations. Then she is supposed to send a BROADCAST

message containing O[q] to the clients. She waits with this until she has received COMMIT messages
for all operations with sequence number less than q and broadcasted them. This ensures that completed
operations are disseminated in the global order to all clients. Note that this does not forbid clients from
progressing with their own operations as we explain below.

In a BROADCAST message received by client Ci, the committed operation is represented by a tuple
(o, q, h, z, φ, j). He conducts several verification steps before confirming the operation o and applying
it to his state s. First, he verifies that the sequence number q is the next operation according to his
variable c, hence, o follows the global order and the server did not omit any operations. Second, he uses
the digital signature φ on the information in the message to verify that the client Cj indeed committed o.
Lastly, the client computes his own hash-chain entry H[q] for o and confirms that it is equal to the
hash-chain value h from the message. This ensures that Ci and Cj have received consistent operations
from S up to o. Once the verification succeeds, the client applies o to his state s only if its status z was
SUCCESS, that is, when Cj has not aborted o.

Memory requirements. For saving storage space, the client may garbage-collect entries of H and Z
with sequence numbers smaller than c. The server can also save space by removing the entries in I and
O for the operations that she has broadcast. However, if new clients are allowed to enter the protocol,
the server should keep all operations in O and broadcast them to new clients upon their arrival.

With the above optimizations the client has to keep only pending operations in H and pending-self
operations in Z. The same holds for the server: the maximum number of entries stored in I and O is
proportional to the number of pending operations at any client.

Communication. Every operation executed by a client requires him to perform one roundtrip to the
server: send an INVOKE message and receive a REPLY. For every executed operation the server simply
sends a BROADCAST message. Clients do not communicate with each other in the protocol. However,
as soon as they do, they benefit from fork-linearizability and can easily discover a forking attack by
comparing their hash chains.

Messages INVOKE, COMMIT and BROADCAST are all of constant size, while the REPLY message

10

contains the list of pending operations ω. If even one client is slow, then the length of ω for all other
clients grows proportionally to the number of further operations they are executing. To reduce the size
of REPLY messages, the client can remember all pending operations received from S, and S can send
every pending operation only once.

Wait-freedom. Every client executing COP can proceed with an operation o for F as long as it does
not conflict with pending operations of other clients. He outputs the response immediately after receiv-
ing the REPLY message from S. A conflict arises when o does not commute with the pending operations
of other clients. In this case, the client aborts o and outputs ⊥, according to F ′.

It is important that the state used by the client for executing o reflects all of his own operations
executed so far, even if he has not yet confirmed or applied them to his state because operations of
other clients have not yet completed. Otherwise, the protocol might violate fork-linearizability. COP
is wait-free because regardless of whether operation o aborts, the client may proceed executing further
operations.

4 Analysis

Theorem 1. The commutative-operation verification protocol in Figures 1–3 emulates functionality F ′

on a Byzantine server with fork-linearizability.

We prove this theorem through a sequence of lemmas in the remainder of this section. We start by
introducing additional notation.

When a client issues a COMMIT signature for some operation o, we say that he commits o. The
client’s sequence number included in the signature thus becomes the sequence number of o; note that
with a faulty S, two different operations may be committed with the same sequence number by separate
clients.

Lemma 2. If the server is correct, then every history σ is linearizable w.r.t. F ′. Moreover, if the clients
execute all operations sequentially, then σ is linearizable w.r.t. F .

Proof. Recall that σ consists of invocation and response events. We construct a sequential permutation π
of σ in terms of the operations associated to the events in σ. Note that a client sends an INVOKE message
with his operation to the server, the server assigns a sequence number to the operation and sends it
back. The client then computes the response and sends a signed COMMIT message to S, containing the
operation and its sequence number. Since each executed operation appears in σ in terms of its invocation
and response events, π contains all operations of all clients.

We order π by the sequence number of the operations. If the server is correct she processes INVOKE

messages in the order they are received and assigns sequence numbers accordingly. This implies that
if an operation o′ is invoked after an operation o completes, then the sequence number of o′ is higher
than o’s. Hence, π preserves the real-time order of σ.

We now use induction on the operations in π to show that π satisfies the sequential specification
of F ′. Note that F ′ requires a bit of care, as it is not deterministic. For a sequence ω of operations
of F ′ in an actual execution, we write successful(ω) for the subsequence whose status was SUCCESS;
restricted to such operations, F ′ is deterministic. In particular, consider some operation o ∈ π, executed
by client Ci. We want to show that Ci computes (s′, r) such that (s′, r) ∈ F ′(s0, successful(π|o)),
whereby it outputs r after committing o and stores s′ in its variable s after applying o.

Consider the base case where o is the first operation in π. Note that S has not reported any pending
operations to Ci because o is the first operation. Thus, Ci determines that the status of o is SUCCESS,

11

computes (s′, r) ← F (s0, o) and outputs r. Hence, F ′ is satisfied. When Ci later receives o in the
BROADCAST message from S with sequence number 1, the state is also updated correctly.

Now consider the case when o is not the first operation in π and assume that the induction assumption
holds for an operation that appears in π before o. If the status of o is ABORT, then the client does not
invoke F , returns ⊥, and leaves the state unchanged upon applying o. The claim follows.

Otherwise, we need to show that the response r 6= ⊥ and the state s′ after applying o satisfy (s′, r) =
F (s0, successful(π|o)). Since S is correct, she assigns unique sequence numbers to the operations. We
split the operations with a sequence number smaller than that of o in three groups: a sequence ρ of
operations that Ci has confirmed before he committed o, this sequence is in the order in which Ci
confirmed these operations; a sequence δ of operations of other clients that were reported by S as
pending to Ci when executing o, ordered as in the REPLY message; and a sequence ν of operations that
Ci has committed itself before o but not yet confirmed or applied, ordered by their sequence number.

Observe thatCi computes r starting from its own copy of the state s̄ that results after applying all op-
erations in successful(ρ). From the induction assumption, it follows that (s̄, ·) = F (s0, successful(ρ))
because ρ is a prefix of π. From variable ω in the REPLY message, Ci computes the pending-other
operations γ and the successful pending-self operations µ. Note that γ = δ and µ = successful(ν)
as the server is correct. The client computes a temporary state (a, ·) = F (s̄, µ). Because o does
not abort, Ci has determined that o commutes with γ in a and computed (·, r) = F (a, o). By the
definition of commuting operation sequences, we have that (s′, r) = F (a, successful(γ) ◦ o) and
(s′, r) = F (s̄, successful(ω)) since the order of operations in µ and γ is preserved in ω. Hence,
(s′, r) = F (s0, successful(π|o)).

The sequence π preserves the real-time order of σ and satisfies the three conditions of a view of σ
at every client Ci w.r.t. F ′, hence, σ is linearizable w.r.t. F ′.

The second part of the lemma claims that if clients execute operations sequentially, then no client
outputs ⊥. Since the sequence of events at every client is well-formed, a client does not invoke an
operation before he has completed the previous one. Moreover, if clients execute operations sequentially
then no client invokes an operation while there is a client who has not completed his operation. Hence,
the server never includes any pending operations in ω of the REPLY message. The check for conflicts is
never positive, and all operations have status SUCCESS. Hence, no client returns ⊥ and σ satisfies the
sequential specification of F .

The promised view of an operation. Suppose a client Ci executes and thereby commits an opera-
tion o. We define the promised view to Ci of o as the sequence of all operations that Ci has confirmed
before committing o, concatenated with the sequence ω of pending operations received in the REPLY

message during the execution of o, including o itself (according to the protocol Ci verifies that the last
operation in ω is o).

Lemma 3. If Cj has confirmed some operation o that was committed by a client Ci, then the sequence
of operations that Cj has confirmed up to (and including) o is equal to the promised view to Ci of o In
particular,

1. if Ci and Cj have confirmed an operation o, then they have both confirmed the same sequence of
operations up to o; and

2. the promised view to Ci of o contains all operations executed by Ci up to o.

Proof. Note that every client computes a hash chain H in which every defined entry contains a hash
value that represents a sequence of operations. More precisely, if Ci commits o with sequence number l,
then he has set H[l]← hash(H[l − 1]‖o‖l‖i); this step recursively defines the sequence represented by
H[l] as the sequence represented by H[l− 1] followed by o. According to the collision-resistance of the

12

hash function, no two different operation sequences are represented by the same hash value. Note that
no client ever overwrites an entry of H; moreover, if a client arrives at a point in the protocol where he
might assign some value h to entry H[l] but H[l] 6= ⊥, then he verifies that H[l] = h and aborts if this
fails.

Consider the moment when Ci receives the REPLY message during the execution of o. The view of
o promised to Ci contains the sequence of operations that Ci has confirmed, followed by the list ω in
the REPLY message, including o.

For every pending operation p ∈ ω, client Ci checks if he has already an entry inH at index l, which
is the promised sequence number of p to Ci according to ω. If there is no such entry, he computes the
hash value H[l] as above. Otherwise, Ci must have received an operation for sequence number l earlier,
and so he verifies that o is the same pending operation as received before. Moreover, Ci verifies that his
last invoked operation is also returned to him as pending and adds it to H . Hence, the new hash value h
stored in H at the sequence number of o represents the promised view to Ci of o.

Subsequently, Ci signs o and h together and sends it to the server. Client Cj receives it in a BROAD-
CAST message from S, to be confirmed and applied with sequence number q. Because Cj verifies the
signature of Ci on o, q, and h, the hash value h received by Cj represents the promised view to Ci of
o. Before Cj applies o as his q-th operation, according to the protocol he must have already confirmed
q − 1 operations one by one. Client Cj also verifies that he has either already computed the same
H[q] = h or he computes H[q] from his value H[q − 1] and checks H[q] = h. As H[q] represents the
sequence of operations that Cj has confirmed up to o, from the collision resistance of the hash function,
this establishes the main statement of the lemma.

The first additional claim follows simply by noticing that the statement of the lemma holds for i = j.
For showing the second additional claim, we note that if Ci confirms an operation of himself, then he
has previously executed it (successful or not). There may be additional operations that Ci has executed
but not yet confirmed, but Ci has verified according to the above argument that these were all contained
in ω from the REPLY message. Thus they are also in the promised view of o.

The view of a client. We construct a sequence πi from σ as follows. Let o be the operation committed
by Ci which has the highest sequence number among those operations of Ci that have been confirmed
by some client Ck (including Ci). Define αi to be the sequence of operations confirmed by Ck up to
and including o. Furthermore, let βi be the sequence of operations committed by Ci with a sequence
number higher than that of o. Then πi is the concatenation of αi and βi. Observe that by definition, no
client has confirmed operations from βi.

Lemma 4. The sequence πi is a view of σ at Ci w.r.t. F ′.

Proof. Note that πi is defined through a sequence of operations that are contained in σ. Hence πi is
sequential by construction.

We now argue that all operations executed by Ci are included in πi. Recall that πi = αi ◦ βi and
consider o, the last operation in αi. As o has been confirmed by Ck, Lemma 3 shows that αi is equal
to the promised view to Ci of o and, furthermore, that it contains all operations that Ci has executed
up to o. By construction of πi all other operations executed by Ci are contained in βi, and the property
follows.

The last property of a view requires that πi satisfies the sequential specification of F ′. Note that F ′

is not deterministic and some responses might be ⊥. But when we ensure that two operation sequences
of F ′ have responses equal to ⊥ in exactly the same positions, then we can conclude that two equal
operation sequences give the same resulting state and responses from the fact that F is deterministic.

We first address the operations in αi. Consider again o, the last operation in αi, which has been
confirmed byCk. For the point in time whenCi executes o, define ρ to be the sequence of operations that

13

Ci has confirmed prior to this and define s̄ as the resulting state from applying the successful operations
in ρ, as stored in variable s; furthermore, let ω be the pending operations contained in the REPLY

message from S. Observe that ω can be partitioned in the pending-other operations γ, the successful
pending-self operations of Ci as stored in µ, the aborted pending-self operations of Ci, and o. Client Ci
computes the response r for o in state a that results from F (s, µ). Before executing o, Ci verifies that o
commutes with γ in a. Note that when Ci committed some operation p ∈ µ he has also verified that p
commuted with the pending-other operations in ω|p. Hence, the response resulting from executing the
operations in ρ followed by µ◦o is the same as that resulting from executing µ◦successful(γ)◦o after ρ
(recall the notation successful(·) from Lemma 2). Since ω preserves the order of operations in µ and
γ, the response is also the same after the execution of ρ ◦ successful(ω). Moreover, the state resulting
from executing the operations in ρ followed by µ ◦ successful(γ) ◦ o is the same as that resulting from
executing ρ ◦ successful(ω). Since ρ ◦ ω is the promised view to Ci of o, and since Ck has confirmed o,
Lemma 3 now implies that ρ ◦ ω is equal to αi.

To conclude the argument, we only have to show that the abort status for all operations in the
sequences is the same. Then they will produce the same responses and the same final state. Note
that when Ci executes some operation o he either computes a response according to F or aborts the
operation, declaring its status to be SUCCESS or ABORT, respectively. For operations in ρ this is clear
from the protocol as the status is included in the BROADCAST message. And whenever Ci later obtains
o again as a pending-self operation in ω at some index l, he verifies that it is the same operation as
previously at index l and applies or skips it as before according to the status remembered in Z[l]. Hence,
the responses of Ci from executing the operations in αi respect the specification of F ′.

The remainder of πi consists of βi, whose operations Ci executes himself using F ′. Hence, πi
satisfies the sequential specification of F ′.

Lemma 5. If some client Ck confirms an operation o1 before an operation o2, then o2 does not precede
o1 in the execution history σ.

Proof. Let δk denote the sequence of operations that Ck has confirmed up to o2. According to the
protocol logic, δk contains o1, and o1 has a smaller sequence number than o2. Lemma 3 shows that δk
is equal to the promised view to Ck of o2, hence, o1 is in the promised view to Ck of o2. Recall that the
promised view contains operations that have been committed or are pending for other clients. Hence, o1
has been invoked before o2 completed.

Lemma 6. The sequence πi preserves the real-time order of σ.

Proof. Recall that πi = αi ◦ βi and consider first those operations of πi that appear in αi, that is, they
have been confirmed by some client Ck. Lemma 5 shows that these operations preserve the real-time
order of σ. Second, the operations in βi are ordered according to their sequence number and they were
committed by Ci. According to the protocol, Ci executes only one operation at a time and always
assigns a sequence number that is higher than the previous one. Hence, βi also preserves the real-time
order of σ.

We are left to show that no operation in βi precedes an operation from αi in σ. Recall that αi is the
promised view to Ci of o (the last operation in αi) and includes the operations that Ci has confirmed or
received as pending from S after Ci invoked o. Since o precedes all operations from βi, it follows that
no operation in αi precedes an operation from βi.

Lemma 7. If o ∈ πi ∩ πj then πi|o = πj |o.

Proof. As πi = αi ◦ βi and πj = αj ◦ βj , we need to consider four cases to analyze all operations that
can appear in πi ∩ πj and the rest are symmetrical.

14

1. o ∈ αi and o ∈ αj : This case happens when (a) Ci and Cj both confirmed o, or when (b) Ci has
confirmed an operation of Cj or vice versa, or when (c) a client Ck has confirmed operations of
Ci and Cj . For (a) and (b) Lemma 3 shows that αi|o = αj |o. In case (c) neither Ci nor Cj has
confirmed o, but o is in their views because Ck has confirmed pending operations of Ci and Cj .
Hence, πk|o = αi|o and πk|o = αj |o again from Lemma 3.

2. o ∈ βi and o ∈ αj : This case cannot happen, since no client has confirmed operations from βi by
definition.

3. o ∈ αi and o ∈ βj : Analogous to the case above.
4. o ∈ βi and o ∈ βj : This case cannot happen since βi and βj contain only pending-self operations

of Ci and Cj , correspondingly.

5 Conclusion

This paper has introduced the Commutative-Operation verification Protocol (COP), which allows a
group of clients to execute a generic service coordinated by a remote untrusted server. COP ensures
fork-linearizability and allows clients to easily verify the consistency and integrity of the service re-
sponses. In contrast to previous work, COP is wait-free and supports commuting operation sequences,
but may sometimes abort conflicting operations.

Given the popularity of outsourced computation and the cloud-computing model, the problem of
checking the integrity of remote computations has received a lot of attention recently [7, 5, 16]. But
such cryptographic protocols typically address only a two-party model with a single client. Combining
them with COP or other protocols that guarantee fork-linearizability will represent an important step
toward a comprehensive consistency-verification solutions for realistic distributed systems.

Acknowledgments

This work has been supported in part by the European Union’s Seventh Framework Programme (FP7/2007–
2013) under grant agreement number ICT-257243 TCLOUDS, and by the United States National Sci-
ence Foundation under grant CNS-1012060.

References

[1] C. Cachin, “Integrity and consistency for untrusted services,” in Proc. 37th Conference on Cur-
rent Trends in Theory and Practice of Computer Science (SOFSEM 2011) (I. Cerná et al., eds.),
vol. 6543 of Lecture Notes in Computer Science, pp. 1–14, Springer, 2011.

[2] C. Cachin, I. Keidar, and A. Shraer, “Fork sequential consistency is blocking,” Information Pro-
cessing Letters, vol. 109, pp. 360–364, Mar. 2009.

[3] C. Cachin, I. Keidar, and A. Shraer, “Fail-aware untrusted storage,” SIAM Journal on Computing,
vol. 40, pp. 493–533, Apr. 2011. Preliminary version appears in Proc. DSN 2009.

[4] C. Cachin, A. Shelat, and A. Shraer, “Efficient fork-linearizable access to untrusted shared mem-
ory,” in Proc. 26th ACM Symposium on Principles of Distributed Computing (PODC), pp. 129–
138, 2007.

15

[5] G. Cormode, M. Mitzenmacher, and J. Thaler, “Practical verified computation with streaming in-
teractive proofs,” in Proc. 3rd Conference on Innovations in Theoretical Computer Science (ITCS),
pp. 90–112, 2012.

[6] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten, “SPORC: Group collaboration using
untrusted cloud resources,” in Proc. 9th Symp. Operating Systems Design and Implementation
(OSDI), 2010.

[7] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable computing: Outsourcing compu-
tation to untrusted workers,” in Advances in Cryptology: CRYPTO 2010 (T. Rabin, ed.), vol. 6223
of Lecture Notes in Computer Science, pp. 465–482, Springer, 2010.

[8] J. Hendricks, S. Sinnamohideen, G. R. Ganger, and M. K. Reiter, “Zzyzx: Scalable fault tolerance
through byzantine locking,” in Proc. 40th International Conference on Dependable Systems and
Networks (DSN-DCCS), 2010.

[9] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition for concurrent objects,”
ACM Transactions on Programming Languages and Systems, vol. 12, pp. 463–492, July 1990.

[10] J. Li, M. Krohn, D. Mazires, and D. Shasha, “Secure untrusted data repository (SUNDR),” in Proc.
6th Symp. Operating Systems Design and Implementation (OSDI), pp. 121–136, 2004.

[11] J. Li and D. Mazières, “Beyond one-third faulty replicas in Byzantine fault-tolerant systems,” in
Proc. 4th Symp. Networked Systems Design and Implementation (NSDI), 2007.

[12] N. A. Lynch, Distributed Algorithms. San Francisco: Morgan Kaufmann, 1996.

[13] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and M. Walfish, “Depot: Cloud
storage with minimal trust,” in Proc. 9th Symp. Operating Systems Design and Implementation
(OSDI), 2010.

[14] M. Majuntke, D. Dobre, M. Serafini, and N. Suri, “Abortable fork-linearizable storage,” in Proc.
13th Conference on Principles of Distributed Systems (OPODIS) (T. F. Abdelzaher, M. Raynal,
and N. Santoro, eds.), vol. 5923 of Lecture Notes in Computer Science, pp. 255–269, Springer,
2009.

[15] D. Mazières and D. Shasha, “Building secure file systems out of Byzantine storage,” in Proc. 21st
ACM Symposium on Principles of Distributed Computing (PODC), 2002.

[16] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, , and M. Walfish, “Taking proof-based
verified computation a few steps closer to practicality,” in Proc. 21st USENIX Security Symposium,
2012.

[17] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and D. Shaket, “Venus: Verification for
untrusted cloud storage,” in Proc. Cloud Computing Security Workshop (CCSW), ACM, 2010.

[18] W. E. Weihl, “Commutativity-based concurrency control for abstract data types,” IEEE Transac-
tions on Computers, vol. 37, pp. 1488–1505, Dec. 1988.

[19] P. Williams, R. Sion, and D. Shasha, “The blind stone tablet: Outsourcing durability to untrusted
parties,” in Proc. Network and Distributed Systems Security Symposium (NDSS), 2009.

16

