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Abstract. For testing model transformations, a software engineer usually de-
signs a test suite consisting of test cases where each test case consists of one or
several models. In order to ensure a high quality of such a test suite, coverage
achieved by the test cases with regard to the system under test must be systemat-
ically measured. The results obtained during coverage analysis can then be used
e.g. for creating additional test cases. In addition to measuring coverage, a soft-
ware engineer developing a model transformation is also confronted with how
to integrate such coverage analysis results into the development process. For ex-
ample, the software engineer has to decide when to measure coverage, when to
investigate the results and how and when to take appropriate actions. In this paper,
we present a prototypical tool which can be used for measuring coverage of test
requirements for model transformations. We explain how a software engineer can
make use of it in a test-driven development process for model transformations, in
order to systematically develop high-quality model transformations.

1 Introduction

Model transformations are nowadays used in model-driven engineering for model re-
finement, model abstraction, and for code generation. Model transformations can ei-
ther be implemented directly in programming languages (such as Java) or using one
of the available transformation languages that have been developed in recent years
(e.g. [8, 13, 17]). For testing model transformations, systematic software testing has
to be applied in order to ensure the high quality of the specific model transformations.
In the context of this, a software engineer usually designs a test suite consisting of test
cases, where each test case consists of one or several models. One important aspect of
testing is to measure and ensure a high coverage level which is used to be certain of the
high quality of the test suite and the system under test [15].

Existing work on testing model transformations (cf. [4]) shows how a metamodel
from the input language of a model transformation can be used to determine the quality
of that model transformation. In our recent work [5, 6], we have proposed a coverage
analysis approach which allows measuring coverage achieved by a test case with regard
to a model transformation. Our coverage analysis approach includes coverage analysis
both on the model level as well as on the code level. The result of coverage analysis can
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then be used to identify untested parts of the system under test or fully-redundant test
cases.

In addition to measuring coverage, a software engineer developing a model trans-
formation is also confronted with how to integrate such coverage analysis results into
the development process. For example, when should a software engineer start measur-
ing coverage and when should he or she react if coverage levels are not high enough?
Furthermore, the question arises, how coverage analysis should be integrated into the
overall development process of a model transformation. In this paper, we explain, how
our prototypical tool, the Test Suite Analyzer [6] can be used for measuring coverage
achieved by test model transformations. It measures coverage achieved by test cases
in a model transformation by computing a so-called footprint which contains the main
characteristics of each test case execution. We describe a test-driven development pro-
cess for model transformations and we explain how a software engineer can make use
of our tool in such a process, in order to systematically develop model transformation
test suites with high coverage values.

The paper is structured as follows. We first give some fundamentals concerning
model transformations and coverage analysis in Section 2. Section 3 introduces the
Test Suite Analyzer and describes the use cases supported. In Section 4 we explain how
the tool can be used to develop model transformations in a test-driven approach. We
discuss related work in Section 5 and conclude in Section 6.

2 Fundamentals

2.1 Theoretical foundations

Fig. 1: Specification and concretization of
a model transformation

A model transformation transforms one or
more input models into one or more out-
put models. For a model transformation
one can distinguish between the specifica-
tion and the implementation (source code)
of the transformation. The input and out-
put domains, i.e. the possible input and
output models of a model transformation are specified by metamodels, see Figure 1.
Metamodels can be used by relying on an input/output language that is defined by
a standard (i.e. the UML definition) or can be specified by the software engineer on
his/her own. The logic for transforming the input models to output models is specified
declaratively by a transformation contract [10], which is inspired by the design-by-
contract approach [24], adapted for model transformations. A transformation contract
consist of three types of contract rules: precondition rules, which have to be fulfilled
by the input models; postcondition rules, which have to be fulfilled by the output mod-
els; and transformation rules, which describe the relation between the input and output
models. Transformation contracts are also part of the specification of a model transfor-
mation, as illustrated in Figure 1.

The logic specified by a transformation contract is implemented by the so-called
transformation definitions [9]. Transformation definitions can be expressed using one
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of the numerous model transformation languages (e.g. Query View Transformation
(QVT) [13] or ATLAS Transformation Language (ATL) [17]) or using general purpose
programming languages (such as Java). For transforming input models to output mod-
els, some transformation definitions use code to represent the models by objects and
references. Such code, called metamodel code, is usually automatically derived from
the metamodels (e.g. using EMF). The transformation definition and the metamodel
code belong to the implementation of the model transformation, as shown in Figure 1.
Besides these two fraction of code, glue code (implementing functionalities such as
logging, exception handling, initializers, controllers, etc.) might exist. In the following
we do not pay attention to these latter pieces of code.

A model transformation has to be thoroughly tested in order to achieve high qual-
ity. Software testing is usually done by creating a number of test cases, consisting of
input values and expected results, which test the correct behavior of a System Under
Test (SUT) on given input [1]. Thus, for a model transformation, a test case consists
of input models and expected output models. For example, in Figure 2 two transforma-
tions from BPMN to a simple graph representation can be seen. A test case for such
a transformation consists of the BPMN as input model and the simple graph as ex-
pected output model, and the test would check whether the transformed output and the
expected models are the same or not.

Fig. 2: Two example test cases (transforming a BPMN
into a simple graph)

To determine the qual-
ity of a test suite, cover-
age analysis is applied. In
this context, the concept of
a test requirement [1] is
used in order to represent
a particular element of the
SUT that has to be tested
for coverage. The elements
that are used to derive test
requirements from the SUT
are defined by coverage cri-
teria. One very common coverage criterion is statement coverage, which derives a test
requirement from each statement of the SUT. As this coverage criterion derives test re-
quirements from the source code it is a so-called code-based coverage criterion. Besides
this there is the so-called specification-based coverage criterion, which derives test re-
quirements from the specification of model transformations (e.g. the metamodels). For
example the class coverage derives test requirements from classes in the metamodels.

A test requirement is covered, if the according element is executed/used by a test
case during execution. Hence a test requirement derived by statement coverage is cov-
ered, if that specific statement is executed; and a test requirement derived from a class
of a metamodel is covered if that class is instantiated in the model. The data about cov-
ered and non-covered test requirements are collectively called coverage information.
For model transformation, specification-based coverage criteria as well as code-based
coverage criteria can be used, which both yield different kinds of coverage information.
In this paper we focus on specification-based coverage.
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2.2 The usage of specification-based coverage

(a) The simplified BPMN metamodel
(b) An exemplary BPMN model and a

possible illustration above it
Fig. 3: The used metamodel and a concrete model instance of it

The combined coverage approach [6] is an approach that derives test requirements
by different specification-based coverage criteria from metamodels and the transforma-
tion contract of a model transformation. In the following, we briefly summarize the
combined coverage approach, for a detailed introduction, the reader is referred to [6].
The examples used for illustration make use of a simplified subset of the Business Pro-
cess Model and Notation (BPMN) metamodel shown in Figure 3a. A simple instance
in concrete and abstract syntax is illustrated in Figure 3b.

The coverage criterion class coverage [11] uses the classes of a metamodel to derive
test requirements. For each class in the metamodel, a test requirement is derived. For the
metamodel shown in Figure 3a, one test requirement is, for example, derived from the
class StartEvent. This test requirement is covered by the StartEvent instance in
the model shown in Figure 3b.

The coverage criterion attribute coverage [11] derives test requirements from the
attributes of the classes of a metamodel. For this, the common software testing tech-
nique, equivalence partitioning [1] is used to partition the domains of the specific at-
tributes into blocks. For example a straightforward equivalence partitioning consists of
two test requirements for boolean values (for true and false), two for string val-
ues (for empty and not empty strings) and two for integers (for negative and positive
values). A test requirement is e.g. derived from the block {not empty string} for the at-
tribute Activity.name. This test requirement is covered by the instance of the class
Activity in Figure 3b, which has a not empty string as name.

The coverage criterion association coverage [11] (also called reference coverage)
uses associations of a metamodel to derive test requirements. For this, equivalence par-
titioning is used on the multiplicity of the associations. For example a straightforward
equivalence partitioning consists of the partitions {{0}; {1}; {[2,+∞)}} on the mul-
tiplicity of the association. A test requirement is e.g. derived from the block {[2,+∞)}
for the association Process.flowElements, which is covered by the instance of
the class Process as it does contain five FlowElements.
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In addition to these coverage criteria, the combined coverage approach uses fea-
tures to derive test requirements. A feature can be seen as a particular characteris-
tic of a concrete model instance. Since models consists of model elements, a feature
is a particular combination of several model elements of the corresponding meta-
model. Features are defined by the tester of a model transformation. The coverage
criterion feature coverage uses the features defined in the context of a metamodel
to derive test requirements, thus a test requirement is created that requires instances
of the metamodel to have the particular combination of model elements defined by
the feature. An exemplary feature for the BPMN metamodel is defined by the Ob-
ject Constraint Language (OCL) expression self.flowElements->exists(x
| x.oclIsTypeOf(Subprocess)) (defined in the context of the class
Subprocess). This feature describes nested subprocesses. The resulting test re-
quirement is not covered by the exemplary BPMN model as it does not contain a
Subprocess that itself contains another Subprocess. Currently, features in the
combined coverage approach have to be defined manually.

The combined coverage approach derives test requirements from the transformation
contract too. As described earlier in Section 2.1, a transformation contract consists of
contract rules. The coverage criterion transformation contract coverage uses the con-
tract rules of a transformation contract to derive test requirements. For each contract
rule of a transformation contract, a separate test requirement is created. An exemplary
precondition rule for the BPMN metamodel is that every SequenceFlow must have
both a source and a target or none of them. The result of the evaluation of a trans-
formation contract for a model transformation is called contract result. The contract
result contains the evaluation of each contract rule which are called contract rule re-
sults. A contract rule result is a pair of integers, the first counts how often the condition
stated by the contract rule is fulfilled, and the second counts how often is it neglected
(an additional error message can be attached to every failure). The derived test require-
ment is satisfied if the contract rule result is a (x, 0) pair of integers where x > 0 holds.
As the exemplary BPMN model contains two SequenceFlows that have exactly as
many sources as targets, the contract rule result for the former mentioned exemplary
rule is (2, 0) and thus the derived test requirement is covered.

A straightforward way to represent a coverage report is the concept of footprints.
A footprint is basically a mapping from the different test requirements and their cov-
erage count for the different test cases – where the coverage count states how many
times a particular test requirement is covered by the test case. For example if a class is
instantiated in a test case, then the coverage count for the corresponding class coverage
test requirement for that test case is 1. If there are for example two class instances with
attribute values from the same equivalence partition, than the test requirement for that
equivalence partition of that attribute of that class is 2.

In this section we described shortly the theory behind coverage analysis, which is
extensively used by our tool. In the next section we proceed and describe the architec-
ture and the use cases of it.
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3 The Test Suite Analyzer for Model Transformations
In order to validate the combined coverage approach (described in Section 2), we cre-
ated a prototypical tool for analyzing test suites of model transformations, we call this
prototype the Test Suite Analyzer for Model Transformations. It supports different
mechanisms for analyzing coverage achieved by the test suites of model transforma-
tions. Figure 4 shows a screenshot and illustrates the obtained specification coverage
information and comparison of two particular test cases (bottom of figure) and the cor-
responding footprint (top of figure). On the left you can see the metamodels, contracts,
etc. involved in the model transformation.

We distinguish between different phases of using the tool: setup and usage. The
setup is the first phase, within it the data to be generated needs to be defined, similarly
the transformation has to be designed and implemented. Currently this has to be done
by the software engineer by:

– creating the transformation contract rules as plain Java classes;
– assembling the transformation contract from the defined contract rules;
– creating the transformation (currently transformation defined with a Java class are

supported);
– creating the metamodel features as plain Java classes (optional);
– creating the so-called test case creator and the coverage controller creator, which

are classes responsible for gathering the coverage data.

In the second, usage phase, the gathered data can be interpreted by the software
engineer. In the following, we describe the use cases supported by our tool for these
two phases.

The supported use cases in the first phase are shown in Table 1. The three use cases
‘Create equivalence partitioning’, ‘Specify and implement transformation contract’ and
‘Specify features for the metamodels’, determine the specification coverage information
to be obtained. The fourth use case ‘Produce coverage report’ measures the coverage
of a certain test suite. The first three use cases correspond directly to the theory behind
our approach: in order to measure coverage with regard to the transformation contract,
this contract has to be defined. Similarly, in order to measure coverage with regard to
features, such features have to be defined. In addition, usually equivalence partitions
also have to be defined.

The supported use cases in the second phase are shown in Table 2. In order to
investigate different test cases with regard to their coverage, the three ‘Inspect’ use cases

Use Case Description

Preparations
Create equivalence partitioning The user is provided with functionality to express equivalence partitions for

attributes and associations.
Specify and implement transformation
contract

Transformation contract for transformation definitions is specified.

Specify features for the metamodels Features can be defined in the context of applied metamodels.
Produce coverage report The actual calculation of the coverage information in terms of footprints for test

cases is created and persisted.

Table 1: Summary of use cases for preparing combined coverage approach
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Fig. 4: A screenshot from the Test Suite Analyzer

can be used. In order to identify unsatisfied test requirements, the software engineer can
use ‘Inspect contract coverage’ and after ‘Compute missing coverage’ he or she can
use ‘Inspect specification coverage information’. Our tool also supports computation of
redundant test cases through the use case ‘Compute redundant test cases’. After this the
software engineer can ‘Inspect redundancy information’.

The architecture of our current environment for using the prototype is shown in Fig-
ure 5. It requires that during test case execution, suitable data is generated which is then
stored in the form of a coverage report. This coverage report can then be used by the tool
to find out various information about the test cases. Based on this, the software engineer
can decide to act in various forms, which is described in detail in Section 4. In our en-
vironment, the Test Case Execution Component is based on the JUnit framework and is
used to execute test cases using a Model Transformation Execution Component. In prin-
ciple, the Model Transformation Execution Component can be any of the well-known
model transformation engines (such as ATL [17]) or general purpose programming lan-
guages (such as Java). The Model Transformation Execution Component executes the
model transformation on a set of input models. The Test Case Execution Component

Use Case Description

Analyze coverage report
Inspect contract information A view is provided for inspecting contract fulfillments information.
Compute missing coverage A computation is provided for calculating missing test requirements.
Inspect specification coverage
information

Different views are provided for the analysis of separate footprints as well as for
the comparison of different footprints.

Compute redundant test cases Computation of pairs of redundant test cases.
Inspect redundancy information The redundant test cases can be identified through different views.

Table 2: Summary of use cases for analyzing coverage information
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Fig. 5: The architecture of the Test Suite Analyzer

then evaluates the result of each execution. During this phase, the metamodels of the
models as well as model transformation contract rules and model features are taken into
account to produce the data in the form of a coverage report.

To be more precise, Figure 5 illustrates the architecture of the Test Case Execution
Component too. Inside this component, two components from the Test Suite Analyzer
are responsible for generating suitable data for the coverage report: the Coverage Con-
troller Creator and the Test Case Creator. The former is responsible for deciding against
which metrics coverage is measured, and the latter is responsible for adjusting these
various metrics to the concrete test cases.

4 Using the Test Suite Analyzer for Test-driven Devel-
opment

In this section, we describe how our prototype is used in a test-driven development pro-
cess of model transformations. We first give an overview of the development approach
and then we explain the details of the approach along a case study.

4.1 The development approach
Existing software development processes such as the Rational Unified Process [18] are
incremental and iterative. For model transformations, recent work by Siikarla et al. [27]
argues that model transformations must also be developed in several iterations. Given
our prototypical tool, the question arises, how such a tool can be integrated into the
development approach. In the following, we present our approach which focusses on
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design, implementation and testing activities of model transformation development, in-
tegrating the Test Suite Analyzer for measuring coverage and creating test cases. Fig-
ure 6 provides an overview of our approach. Note that our approach does not include
activities for requirements specification, analysis and detailed roles involved in the pro-
cess. For these activities, we refer to the body of existing work on model transformation
design (e.g. [20, 29]). In the following, we describe the main steps of the approach.

– The environment for the tool is set up.
– An initial test case set is created for the model transformation.
– After requirements specification and analysis of the model transformation, devel-

opment starts with the design and implementation of a first version of the model
transformation. This activity also includes implementing transformation contracts
and features.

– The model transformation is tested using the test case set and the coverage is mea-
sured using the tool.

– Potential defects are categorized according to their severity and then treated in an
improvement activity of the model transformation.

– The coverage report is analyzed and the test suite is adapted by adding test cases or
potentially removing redundant test cases.

– If the test case set is to be extended, the tool is used in order to determine missing
coverage. Using the information about missing coverage, new test cases are created
and added to the test case set.

– Once a model transformation passes all test cases, new functionality can be de-
signed and implemented if there are requirements not addressed in the previous
iteration.

– If new functionality is added to the transformation, the tool is used in order to
determine relevant test cases. These test cases can be used by the software engineer
in order to implement the new functionality.

When following this approach, the model transformation will always pass all test
cases in the test case set. As such, the quality of the model transformation will gradually
increase over time if the activities (increasing set of test cases and adding functionality)
are aimed at increasing the quality of the model transformation under development. In
the following section, we elaborate each of the activities, illustrating them with a case
study.

4.2 Detailed description and case study
In this subsection we describe in detail, how our prototype can be used for development
of model transformations. For a practical insight we incorporate the simple case study
we carried through, which was based on a simplified BPMN metamodel and a very
simple graph metamodel. They can be seen in Figure 7.

Our development cycle is based on the approach described in [19], and it can be
seen in Figure 6. We provide here a walkthrough for the approach and also give some
guidelines how it can be used in real-life situations.

Let us assume that a project needs a simple model transformation with one input
model and one output model, and for that the two metamodels are given. From now
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Fig. 6: Agile test-driven development approach for model transformations

on we will refer to them as input (Figure 7a) and output (Figure 7b) metamodels. The
described steps can be expanded for situations which involve more input and/or output
metamodels in one transformation.

Set up Test Suite Analyzer environment. The first activity is the set up phase.
First, a specific Coverage Controller Creator and a Test Case Creator have to be imple-
mented – a basic implementation of these classes can be found in our prototype, how-
ever the customization of them is very project specific. After this, the JUnit Test Suite
has to be created in a way that after every execution of the test cases the coverage report
is generated and persisted. In our case study, we have created a check method which
is called from every test case with the different models (the input and the expected out-
put). This method is responsible for verifying the transformation, i.e. the transformation
generates the expected output or not, and if it does, then it calls the specific Coverage
Controller Creator and Test Case Creator to gather and store the coverage report into a
directory on the file system.

Create first set of test cases. In the next activity we create the initial test cases.
Our guideline is that a test case set should be composed of small test cases, which are
“as orthogonal as possible”, meaning that the intersection of the test cases’ coverage
is as minimal as possible. In our experience, such a test case set is the most flexible
and maintainable on the long run. The first set of test cases should contain the trivial,
most basic and not extreme models and behaviors. Hence it is small and it should be
quickly implemented, without any complicated or extreme cases taken into account. The
reason behind this is an arguable observation: if in the first run complex test cases are
created, it is likely that the coverage of the metamodel is higher than with the simple
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(a) (b)

Fig. 7: Metamodels for the case study

ones; however when the test set is improved later, the probability of redundant test
case creation is much higher (by “redundant test cases” we mean test cases which have
the exact same footprint or the footprint of the first is the part of the footprint of the
second one – partial footprint redundancy is unavoidable and even desirable, cf. [16]).
In our case study the first set of test cases was minimal too: it contained the test case
presented on the upper part of Figure 2 on page 3, and the model containing only an
empty Process.

Design and implement model transformation. In this group of activities we create
the concrete transformation definition for the two metamodels. It contains three activi-
ties, from which two are optional but recommended.

Implement transformation. In this activity we create the concrete transformation,
either in a transformation language or in a programming language. In our case study
we used a plain Java class. For two simple transformation examples, see Figure 2 on
page 3. As a first approach our transformation was as simple as possible, transforming
SequenceFlows into Edges and FlowNodes into Nodes (it was simple because
for example each Subprocess had been transformed into a subgraph which was not
connected to the rest of the graph’s Nodes).

(Optional) Specify and implement transformation contract. In this optional but
strongly recommended activity a transformation contract is created, which consists of
several transformation rules. The creation of the transformation contract is independent
from the creation of the transformation, hence a contract can be implemented before or
after the transformation, however as a rule of thumb it should be implemented before
the transformation (we should create the specification before the implementation). The
contract and its rules are used in the verification process of a transformation. The rules
are defined as Java classes. In our case study our contract contained the following rules:

– (precondition) a not empty BPMN Processmust have at least one StartEvent
and at least one EndEvent;

– (precondition) a BPMN SequenceFlow must have both a source and a target or
none of them;
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– (precondition) a Gateway must be “reasonable”, i.e. it must be connected to at
least three SequenceFlows;

– (postcondition) a not empty SimpleGraph must have at least one Node with
label starting with “start event” and at least Node with label starting with “end
event”;

– (postcondition) an Edge must have both a source and a target or none of them;
– (transformation) a Gateway must preserve the number of its incoming and outgo-

ing edges during the transformation.

It should be noted that this contract is created for testing and demonstrating purposes,
we did not intend to create a full nor an optimal contract.

(Optional) Specify features for the metamodels. Features are particular charac-
teristics of a metamodel (see Section 2.2 for details). Creating them is optional but
recommended, because a well defined feature set can help in improving the quality of
a test suite. A good feature set includes the most common features for the possible
models. In our case study we did not specify any features in the beginning.

Run test cases. After the first test case set is complete, the JUnit Test Suite should
be executed.

Fig. 8: Coverage report example

Defects? and Remove defects.
If there are any defects discovered,
they have to be removed. A defect
could be at many places:

– in a metamodel: if the meta-
models were created during
the development process, they
can be flawed, e.g. in our case
study we detected during the
first test run that we forgot
to set the default value for a
string attribute to the empty
string;

– in a test case or in a model: the
test cases can be broken, they
can be created in the wrong
way, e.g. in our case study
we could have created a test
case where the edges would
not be transformed to the ex-
pected output;

– in the transformation: the
transformation can be implemented incorrectly.

Produce coverage report. The coverage report is automatically generated and per-
sisted by the tool after each successful execution of every test case.

Analyze coverage report with Test Suite Analyzer . When there are no defects left,
the coverage report should be analyzed. For an example report see Figure 8: on the top
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the overall coverage regarding the test cases can be seen, in the middle the so far not
covered test requirements are listed and in the bottom the complete footprint for one
test case can be seen.

Inspect contract information and Contract broken? First, the fulfillment of the
contract has to be checked. If the contract is broken, it means that one or more of its
rules are neglected, however the cause of this is unknown. This has to be considered
also as a defect (an “in logic” defect), and should be repaired. Our tool shows which
of the rules are broken, but locating the concrete defect can be hard, depending on the
complexity of the metamodels, the models, the rules and the transformation routine. In
our case study on the first run the contract was not broken.

Compute missing test cases, Inspect specification coverage information and
Missing test cases? Continuing the analysis of the coverage report, the next thing which
is to be considered is the completeness of the test case set with regard to the defined cov-
erage criteria. Our tool can show which parts of the metamodels, contracts and features
are not covered with the test cases so far, regarding the defined equivalence partitions.

Increase set of test cases. From the missing coverage overview, new test cases can
be derived. During the expansion of the test case set, the guidelines are similar as they
were during the creation of the first set of test cases. The test cases should intersect
each other as little as possible – however there is a legitimate need for some bigger
tests, they should be added only after the desired coverage is achieved with smaller
test cases. During this step first the coverage of the input model, than the coverage of
the output model and after that the coverage of the contract and features should be ad-
dressed. In our case study, the overall coverage with the simple test cases was almost
60% (Figure 9a), which can be seen as small coverage, but it should be considered that
this was a very simple test case set, still it covered more than a half of the metamodels,
and contract. Regarding the coverage report analysis we created five more test cases, af-
ter that the coverage was almost 90% (Figure 9b). During the coverage report analysis
we could determine, that this is our “semantic maximum” (the missing test cases in-
cluded only the semantically invalid cases: Node without label, a Process with only
one FlowElement, and Gateways with negative type values).

(a) (b)

Fig. 9: Comparing two coverage reports

Compute redundant
test cases, Inspect re-
dundancy information,
Redundant test cases?
and Reduce set of test
cases. After the coverage
is sufficient, the reduction
of the test case set should
be considered. Two or
more test cases are redundant, if they cover the same part of the transformation, and
everything is covered in the same amount by them. In this case, all but one of them can
be ignored, the coverage will not be affected. If the test case set provides the desired
coverage and there are no redundant test cases in it, then we call it a reduced test case
set. In our case study we followed the guidelines described throughout this section, and
so we could create a test case set which was not redundant.
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New functionality needed? If during the development cycle the need for one or
more new functionalities emerges, they should be added only after the transformation
is tested properly. Hence this should be the last step, after creating the reduced test case
set.

Design and implement new functionality. If there is a need for a new functionality
in the system, it should be designed and implemented in this activity. It should be done
in small steps, creating a new test case if the functionality in question needs it. If the im-
plementation of the new functionality needs a change in the system (e.g. modifying the
transformation contract), the coverage analysis should be performed after every change
too. This is important, because changes in the system could affect the coverage in un-
foreseen ways. In our case study we enhanced the transformation of Subprocesses
so that the transformation produced a connected graph – we also implemented a fea-
ture, which described the nested subprocesses. After we finished the implementation,
we executed the test suite and discovered that we have to adjust two of our test cases to
the new transformation definition but did not need to add any new test cases, because
the only new test requirement (the nested subprocess feature) was already covered by
one of our test cases.

With this short description and case study we showed how the Test Suite Analyzer
can be used in an agile test-driven development process of model transformations. How-
ever it should be noted that with such little metamodels a sufficient coverage could be
relatively easily achieved, in real-life situations it is much harder.

5 Related Work
In the domain of software testing, several coverage criteria exist to determine the ade-
quacy of test suites. McQuillan et al. [23] introduces a code-based coverage criterion
for model transformations to derive test requirements from transformation definitions
composed in ATL. In contrast to their work, we focus on specification-based coverage
analysis as this facilitates the derivation of test cases for increasing coverage.

Specification-based coverage analysis has been studied by Andrews et al. [2]. They
define coverage criteria for models composed in UML, including coverage criteria for
UML class diagrams. Andrews et al. define three coverage criteria, which are called
association-end multiplicity criterion, generalization criterion, and class attribute crite-
rion. Fleurey et al. [11] adapt the approach of Andrews et al. for deriving test require-
ments from the input metamodel of a model transformation.

For determining the similarity between test cases, the domain of software profiling
makes use of execution profiles for test cases. Leon et al. [21] as well as Yan et al. [30]
detect similar test cases by defining metrics for computing the distance between execu-
tion profiles. Yan et al. use the euclidean distance between execution profiles for this
computation. In contrast to using euclidean distance, we make use of the Manhattan
distance, although both possibilities yield the same results for finding redundant test
cases.

A test-driven approach for semantics specification of behavioral modeling lan-
guages based on graph transformations is described in [28]. Soltenborn and Engels
evaluate the quality of model transformations using test cases that consist of example
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behavioral models and their supposed traces of execution events. In [3], the approach is
extended by a coverage analysis.

Another aspect of model-driven development of model transformations is the issue
of automatic model generation. This issue has been studied for example by Bottier et
al. [7]. They created a framework which derives input model based on predefined model
fragments (which are based on specification based test requirements). More complex
coverage topics were studied by Guerra [14] and Sen et al. [26]. Model generation
based on code coverage test requirements was studied too (e.g. [25]). Integration of
these solutions with our prototype is going to be taken into consideration.

In contrast to the existing approaches to coverage analysis (e.g. [12, 22]), we de-
scribe an integrated approach to coverage analysis realized in a prototypical tool. Re-
garding this, we explain how our tool can be used for developing high-quality model
transformations. Concerning agile development of model transformations, we described
an initial approach in [19] but we significantly extended this process in this paper and
we also explained how the results of coverage analysis can be integrated into the devel-
opment process.

6 Conclusion
Coverage analysis achieved by test cases for a model transformation is important for
ensuring a high-quality test suite. In this paper, we have introduced a prototype tool
which allows the software engineer to discover missing and redundant test cases in a test
suite for a model transformation. It is based on a combined coverage approach which is
independent from any specific model transformation language and computes a so-called
footprint of a test case while being executed. This footprint allows a detailed analysis
and is used for identification of missing and redundant test cases. We have explained
how our tool can be used in agile test-driven development of model transformations and
we have illustrated this using a model transformation from a simplified BPMN model to
a simple graph. Future work includes the automatic generation of proposing missing test
cases based on the result of coverage analysis in order to further improve the usability
of the tool.
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6. E. Bauer, J. Küster, and G. Engels. Test suite quality for model transformation chains. In
TOOLS 2011, volume 6705 of LNCS, pages 3–19. Springer, 2011.



16

7. E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. Le Traon. Metamodel-based Test Gener-
ation for Model Transformations: An Algorithm and a Tool. In ISSRE ’06: Proceedings of
the 17th International Symposium on Software Reliability Engineering, pages 85–94, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

8. G. Csertán, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varró. VIATRA: Visual
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