

RZ 3845 (#ZUR1607-030) 07/13/2016
Computer Sciences 11 pages

Research Report

jVerbs: RDMA support for Java®

Patrick Stuedi, Bernhard Metzler, Animesh Kumar Trivedi

IBM Research – Zurich

8803 Rüschlikon

Switzerland

 Research
 Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

jVerbs: RDMA support for Java

Patrick Stuedi
IBM Research, Zurich
stu@zurich.ibm.com

Bernard Metzler
IBM Research, Zurich
bmt@zurich.ibm.com

Animesh Trivedi
IBM Research, Zurich
atr@zurich.ibm.com

Abstract

We present jVerbs, an API and library offering full
RDMA semantics in Java. jVerbs achieves bare-metal
latencies in the order of single digit microseconds for
reading small byte buffers from a remote host’s memory.
In the paper, we discuss the design and implementation
of jVerbs and demonstrate its advantages with several ap-
plications.

1 Introduction

There has been an increasing interest in low latency for
data center applications. Remote Direct Memory Ac-
cess (RDMA) is a standard for efficient and low la-
tency memory to memory data transfer between two net-
worked hosts. RDMA provides zero copy, kernel bypass
as well as enhanced networking semantics such as one-
sided operations and clean separation of paths for data
and control operations. Traditionally, RDMA techniques
have been employed in high-performance computing [3].
Consequently, the interfaces to the RDMA network stack
are in native languages like C. In contrast, today many
data center applications and even large parts of the soft-
ware infrastructure for data centers are written in Java.
Therefore, proper RDMA support in Java will be nec-
essary to avoid giving away the latency advantages of
modern network interconnects.

One obstacle towards achieving this goal is that
RDMA requires direct access to the networking hard-
ware from user space. Java proposes the Java Native In-
terface (JNI) to provide Java applications with access to
low level tasks that are best implemented in C. Cross-
ing the Java-native boundaries, however, is known to be
costly. Even though JNI performance has improved, the
performance penalties are still significant compared to
the latencies of modern high-speed interconnects.

Luckily, Java as a language has evolved offering more
options for implementing efficient RDMA support in

Java. We present jVerbs, an API and library for Java
offering full RDMA semantics and bare-metal latencies
(up to 4-7 microseconds) for reading small byte buffers
from a remote host’s memory. jVerbs operates in con-
cert with the rest of Linux RDMA ecosystem and works
with existing RDMA devices (both software and hard-
ware based). In the paper we discuss the design and im-
plementation of jVerbs and demonstrate how it can be
used to boost the performance of existing data center ap-
plications such as a distributed cache and web services.

2 The Java Latency Gap

Network latencies seen by Java applications on modern
high speed interconnects are lagging far behind the low-
est possible latencies that can be achieved with applica-
tions written in C. This is partially due to the additional
overhead imposed by Java but also due to the limited
capabilities in Java to leverage the hardware features of
modern interconnects. To illustrate this situation we per-
formed a set of experiments comparing the latencies seen
by applications written in Java and C, respectively.

In the first set of experiments we measure the round-
trip latency of a 64 byte message exchanged between two
hosts connected by a 10 Gbit/s Ethernet network. In the
experiment we use Chelsio T4 NICs which can be used
both in full RDMA and Ethernet only mode. As can
be seen from Figure 1, when implemented in Java us-
ing regular TCP-based sockets this benchmark achieves
a latency of 47µs. The same benchmark implemented in
C achieves a latency of 35µs. The performance differ-
ence can mainly be attributed to the longer code path of
Java.

We set these results in relation to the latency achiev-
able if RDMA is deployed in the same network setup.
Here, we further distinguish between (a) using the
RDMA send/recv model which resembles the socket
behavior and (b) taking full advantage of RDMA se-
mantics through one-sided read operations (see Sec-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 ETH IB

la
te

n
cy

 [
u
s]

Java/NIO
C/sockets

C/RDMA send/recv
C/RDMA read

Figure 1: Request/response latencies on modern inter-
connects. There exists a significant latency gap between
Java and other implementations.

tion 3 for details). By applying the send/recv model,
RDMA protocol offloading and zero copy data move-
ment already speeds up the latency to 30µs. Using
RDMA read operations the round trip latency further
decreases to only 7µs.

In a second set of experiments we exchanged Ethernet
with another RDMA interconnect, namely InfiniBand.
Infiniband uses a different network link technology and
is mainly deployed in high-performance computing. The
measurements show an even more dramatic latency gap
between the C application running over InfiniBand and
using Java on this technology. This increased perfor-
mance discrepancy is mainly caused by the InfiniBand
stack being highly optimized for direct RDMA opera-
tions but not for being accessed via sockets/TCP. With
that, the plain Java-based implementation ends up lag-
ging behind by up to 70µs when compared to an RDMA-
based implementation written in C.

Those measurements yield two main results. First,
better RDMA support in Java is necessary if we want
Java applications to benefit from the latency advantages
of modern interconnects. Second, only making the
whole set of RDMA semantics directly available within
Java has the potential to unleash the full RDMA perfor-
mance to its applications. jVerbs accommodates both tar-
gets. To show the motivation behind its design, in the
next two sections we describe the core elements of the
RDMA technology and discuss the challenges in provid-
ing RDMA in Java.

3 Background

We briefly provide the necessary background informa-
tion about RDMA, its API, and implementation in Linux.
A more detailed introduction into RDMA can be found
in [7].

RDMA Semantics: RDMA provides both send/re-

ceive type communication and RDMA operations. With
RMDA send/recv – also known as two-sided op-
erations – the sender sends a message, while the re-
ceiver pre-posts an application buffer, indicating where
it wants to receive data. This is similar to the traditional
socket based communication semantics. RDMA oper-
ations comprise read, write, and atomics, com-
monly referred to as one-sided operations. These op-
erations require only one peer to actively read, write, or
atomically manipulate remote application buffers.

In contrast to the socket model, RDMA fully separates
data transfer operations from control operations. This fa-
cilitates pre-allocation of communication resources e.g
application buffer registration, connection endpoint and
work queue allocations etc. Separating a fast data path
from a control path enables implementing very fast dis-
patching of data transfer operations without operating
system involvement and is key for achieving ultra-low
latencies.

API: Applications interact with the RDMA subsystem
through a “verbs” interface, a loose definition of API
calls providing aforementioned RDMA semantics [8].
By avoiding a concrete syntax, the verbs definition al-
lows for different platform specific implementations.

To exemplify a control type verb, the create qp()
creates a queue pair of send and receive queues for hold-
ing application requests for data transfer. Data operations
such as post send() or post recv() allow ap-
plications to asynchronously post data transfer requests
into the send/receive queues. Completed requests are
placed into an associated completion queue, allocated
via the create cq() verb. The completion queue can
be queried by applications either in polling mode or in
blocking mode.

The verbs API also defines scatter/gather data access
to minimize the number of interactions between appli-
cations and RDMA devices. Furthermore, multiple re-
quests can be submitted by a single post send() or
post recv() call.

Implementation: Today concrete RDMA implemen-
tations are available for multiple interconnect technolo-
gies, such as InfiniBand, iWARP, or RoCE. OpenFabrics
is a widely accepted effort to integrate all these technolo-
gies from different vendors and to provide a common
RDMA application programming interface implement-
ing the RDMA verbs.

As a software stack, the OpenFabrics Enterprise Dis-
tribution (OFED) spans both the operating system kernel
and user space. At kernel level, OFED provides an um-
brella framework for hardware specific RDMA drivers.
These drivers can be software emulations of RDMA de-
vices, or regular drivers managing RDMA network inter-
faces such as Chelsio T4. At user level, OFED provides
an application library implementing the verbs interface.

2

acr
Typewritten Text

acr
Typewritten Text

RTT JNI costs Overhead
2000/VIA 70µs 20µs 29%
2012/RDMA 3-7µs 2-4µs 28-133%

Table 1: Network latencies and accumulated JNI
costs per data transfer in 2000 and 2012. Assum-
ing four VIA operations with base-type parameter
per network operation [11], and two RDMA opera-
tions with complex parameters per network operation
(post send()/poll cq()).

Control operations involve both the OFED kernel and
userspace verbs library. In contrast, operations for send-
ing and receiving data are implemented by directly ac-
cessing the networking hardware from user space.

4 Challenges

Java proposes the Java Native Interface (JNI) to give ap-
plications access to low-level functionality that is best
implemented in C. Unfortunately, the overhead of cross-
ing the boundary between Java and C can be quite high,
especially for function calls with complex parameters.
This is bad news since the key data operations in RDMA
like post send(), post recv() and poll cq()
all take arrays of complex data types as parameters.

Direct userland network access for Java has been in-
vestigated in the late 90s in the context of the virtual
interface architecture (VIA). Jaguar [11] is the most
sophisticated approach of that time and also closest
to jVerbs. Inevitably, Jaguar discusses the performance
overhead of using JNI to access networking hardware
from Java. The numbers reported are in the order of
1µs for a simple JNI call without parameters, and 10s
of µs for more complex JNI calls. Copying data across
the JNI boundary though, is the most expensive opera-
tion of all with 270 µs per kB of data. These numbers
are best viewed in relation to the round-trip latency of
∼ 70µs measured natively on VIA. Today, we know that
ping/pong latencies of single digit microseconds are pos-
sible with modern RDMA interconnects. Thus, we made
several experiments to see how a potential JNI solution
would fit into the RDMA latency landscape. We found
improved JNI overheads of about 100ns for simple JNI
calls without parameters but 1−2 µs for more complex
JNI calls similar to the post send() verb call.

Considering that multiple verb calls are necessary for
a single message round-trip, these numbers add a signifi-
cant fraction to the RDMA latency. This is an optimistic
calculation, looking at RDMA operations referencing a
single buffer only. The JNI overhead for scatter/gather
operations can easily reach multiples of microseconds.

jVerb call description

C
on

tr
ol

jv create qp() create send/recv queue
jv create cq() create completion queue

jv reg mr() register memory with device
jv connect() setup an RDMA connection

D
at

a

jv post send() post operation(s) to send queue
jv post recv() post operation(s) to recv queue

jv poll cq() poll completion queue
jv get cq evt() wait for completion event

Table 2: Most prominent API calls in jVerbs.

The key take away here is that the JNI overhead for com-
plex function calls (including arrays and complex data
types) is inacceptable when implementing a low latency
network stack. The overhead of simple function calls
(with just base-type parameters), however, does not add
significant costs to the overall latency.

5 Design of jVerbs

In this section we describe some of the design decisions
we made in jVerbs .

5.1 jVerbs API
The verbs interface is not the only RDMA API, but
it represents the “native” API to interact with RDMA
devices. Other APIs like uDAPL, Rsockets, SDP
or OpenMPI/RDMA are built on top of the verbs,
and typically offer higher levels of abstractions at the
penalty of restricted semantics and lower performance.
With jVerbs as a native RDMA API we decided not
to compromise on available communication semantics
nor minimum possible networking latency. jVerbs pro-
vides access to all the exclusive RDMA features such
as one-sided operations and separation of data and con-
trol, while maintaining a completely asynchronous, event
driven interface. Other higher-level abstractions may be
built on top of jVerbs at a later stage if the need arises.
Table 2 lists some of the most prominent verb calls avail-
able in jVerbs.

5.2 Zero-copy Data Movement
Regular Java heap memory used for storing Java ob-
jects cannot be used as a source or sink in a RDMA op-
eration since this would interfere with the activities of
the garbage collector. Fortunately, support for off-heap
memory has been added to Java since version 1.4.2 of
the Java Development Kit (JDK). Off-heap memory is
allocated in a separate region outside the control of the

3

garbage collector, yet it can be accessed through the reg-
ular Java memory API (ByteBuffer). jVerbs enforces the
use of off-heap memory in all of its data operations. Any
data to be transmitted or buffer space for receiving must
reside in off-heap memory. In contrast to regular heap
memory, off-heap memory can be accessed cleanly via
DMA. As a result, jVerbs enables true zero-copy data
transmission and reception for all application data stored
in off-heap memory. This eliminates the need for data
copying across a JNI interface which we know can easily
cost multiple 10s of microseconds. In practice though, it
looks like at least one copy will be necessary to move
data between its on-heap location and a network buffer
residing off-heap. In many situations, however, this copy
can be avoided by either making sure that network data
resides off-heap from the beginning, or by merging the
copying with object serialization. As an example of the
first, one can imagine a key/value store with the data
store being held in off-heap memory. A good exam-
ple of the second is an RPC call, where the parameters
and result values are marshalled into off-heap memory
instead of marshalling them into regular heap memory.
Both cases will be described in more detail in Section 7.

5.3 Stateful Verb Calls
At its core, any RDMA user library will have to translate
data structures exported in the API into a memory lay-
out for the device. For instance, the post send verb call
requires work descriptors provided by the application to
be written into a mapped device queue in a device spe-
cific format. Such a serialization when done in Java can
easily reach several microseconds; too much given the
single-digit network latencies of modern interconnects.
To mitigate this problem, jVerbs employs a mechanism
called stateful verb calls (SVCs). With SVCs, any state
that is created as part of a jVerbs API call is passed back
to the application and can be reused on subsequent calls.
This mechanism manifests itself directly at the API level:
instead of returning a return value, the verb calls return a
stateful object that represents a verb call for a given set
of parameter values. Each SVC object has the following
four operations associated with it:

• exec(): executes the corresponding jVerbs API
call for the given parameter values;

• result(): returns the result of the
last jVerbs call;

• valid(): is true to indicate that the object can be
executed, false otherwise;

• free(): releases any state associated with this
SVC object;

One key advantage of SVCs is that they can be cached
and re-executed as long as they remain valid. Seman-
tically, each execution of an SVC object is identical to
a jVerbs call evaluated against the current parameter state
of the SVC object. Any serialization state that is neces-
sary while executing the SVC object, however, will only
have to be created when executing the object for the first
time. Subsequent calls use the already established serial-
ization state, and will therefore execute much faster.

Some SVC objects allow for changing the pa-
rameter state after object creation. For instance,
the addresses and offsets of SVC objects returned
by jv post send() and jv post recv() can be
changed by the application if needed. Internally, those
objects update their serialization state incrementally.
Modifications to SVC objects are only permitted as long
as they are not extending the serialization state. Conse-
quently, adding new work requests or scatter/gather el-
ements to a SVC jv post send() object is not al-
lowed.

Stateful verb calls give applications a handle to miti-
gate the serialization cost. In many situations, applica-
tions may only have to create a small number of SVC
objects matching the different types of verb calls they
intend to use. Re-using those objects effectively re-
duces the serialization cost to almost zero as we will
show in Section 8. Figure 2 illustrates programming
with jVerbs and SVCs and compares it to native RDMA
programming in C.

6 Implementation

The implementation of jVerbs follows the abstract fac-
tory pattern. The API is defined as an abstract class
and applications use a factory to create a specific in-
stance of the jVerbs interface. Currently there exist two
separate implementations of the jVerbs interfaces, jVerb-
s/mem which is implemented entirely in Java and jVerb-
s/nat which makes use of JNI in a way that avoids
JNI performance overheads almost completely. From a
performance standpoint jVerbs/mem has a slight edge
over jVerbs/mem. On the other hand jVerbs/nat can run
with any RDMA device currently supported by OFED
which is not true for jVerbs/mem.

Which implementation of the jVerbs library is instan-
tiated is decided by a system property that can be set by
the application. Other than that, the implementation spe-
cific details are completely shielded from the application.
In the following we discuss each of the two implementa-
tions of jVerbs in more detail.

4

/* assumptions: send queue (sq),
completion queue (cq),
work requests (wrlist),
output parameter with
polling events (plist) */

/* post the work requests */
post_send(sq, wrlist);
/* check if operation has completed */
while(poll_cq(cq, plist) == 0);

(a)

RdmaVerbs v = RdmaVerbs.open();
/* post the work requests */
v.jv post send(sq, wrlist).exec().free();
/* check if operation has completed */
while(v.jv poll cq(cq, plist)

.exec().result() == 0);

(b)

RdmaVerbs v = RdmaVerbs.open();
/* create SVCs */
RdmaSVC post = v.jv post send(sq, wrlist)
RdmaSVC poll = v.jv poll cq(cq, plist);
post.exec();
while(poll.exec().result() == 0);
/* modify the work requests */
post.getWR(0).getSG(0).setOffset(32);
/* post again */
post.exec();
while(poll.exec().result() == 0);

(c)

Figure 2: RDMA programming (a) using native C verbs,
(b) using jVerbs, (c) using jVerbs with SVC.

6.1 jVerbs/Mem
jVerbs/mem is an implementation of the jVerbs API en-
tirely written in Java. It is based on two key aspects:
memory mapped hardware access and direct kernel inter-
action. Figure 3 serves as a reference throughout the sec-
tion, illustrating the various aspects of the jVerbs/mem
implementation architecture.

6.1.1 Memory-mapped Hardware Access

As mentioned earlier, for all performance-critical oper-
ations the native C verbs library interacts with RDMA
network devices via three queues: a send queue, a re-
ceive queue and a completion queue. Those queues
represent hardware resources but are mapped into user
space to avoid kernel involvement when accessing
them. jVerbs/mem leverages Java’s off-heap memory

verbs API

user space

kernel space

control path

fast path

 jVerbs core
jVerbs
driver

 driver

 NIC

send/recv/compl queues

work
requests
pointing to
user memory

direct
memory
access

 application

 off-heap memory

JVM
stateful verb call (SVC)

OFED kernel

Figure 3: Architecture of the jVerbs/mem implementa-
tion.

to map these hardware resources into the Java address
space. Fast path operations like jv post send() or
jv post recv() are implemented by directly serial-
izing work requests into the mapped queues. All the op-
erations are implemented entirely in Java, avoiding ex-
pensive JNI calls or modifications to the JVM.

Access to hardware resources is device specific.
Hence, the native C verbs user library contains hooks
for a device specific driver that implements hardware ac-
cess from user space. In jVerbs/mem we follow the same
model, encapsulating the device specific internals into a
separate module (user driver) which interacts with the
core jVerbs library through a well defined user driver
interface. A concrete implementation of this interface
knows the layout of the hardware queues and makes sure
work requests or polling requests are serialized into the
right format. As of now, we have implemented user
drivers for Chelsio T4, Mellanox ConnectX-2 and Softi-
WARP [10].

User drivers typically make use of certain low-level
operations when interacting with hardware devices. For
instance, efficient locking is required to protect hard-
ware queues from concurrent access. Other parts require
atomic access to device memory or guaranteed ordering
of instructions. While such low-level language features
are available in C they have not been widely supported in
Java for years. With the rise of multicore, however, Java
has extended its concurrency API to include many of
these features. For instance, Java has recently added sup-
port for atomic operations and fine grain locking. Based
on those language features it was possible to implement
RDMA user drivers entirely in Java using regular Java
APIs in most of the cases. The only place where Java
reflection was required was to obtain an off-heap
mapping of device memory. This is due to the failure of
Java mmap() to work properly with device files. Look-

5

ing at the Java road map it shows that more low-level
features will be added in the coming releases, making
the development of jVerbs user drivers even more conve-
nient.

6.1.2 Direct Kernel Interaction

The native C verbs library implements control operations
in concert with the RDMA kernel modules. Verbs library
and kernel communicate over a shared file descriptor us-
ing a well defined binary protocol. Control operations
are often referred to as the slow path since they typically
do not implement performance critical operations. This
is, however, only partially true. Certain operations like
memory registration may very well be in the critical path
of applications. To make sure no additional overhead
is imposed for control operations, jVerbs/mem directly
communicates with the RDMA kernel via the same file-
based binary protocol. Again, one alternative would have
been to implement the binary protocol in a C library and
interface with it through JNI. But this comes at a loss of
performance which is unacceptable even in the control
path.

Some RDMA devices require extra parameters to be
passed to the kernel driver during control operations. To
accommodate those needs, jVerbs/mem invokes the user
driver interface before interacting with the kernel.

6.1.3 Stateful Verb Calls in jVerbs/mem

In jVerbs/mem we make use of SVCs to cache all the
serialization state that occurr within the user driver as
part of writing the memory mapped queues. For instance,
work requests are cached as a byte array in a serialized
form for the target device. Upon executing the given verb
call, the serialized byte sequence is unfolded into the
right position within the memory mapped device queue.

6.2 jVerbs/nat
jVerbs/nat is an alternative implementation of the
jVerbs interface working directly with the OFED RDMA
user libraries. This has the advantage that jVerbs/nat can
be used with any RDMA capable network interface sup-
ported by OFED. The challenge was to integrate with
the native OFED user libraries without paying the JNI
latency penalty.

6.2.1 Native Integration

The key insight from section 4 was that the cost of call-
ing a JNI function is significant when passing complex
parameter types, but neglectable when passing base type
parameters. In jVerbs/nat (see Figure 4) we use JNI to
bridge (jverbs.so) between Java and the native libraries

jverbs/nat

verbs API

user space

kernel space

control path

fast path
 driver

 NIC

send/recv/compl queues

work
requests
pointing to
user memory

direct
memory
access

 application
 off-heap memory

JVM
stateful verb call (SVC)

OFED kernel

jverbs.so

ibvers.so user driver

serialized
 parameters

 for
 ibverbs.so

Figure 4: Architecture of the jVerbs/nat implementation.

(ibverbs.so), but we make sure all the JNI function calls
only take a small number of base type parameters as in-
put.

To illustrate the approach let us walk through the call
stack of jVerbs/nat for the case of the jv post send
verb call. An application calls jv post send with a
list of work request referencing memory regions to be
transmitted to a remote host. In jVerbs/nat we want to
call the native post send API function available in the
OFED user library. Calling post send via a regular
JNI interface would, however, impose a significant la-
tency overhead due to marshalling and de-marshalling of
the work requests at the JNI border. Instead, in jVerbs/nat
we serialize the work request directly into off-heap mem-
ory using the native C memory layout. This memory
layout exactly matches the memory layout of the C pa-
rameters that are used for calling the native post send
API function call. With the work requests properly se-
rialized in off-heap memory, passing them to the native
OFED function (post send) simply involves a JNI call
containing a base type parameter holding the address to
the off-heap representation of the parameter. The advan-
tage is that the Java parameters only have to be serialized
once, avoiding the intermediate JNI serialization.

6.2.2 Stateful Verb Calls in jVerbs/nat

The concept of stateful verb calls is used in jVerbs/nat
to cache the aforementioned serialized parameters pre-
pared and ready to use in off-heap memory. That way,
repeating jVerbs API calls will not have to undergo the
parameter translation process (see Figure 4).

7 Applications

RDMA programming is different from socket program-
ming and often requires major re-thinking of application
structures. One key characteristic of RDMA is that it

6

 jVerbs

 application

client

 stub

 NIC

 session
state

off-heap
memory

server

marhalled
parameter

SVC for RPC

1

2

Figure 5: Zero-copy RPC using jVerbs (skipping details
at server): 1) marshalling parameters into off-heap mem-
ory 2) zero-copy transmission of parameters and RPC
header using scatter/gather RDMA send.

cleanly separates data from control operations. This is
done for good reason, namely because it allows applica-
tions to push most of their control operations out of the
critical path. With the control state being set up properly,
applications can benefit from the latency advantages of
fast RDMA data operations. In the following, we de-
scribe the implementation of two systems explicitly de-
signed to achieve low-latencies using jVerbs.

7.1 Low-latency RPC

Remote Procedure Call (RPC) is a popular mechanism to
invoke a function call in a remote address space [5]. Data
center software infrastructure and applications heavily
rely on RPC as a key mechanism for accessing their ser-
vices. Remote Method Invocation (RMI) is Java’s API
and toolset for performing the object oriented equivalent
of RPC. RMI is based on TCP/IP sockets and is therefore
not optimized for high-performance interconnects with
user-level networking interfaces. We have developed
jvRPC, a simple prototype of an RDMA-based RPC sys-
tem for Java. jvRPC makes use of RDMA send/recv
operations and scatter/gather support. The steps involved
in a RPC call are illustrated in Figure 5.

Initialization: First, both client and server set up a
session for saving the RPC state across multiple calls of
the same method. The session state is held in off-heap
memory to make sure it can be used with jVerbs opera-
tions.

Client: During an RPC call, the client stub first mar-
shalls parameter objects into the session memory. It fur-
ther creates an SVC object for the given RPC call us-
ing jVerbs and caches it as part of the session state. The
SVC object represents a jv post send() call of type
sendwith two scatter/gather elements. The first element
points to a memory area of the session state that holds the
RPC header for this call. The second element points to
the marshalled RPC parameters. Executing the RPC call

then comes down to executing the SVC object. Since the
SVC object is cached, subsequent RPC calls of the same
session only require marshalling of the parameters but
not the re-creation of the serialization state of the verb
call.

The synchronous nature of RPC calls allow jvRPC to
optimize for latency using RDMA polling on the client
side. Polling is CPU expensive though it leads to sig-
nificant latency improvements. jvRPC uses polling for
lightweight RPC calls and falls back to blocking mode
for compute-heavy function calls.

Server: At the server side, incoming header and
RPC parameters are placed into off-heap memory by the
RDMA NIC from where they get de-marshalled into on-
heap objects. The actual RPC call may produce return
values residing on the Java heap. These objects together
with the RPC header are again marshalled into off-heap
session memory provided by the RPC stub. Further, an
SVC object is created and cached representing a send
operation back to the client. The send operation trans-
mits both header and return values in a zero-copy fash-
ion. Again, RDMA’s scatter/gather support allows the
transmission of header and data with one single RDMA
operation.

RPC based on user-level networking is not a new idea,
similar approaches have been proposed in [4, 6]. jvRPC,
however, is specifically designed to leverage the seman-
tical advantages of RDMA and jVerbs (e.g., scatter/-
gather, polling, SVCs). In Section 8 we show that jvRPC
achieves latencies that are very close to the raw network
latencies of RDMA interconnects.

7.2 Low-latency Memcached

Memcached is a prominent in-memory key/value store
often used by web applications to store results of
database calls or page renderings. The memcached ac-
cess latency directly affects the overall performance of
web applications. Memcached supports both TCP and
UDP based protocols between client and server. Re-
cently, RDMA-based access to memcached has been pro-
posed [9]. The work focuses on using software-based
RDMA to lower the CPU footprint of the memcached
server. The same architecture when used with hardware-
supported RDMA, however, can be used to reduce the
access latency of memcached clients. We therefore
used jVerbs to implement a Java client accessing mem-
cached through an RDMA-based protocol as described
in [9].

Basic idea: The interaction between the Java client
and the memcached server is captured in Figure 6. First,
the memcached server makes sure it stores the key/value
pairs in RDMA registered memory. Second, clients learn
about the remote memory identifiers (in RDMA termi-

7

NIC

JVM

jVerbs

NIC

web app

memory
registration

key-value
pairs

libibverbs

client memcached
server

stag
table

SVC

RDMA read

Figure 6: Low-latency memcached access for Java
clients using jVerbs.

nology also called stags) of the keys when accessing
a key for the first time. And third, clients fetch key/-
value pairs through RDMA read operations (using the
previously learned memory references) on subsequent
accesses to the same key.

Get/Multiget: Using RDMA read operations for
accessing key/value pairs reduces the load at the server
due to less memory copying and fewer context switches.
More important with regard to this work is that RDMA
read operations provide clients with ultra-low latency
access to key/value pairs. To achieve the lowest possi-
ble access latencies, the memcached client library makes
use of jVerbs SVC objects. A set of SVC objects rep-
resenting RDMA read operations are created at loading
time. Each time a memcached GET operation is called,
the client library looks up the stag for the correspond-
ing key and modifies the cached SVC object accordingly.
Executing the SVC object triggers the fetching of the
key/value pair from the memcached server.

Memcached also has the ability to fetch multiple key/-
value pairs at once via the multiget API call. The call
semantics of multigetmatch up well with the scatter/-
gather semantics of RDMA, allowing the client library
to fetch multiple key/value pairs with one single RDMA
call.

Set: Unlike in the GET operation, the server needs
to be involved during memcached SET to insert the key/-
value pairs properly into the hash table. Consequently,
a client cannot use one-sided RDMA write operations
for adding new elements to the store. Instead, adding
new elements is implemented via send/recv opera-
tions. Nevertheless, objects can be transmitted without
intermediate copies at the client side if they are mar-
shalled properly into off-heap memory before.

8 Evaluation

In this section we discuss the performance of jVerbs by
first analyzing its performance for basic RDMA oper-
ations, and then looking at more complex applications
running on top of jVerbs. Before presenting our results,
it is important to describe the hardware setup used for
evaluation in detail.

8.1 Test Equipment

Experiments are executed on two sets of machines. The
first set comprises two machines connected directly to
each other. These machines are equipped with a 8 core
Intel Xeon E5-2690 CPU and a Chelsio T4 10 Gbit/s
adapter with RDMA support. The second set comprises
two machines connected through a switched Infiniband
network. These machines are equipped with a 4 core
Intel Xeon L5609 CPU and a Mellanox ConnectX-2 40
Gbit/s adapter with RDMA support. We have used the
Ethernet-based setup for all our experiments except for
the one discussed in Section 8.4. We have further used
an unmodified IBM JVM version 1.7 to perform all the
experiments shown in this paper. As a sanity check, how-
ever, we have repeated several experiments using an un-
modified Oracle JVM version 1.7 without having seen
any major performance differences. We use the jVerb-
s/mem implementation throughout the evaluation. How-
ever, we again repeated most of the experiments also
with jVerbs/nat without noticeable performance differ-
ence.

8.2 Basic Operations

In this section we are showing the latency performance
of the different RDMA operations available in jVerbs and
demonstrate the gain they add compared to traditional
Java/sockets. The measured latency numbers discussed
in this section are captured in Figure 7. The benchmark is
measuring the round-trip latency for messages of varying
sizes. Five bars are shown for each of the measured data
sizes representing five different experiments. Each data
point represents the average value over 1 million runs. In
all our experiments, the standard deviation across the dif-
ferent runs was small enough to be neglectable, thus, we
decided to omit reporting error bars. We used Java/NIO
to implement the socket benchmarks. For a fair compari-
son, we use data buffers residing in off-heap memory for
both the jVerbs and the socket benchmarks.

Sockets: The Java socket latencies are shown as the
first bar among the five bars shown per data size in Fig-
ure 7. We measured socket latencies of 59µs for 4 byte
data buffers, and 95µs for buffers of size 16K. Those
numbers allow us to put the upcoming jVerbs latencies

8

 0

 20

 40

 60

 80

 100

 120

 140

4B 64B 0.5K 1K 2K 4K 8K 16K

p
in

g
/p

o
n
g

 l
a
te

n
cy

 [
u
s]

buffer size

NIO
jVerbs send/recv

jVerbs send/recv+poll
jVerbs read

jVerbs read+poll

Figure 7: Round-trip latencies of basic jVerbs operations
compared to traditional socket networking in Java.

into perspective. A detailed performance analysis of the
Java/NIO stack, however, is outside the scope of this
work.

Two-sided operations: Two-sided operations are the
RDMA counterpart of traditional socket operations like
send() and recv(). As can be observed from Fig-
ure 7, two-sided operations in jVerbs achieve a roundtrip
latency of 30µs for small buffers and 55µs for larger
buffers. This is about 50% faster than Java/sockets.
Much of this gain can be attributed to the zero-copy
transmission of RDMA send/recv operations and its
offloaded transport stack.

Polling: One key feature offered by RDMA
and jVerbs is the ability to poll a user mapped queue to
determine when an operation has completed. By using
polling together with two-sided operations we can bring
down the latencies by an additional 65% (see third bar in
Figure 7).

One-sided operations: One-sided RDMA opera-
tions provide a semantic advantage over traditional ren-
dezvous based socket operations. The performance ad-
vantage of one-sided operations is demonstrated by the
last two bars shown in Figure 7. These bars represent the
latency numbers of a one-sided read operation, once
used in blocking mode and once used in polling mode.
With polling, latencies of 7µs can be achieved for small
data buffers, whereas latencies of 31µs are achieved for
buffers of size 16K. This is another substantial improve-
ment over regular Java sockets. Much of this gain comes
from the fact that no server process needs to be scheduled
for sending the response message.

8.3 Comparison with Native Verbs

One important question regarding the performance
of jVerbs is how it compares with the performance of the

 0

 10

 20

 30

 40

la
te

n
cy

 [
u
s]

C/verbs
Java/jVerbs

 0

 10

 20

 30

 40

4B 64B 0.5K 1K 2K 4K 8K 16K

la
te

n
cy

 [
u
s]

buffer size

Figure 8: Comparing latencies using the native C
verbs interface with jVerbs, top: send/recv op-
eration with polling, bottom: read operation with
polling. jVerbs adds negligible performance overhead.

native verbs interface in C. For this reason, we compared
all the benchmarks of Section 8.2 with their C based
counterparts. Throughout those experiments, the perfor-
mance difference has never exceeded 5%. In Figure 8 we
compare the latencies of native C verbs with jVerbs for
both send/recv and read operations. In both experi-
ments polling is used, which puts maximum demands on
the verbs interface. The fact that jVerbs performance is
at par with the performance of native verbs approves the
design decisions made in jVerbs.

8.4 Different Transports

RDMA is a networking principle which is independent
of the actual transport that is used for transmitting the
bits. Each transport has its own performance characteris-
tics and we have already shown the latency performance
of jVerbs on Chelsio T4 NICs. Those cards provide an
RDMA interface on top of an offloaded TCP/IP/Ethernet
stack, also known as iWARP. In Figure 9, we show laten-
cies of RDMA operations in jVerbs for two alternative
transports: Infiniband and SoftiWARP.

In the case of Infiniband, the latency numbers for small
4 bytes buffers outperform the socket latencies by far.
This discrepancy, described in Section 2, is due to In-
finiband being optimized for RDMA but not at all for
sockets. The gap increases further for larger buffer sizes
of 16K. This is because RDMA operations in jVerbs are
able to make use of the 40Gbit/s Infiniband transport,
whereas socket operations need to put up with the Ether-
net emulation on top of Infiniband. The latencies we see
on Infiniband are a good indication of the performance
landscape we are going to see for RDMA/Ethernet in the
near future. In fact, the latest iWARP NICs today provide

9

 0

 20

 40

 60

 80

 100

 120

 140

 160

4B 16K

la
te

n
cy

 [
u
s]

buffer size

4B 16K

buffer size

NIO

jVerbs send/recv

jVerbs send/recv+poll

jVerb read

jVerb read+poll

Figure 9: Comparing latency performance of jVerbs on
Infiniband (left) and SoftiWARP/Ethernet (right) to
Java/NIO operations.

RPC call RMI jvRPC Speedup
foo() 101µs 16.6µs 6
foo(class) 149µs 19.3µs 7.7
foo(byte[1K]) 193µs 22.9µs 8.4
foo(byte[16K]) 591µs 61.5µs 9.6

Table 3: RPC latencies for Java/RMI and jvRPC

40 Gbit/s bandwidth and latencies below 3µs.
The right side of Figure 9 compares the latencies of us-

ing jVerbs on SoftiWARP [1] and compares the numbers
to standard Java sockets. SoftiWARP is a software-based
RDMA device implemented on top of kernel TCP/IP. In
the experiment we run SoftiWARP on top of a standard
Intel 10 Gbit/s NIC. SoftiWARP does not achieve laten-
cies that are as low as those seen by Infiniband. Us-
ing jVerbs together with SoftiWARP, however, still pro-
vides a significant performance improvement compared
to standard sockets (70% in Figure 9). This is appealing
since one big advantage of SoftiWARP is that it runs on
any commodity NIC.

8.5 Applications

We are testing jVerbs in the context of the two applica-
tions described earlier.

jvRPC: We have implemented jvRPC by manually
writing RPC stubs for a set of function calls. In Table
4 we compare the latency performance of jvRPC with
Java RMI. As can be seen, jvRPC achieves RPC latencies
of 16µs for simple void functions, and around 19-61µs
for calls taking objects and large byte arrays as param-
eters. On the other hand, the RMI latencies range from
100 to almost 600µs for the same function calls. Overall,
jvRPC performs a factor of 6-10 times faster than RMI.

 0

 20

 40

 60

 80

 100

1 1 2 3 4 5 6 7 8 9

la
te

n
cy

 [
u
s]

keys per multiget

spymemcached
jVerbs,first access

jVerbs,repeated access

Figure 10: Memcached access latencies for different Java
clients.

Interestingly, the gap increases with increasing size of
the RPC parameters. Here, the data copying inside the
RMI stack including the copying inside the NIO subsys-
tem may cause some of these latency overheads. Again, a
detailed performance analysis of Java/RMI is outside the
scope of this work. One important observation, however,
is that the RPC latencies of jvRPC are only marginally
higher than the fastest send/recv latencies that can
be achieved (see Figure 7). The small latency penalty
comes from marshalling parameters into off-heap mem-
ory and from the fact that polling can be used only at the
client side while waiting for the RPC response. Using
polling at the server side would decrease the latency fur-
ther, but is inefficient since the server does not know the
time frame during which an RPC call is coming in.

Memcached/jVerbs: Figure 10 shows the latencies
of accessing memcached from a Java client. We com-
pare two setups: (a) accessing unmodified memcached
using a standard Java client library [2] and (b) access-
ing a modified memcached via RDMA using the jVerbs-
based client library as discsussed in Section 7.2. The
RDMA-based setup is further subdivided into two cases,
(a) accessing keys for the first time and (b) repeated
access of keys. In the benchmark we measure the la-
tency of a multiget operation with increasing num-
bers of keys per operation. As can be observed from the
Figure, standard memcached access from Java takes be-
tween 55 and 72 µs depending on the number of keys in
the multiget request. With RDMA-based memcached
access this number reduces to 21-32 µs if keys are ac-
cessed for the first time, and 7-18 µs for repeated access
to keys. These latencies are very close to the raw network
latencies of send/recv and read operations that are
used to implement key access in each of the cases.

One important observation from Figure 10 is that the
benefits of RDMA increase with the increasing num-

10

ber of keys per multiget operation. This shows that
RDMA scatter/gather semantics are a very good fit for
implementing the multiget operation. Overall, using
RDMA reduces Java-based access to memcached sub-
stantially – by a factor of 10 compared to a standard
client.

9 Conclusion

In this paper we have presented jVerbs, a library frame-
work offering ultra-low latencies for Java applications.
Our measurements show that jVerbs provides bare-metal
network latencies in the range of single digit microsec-
onds for small messages – a factor of 2-8 better than the
traditional Java socket interface on the same hardware.

References

[1] Softiwarp. http://www.gitorious.org/softiwarp.

[2] Spymemcached. http://code.google.com/p/spymemcached/.

[3] ADIGA, N., ET AL. An overview of the bluegene/l
supercomputer. In Supercomputing, ACM/IEEE
2002 Conference (nov. 2002), p. 60.

[4] BILAS, A., AND FELTEN, E. W. Fast rpc on the
shrimp virtual memory mapped network interface.
J. Parallel Distrib. Comput. 40, 1 (Jan. 1997), 138–
146.

[5] BIRRELL, A. D., AND NELSON, B. J. Implement-
ing remote procedure calls. ACM Trans. Comput.
Syst. 2, 1 (Feb. 1984), 39–59.

[6] CHANG, C., AND VON EICKEN, T. A software
architecture for zero-copy rpc in java. Tech. rep.,
Ithaca, NY, USA, 1998.

[7] FREY, P. Zero-Copy Network Communication:
An Applicability Study of iWARP beyond Micro
Benchmarks. In Dissertation submitted to ETH
ZURICH.

[8] HILLAND, J., CULLEY, P., PINKER-
TON, J., AND RECIO, R. Rdma pro-
tocol verbs specification (version 1.0).
http://www.rdmaconsortium.org/home/draft-
hilland-iwarp-verbs-v1.0-RDMAC.pdf.

[9] STUEDI, P., TRIVEDI, A., AND METZLER, B.
Wimpy nodes with 10gbe: leveraging one-sided op-
erations in soft-rdma to boost memcached. In Pro-
ceedings of the 2012 USENIX conference on An-
nual Technical Conference (Berkeley, CA, USA,
2012), USENIX ATC’12, USENIX Association,
pp. 31–31.

[10] TRIVEDI, A., METZLER, B., AND STUEDI, P.
A case for rdma in clouds: turning supercom-
puter networking into commodity. In Proceedings
of the Second Asia-Pacific Workshop on Systems
(New York, NY, USA, 2011), APSys ’11, ACM,
pp. 17:1–17:5.

[11] WELSH, M., AND CULLER, D. Jaguar: Enabling
efficient communication and i/o in java. In Concur-
rency: Practice and Experience, Special Issue on
Java for High-Performance Applications (1999).

11

IBM is a trademark of International Business Machines Corporation, registered in many jurisdictions worldwide.
Java is a registered trademark of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners.

