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8803 Rüschlikon, Switzerland

{ven, ili}@zurich.ibm.com

Abstract—The reliability of data storage systems is adversely
affected by the presence of latent sector errors. As the number
of occurrences of such errors increases with the storage capacity,
latent sector errors have become more prevalent in today’s high
capacity storage devices. Such errors are typically not detected
until an attempt is made to read the affected sectors. When a
latent sector error is detected, the redundant data corresponding
to the affected sector is used to recover its data. However, if no
such redundant data is available, then the data of the affected
sector is irrecoverably lost from the storage system. Therefore, the
reliability of data storage systems is affected by both the complete
failure of storage nodes and the latent sector errors within them.
In this article, closed-form expressions for the mean time to
data loss (MTTDL) of erasure coded storage systems in the
presence of latent errors are derived. The effect of latent errors
on systems with various types of redundancy, data placement,
and sector error probabilities is studied. For small latent sector
error probabilities, it is shown that the MTTDL is reduced by a
factor that is independent of the number of parities in the data
redundancy scheme as well as the number of nodes in the system.
However, for large latent sector error probabilities, the MTTDL
is similar to that of a system using a data redundancy scheme
with one parity less. The reduction of the MTTDL in the latter
case is more pronounced than in the former one.

I. INTRODUCTION

The size of data storage systems grows in terms of the

number of storage nodes in the system as well as the storage

capacities of individual storage nodes. This growth has two

effects on the reliability of the storage system. Firstly, a higher

number of storage nodes implies that more nodes are expected

to fail each day. Although modern data storage systems use

various forms of data redundancy to protect data from node

failures, higher frequency of node failures poses a greater risk

of data loss in large systems. Secondly, higher capacity nodes

are more prone to latent sector errors. This is because, given

a certain bit error rate, the number of occurrences of such

errors increases with the node capacity. Such latent sector

errors increase the risk of irrecoverable loss of data, especially

when the data is in a critical state wherein it has lost all of its

redundancy as a result of successive storage node failures.

Storage systems employ erasure codes to protect data from

node failures. Examples of erasure codes range from simple

replication and RAID [1] to more advanced Reed-Solomon [2]

and regenerating codes [3]. When nodes fail, the data redun-

dancy is maintained through node rebuild processes that use

the data from the surviving nodes to reconstruct the lost data

in new replacement nodes. However, as these rebuild process

take time to complete, there is a probability of further node

failures occurring during rebuild that may eventually result in

irrecoverable data loss. The probability of irrecoverable data

loss during rebuild is further increased by the presence of

latent sector errors in the surviving storage nodes. Such errors

are typically not detected until an attempt is made to read the

affected sectors. This attempt may be a result of a user read

request, a background scrubbing process, or a node rebuild

process [4], [5]. Usually, when a latent sector error is detected,

the redundant data corresponding to the affected sector is used

to rebuild it. However, if no redundant data corresponding to

the affected sector is available, then the data of the affected

sector is irrecoverably lost from the storage system. This may

happen when all the redundant data is lost either by node

failures or other latent errors in the system.

The average amount of time taken by the system to lose

some data irrecoverably, also known as the mean time to

data loss, or MTTDL, is a measure of reliability commonly

used to compare different coding schemes and study the

effect of various design parameters [6]. In the absence of

latent sector errors, the effect of various system designs and

parameters, such as, mean time to failure of a node, node

rebuild bandwidth, node capacity, data placement scheme, and

erasure-code used, on the MTTDL of the system have been

extensively studied in literature [1], [7], [8], [9], [10], [11],

[12], [13], [14], [15]. A comparison between erasure codes

and replication in terms of availability in peer-to-peer systems

has been presented in [16]. It has been well-established that

erasure codes can provide much higher reliability than repli-

cation for the same level of storage efficiency. The trade-off,

however, is in the performance as erasure codes may require

Galois field arithmetic for encoding and decoding. Therefore,

many recent works have laid emphasis on the development of

new codes as well as new encoding and decoding techniques

to improve the performance of erasure coded systems (see [17]

and references therein). Some works have also addressed the

reliability assessment of erasure codes through simulation [18].

The occurrence of latent sector errors in disk drives and its

effect on the MTTDL of RAID systems was also investigated

in the literature [4], [5], [19], [20], [21]. In this paper, closed-

form expressions for MTTDL in the presence of latent errors

are derived for a wide variety of erasure-coded systems,

including replication-based systems and RAID systems, as

well as systems with different redundancy placement schemes



Table I
PARAMETERS OF A STORAGE SYSTEM

c amount of data stored on each storage node (bytes)
n number of storage nodes
cµ average read-write rebuild bandwidth of a storage node

(bytes/s)
1/λ mean time to failure of a storage node (s)
1/µ mean time to read/write c amount of data from/to a node (s)
s size of a sector (bytes)
pS probability of a sector having a latent error
B average burst size for sector errors

for realistic node failure and rebuild time distributions. For

small latent sector error probabilities, it is shown that the

MTTDL is reduced by a factor that is independent of the

number of parities in the data redundancy scheme as well

as the number of nodes in the system. However, for large

latent sector error probabilities, the MTTDL is similar to that

of a system using a data redundancy scheme with one parity

less. The reduction of the MTTDL in the latter case is more

pronounced than in the former one. This is the first work to

study the effect of latent sector errors on MTTDL for different

codeword placement schemes.

The remainder of this article is organized as follows:

Section II describes the storage system model. Section III

describes the methodology of reliability analysis used. Sec-

tion IV evaluates the reliability of storage systems in the

presence of latent errors for various data placement schemes

and erasure codes. Section V discusses the effect of latent

errors on system reliability with numerical results. Finally, the

paper is concluded in Section VI.

II. SYSTEM MODEL

The storage system is modeled as a collection of n identical

storage nodes each of which stores c amount of data. In

addition to the space required for the c amount of data that is

stored, each node is assumed to have sufficient spare space that

may be used for a distributed rebuild process (see Section II-F)

when other nodes fail. The main parameters used in the storage

system model are listed in Table I.

A. Storage Node

A storage node comprises of one or more disks, memory,

processor, network interface, and power supply. Any of these

components can fail and lead to a temporary node unavailabil-

ity or a permanent node failure.

1) Node Unavailability vs. Node Failure: The difference

between temporary node unavailability and failure (or per-

manent unavailability) is important to the reliability model.

Nodes that become temporarily unavailable may only result

in temporary data unavailability, whereas node failures may

cause irrecoverable data loss. The focus of this paper will be

on the study of irrecoverable data loss.

2) Independence of Node Failures: It is known that strong

correlations exist among node unavailabilities [22]. These

correlations may be due to short power outages in the dat-

acenter, or part of a rolling reboot or upgrade activity at

the datacenter management layer [22]. However, only less

than 10% of the node unavailabilities last longer than 15

minutes and are treated as node failures which trigger a rebuild

process. There is no indication that correlations exist among

such node failures. It has been argued that disk (as opposed

to node) replacement rates in large storage systems show

correlations [23]. However, as disks have been observed to

be more reliable than other components of a node [24], the

failure of a node is mainly determined by the failure of these

other components. As there is no evidence that correlations

exist among node failures (or permanent unavailabilities), we

assume node failures to be independent in our model.

B. Redundancy

To protect data from node failures and sector errors, the user

data is divided into blocks (or symbols) of a fixed size and each

set of l blocks is encoded into a set of m > l blocks, called

a codeword, before storing them on m distinct nodes. In this

paper, we consider (l,m)-MDS codes (or maximum distance

separable codes), in which the encoding is done such that any

subset of l symbols of a codeword can be used to decode

the l symbols of user data corresponding to that codeword. In

other words, each codeword can sustain the loss of up to any

m − l symbols. Replication-based systems with a replication

factor r, are a subset of such erasure coded systems where

the parameters l and m are equal to 1 and r, respectively. For

notational convenience, we define r̃ = m− l + 1.

C. Codeword Placement

In a large storage system, the number of nodes, n, is

typically much larger than the codeword length, m. Therefore,

there exist many ways in which a codeword of m blocks can

be stored across n nodes. In this paper, we consider the class

of symmetric placement schemes as described in [14]. Two

schemes of particular interest within this class are the clustered

and declustered placement schemes. These two schemes are

first explained below before describing the broader class of

symmetric placement schemes.

1) Clustered Placement: If n is divisible by m, one way to

place codewords would be to divide the n nodes into disjoint

sets, of m nodes each, and store the codewords across the

nodes in each set. This type of data placement is known

as clustered placement, and each of these disjoint sets of

nodes as clusters. In such a placement scheme, it can be seen

that no cluster stores the redundancies corresponding to the

data on another cluster. The storage system can essentially be

modeled as consisting of n/m independent clusters. Reliability

behavior of a RAID cluster in the presence of latent errors is

studied in [21].

2) Declustered Placement: A placement scheme that can

potentially offer far higher reliability than the clustered place-

ment scheme, especially as the number of nodes in the system

grows, is the declustered placement scheme. There exists
(

n
m

)

different ways of placing m symbols of a codeword across n
nodes. In this scheme, all these

(

n
m

)

possible ways are equally

used to store data. It can be seen that, in such a placement

scheme, when a node fails, the redundancy corresponding

to the data on the failed node is equally spread across the



remaining surviving nodes. This allows one to use the rebuild

read-write bandwidth available at all surviving nodes to do

a distributed rebuild in parallel, which can be extremely fast

when the number of nodes is large. In contrast, in clustered

placement scheme, when a node fails, the redundancy corre-

sponding to the data on the failed node is only spread across

the remaining nodes of a cluster. Therefore, a fast parallel

rebuild process that scales with the number of nodes is not

possible for clustered placement.

3) Spread Factor: A broader set of symmetric placement

schemes can be defined using the concept of spread fac-

tor [14]. The analysis presented for clustered and declustered

placement schemes can be easily extended to this set of

symmetric placement schemes.

D. Node Failure

The times to node failures are modeled as independent and

identically distributed random variables. Denote the cumula-

tive distribution function of the times to node failure by Fλ,

with mean, 1/λ. It has been shown that the system MTTDL is

invariant within a large class of failure time distributions that

includes the exponential distribution and, most importantly,

real-world distributions like Weibull and gamma [15].

E. Latent Errors

Latent sectors errors in disk drives have been studied

extensively in literature [19], [20]. The number of latent sector

errors are observed to be higher for disks with higher capacity.

In a given disk, the probability of a sector having an error

increases with its age [20]. However, in a system with a large

number of disks, the age distribution of the disks becomes

stationary as disks fail and are replaced with new disks.

Consequently, the steady state probability, pS , of a sector

having a latent error remains constant. Typical values of pS
lie in the range of 10−9 to 10−8 [20]. The analysis presented

in this paper holds for

pS ≪ λ/µ, (1)

which holds true for practical values of λ/µ (in the order of

10−5 to 10−3) and practical values of pS . This assumption en-

sures that the probability of two different nodes having sector

errors in the same position is negligible. Latent sector errors

in each disk are found to exhibit high spatial and temporal

locality [19], [20]. In other words, sector errors are found to

occurs in bursts with respect to both their locations within a

disk as well as their times of occurrence. To counter these

errors, various scrubbing and intradisk redundancy schemes

have been developed [19], [25]. In effect, these schemes reduce

pS , and therefore improve reliability. Clearly, the extent to

which pS is reduced depends on the factors mentioned above

and also on the parameter settings of these schemes [19], [25,

Propositions 7.9 and 7.10]. Thus the effect of these factors

is accounted and inherently captured by pS . In Section A, it

will be shown that the probability of data loss depends on

the probability, PS(D), of encountering at least one sector

error while rebuilding D amount of data. If sector errors were

independent, PS(D), is given by (D/s)pS , where s denotes

the size of a sector in bytes. However, as sector errors occur

in bursts, it can be shown that (see Section 6 in [21])

PS(D) ≈ (D/(sB))pS , (2)

where B is the average burst length. The above result can be

intuitively explained as follows. If the errors were independent,

then the errors will be spread uniformly across the entire

disk. However, if the errors are bursty, the same number of

errors will be clumped together into a fewer number of error

bursts with larger gaps separating these bursts. Therefore, the

probability that a sector error exists in a space of size D is

reduced when the errors are bursty. Since 90-98% of cases

consist of bursts of just one sector error, and less than 2.5%

consist of bursts of more than two errors [19], the typical value

of B is close to one. Clearly, for high values of pS or large

amounts of data D, for which the right hand side of (2) is

greater than one, the approximation does not hold. Therefore,

we approximate the variation of PS(D) as a linear function

in D that saturates at one,

PS(D) ≈ min (1, (D/(sB))pS) . (3)

F. Node Rebuild

When storage nodes fail, codewords lose some of their

symbols and this leads to a reduction in data redundancy. The

system attempts to maintain the redundancy of the system by

reconstructing the lost codeword symbols using the surviving

symbols of the affected codewords from other nodes.

1) Codeword Reconstruction: For a system using an (l,m)-
MDS code for redundancy, a simple way to reconstruct a

codeword that has lost up to m − l symbols is to read any

of its l symbols, decode the original l user data blocks, re-

encode these l user data blocks using the (l,m)-MDS code,

and recover the lost codeword symbols. The time taken by the

reconstruction process depends on the amount of data to be

read and written and the number of nodes involved.

2) Sector Errors During Rebuild: Latent sector errors in

surviving nodes may be detected during rebuilds. When the

codewords corresponding to the detected bad sectors have at

least l other surviving symbols, these bad sectors are restored

by the codeword reconstruction process described above. As

the number of such detected errors is relatively small, the

time taken to restore these sectors is small and therefore has

negligible effect on the system reliability. However, if the

codewords corresponding to the detected bad sectors have less

than l other surviving symbols, these sectors cannot be restored

and the data corresponding to the codewords is irrecoverably

lost from the system. So only the bad sectors in critical data,

that is, data whose codewords have only l surviving symbols,

is considered for the reliability analysis of this paper. Sector

errors in critical data are referred to as critical sector errors,

or CSE.

3) Intelligent Rebuild: In an intelligent rebuild process, the

system attempts to first recover the codewords of the user

data that have the least number of codeword symbols left.
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Figure 1. Distributed rebuild in declustered placement.

In contrast to intelligent rebuild, one may consider a blind

rebuild, where lost codeword symbols are being recovered

in an order that is not specifically aimed at recovering the

codewords with the least number of surviving symbols first.

Clearly, such a blind rebuild is more vulnerable to data loss.

So, in the remainder of the paper, we only consider intelligent

rebuild.

4) Distributed Rebuild: For placement schemes with spread

factor k > m, the surviving codeword symbols that the system

needs to read to recover the lost codeword symbols may be

spread across k̃ ≤ k − 1 surviving nodes. For such schemes,

as illustrated in Figure 1, a distributed rebuild process may be

used, which involves reading the required codeword symbols

of the data to be rebuilt from all the k̃ nodes, computing the

lost codeword symbols, and writing them to the spare space

of these k̃ nodes in such a way that no symbol is written to

a node in which another symbol corresponding to the same

codeword is already present. Once all lost codeword symbols

are recovered, they are transferred to a new replacement node.

Due to the parallel nature of distributed rebuild, the rebuild

times can be extremely short for large storage systems. In

this paper, distributed rebuild is assumed to be used for all

placement schemes with spread factors k > m. However,

for k = m, that is, for clustered placement, such a rebuild

cannot be used, as it is not possible to write the reconstructed

symbols to the spare space of the k̃ ≤ k − 1 = m− 1 nodes

in such a way that no symbol is written to a node in which

another symbol corresponding to the same codeword is already

present. Therefore, for clustered placement, it is assumed that

the required codeword symbols are read from a set of l nodes

of the surviving cluster, the lost symbols are reconstructed on

the fly, and the reconstructed symbols are directly written to

a new replacement node.

5) Node Rebuild Bandwidth: During the rebuild process, an

average read-write bandwidth of cµ bytes/s is assumed to be

reserved at each node exclusively for the rebuild. This implies

that the average time required to read (or write) c amount of

data from (or to) a node is equal to 1/µ. The average rebuild

bandwidth is usually only a fraction of the total bandwidth

available at each node, with the remainder being used to serve

user requests. Denote the cumulative distribution function of

the time required to read (or write) c amount of data from (or

to) a node by Gµ, and its corresponding probability density

function by gµ.

G. Failure and Rebuild Time Distributions

It is known that real-world storage nodes are generally

reliable, that is, the mean time to repair a node (which is

typically of the order of tens of hours) is much smaller than

the mean time to failure of a node (which is typically at least

of the order of thousands of hours). As 1/λ denotes the mean

time to failure of a node and 1/µ denotes the mean time to

read (or write) c amount of data from (or to) a storage node,

it follows that generally reliable nodes satisfy the following

condition:

1/µ ≪ 1/λ, or λ/µ ≪ 1. (4)

In the subsequent analysis, this condition implies that terms

involving powers of λ/µ greater than one are negligible

compared to λ/µ and can be ignored.

Let the cumulative distribution functions Fλ and Gµ satisfy

the following condition:

µ

∫ ∞

0

Fλ(t)(1−Gµ(t))dt ≪ 1, with
λ

µ
≪ 1. (5)

The results of this paper are derived for the class of failure

and rebuild distributions that satisfy the above condition. In

particular, the mean time to data loss of a system is shown

to be insensitive to the failure distributions within this class.

This result is of great importance because it turns out that

this condition holds for a wide variety of failure and rebuild

distributions, including, most importantly, distributions that are

seen in real-world storage systems [15].

III. RELIABILITY ANALYSIS

The reliability analysis in this article uses a methodology

similar to [13], [15]. It involves a series of approximations,

each of which are justified for generally reliable nodes satisfy-

ing (4) and for failure and rebuild time distributions satisfying

(5). Note that this methodology does not necessarily assume

exponential failure and rebuild distributions and therefore

does not involve any Markov chain analysis. The theoretical

estimates of mean times to data loss predicted using this

methodology have also been shown to match with simulations,

which avoid all the approximations made in the methodology,

over a wide range of system parameters [13], [14], [15]. This

establishes a confidence in the results obtained and conclusions

drawn in this article.

A. Mean Time to Data Loss (MTTDL)

In an erasure coded system, a data loss is said to have

occurred when sufficient number of blocks of at least one

codeword have been lost, rendering the codeword(s) undecode-

able. The average time taken for the system to end up in data

loss, also referred to as the mean time to data loss, or MTTDL,



is a commonly used measure that is useful for assessing trade-

offs, for comparing schemes, and for estimating the effect of

the various parameters on the system reliability [6].

At any point of time, the system can be thought to be in

one of two modes: fully-operational mode or rebuild mode.

During the fully-operational mode, all data in the system has

the original amount of redundancy and there is no active

rebuild process. During the rebuild mode, some data in the

system has less than the original amount of redundancy and

there is an active rebuild process that is trying to restore the

lost redundancy. A transition from fully-operational mode to

rebuild mode occurs when a node fails; we refer to this node

failure that causes a transition from the fully-operational mode

to the rebuild mode as a first-node failure. Following a first-

node failure, a complex sequence of rebuilds and subsequent

node failures may occur, which eventually lead the system

either to irrecoverable data loss, with probability PDL, or back

to the original fully-operational mode by restoring all replicas,

with probability 1−PDL. The following proposition has been

proved in [15].

Proposition 1: Consider a system with generally reliable

nodes whose failure and rebuild distributions, Fλ and Gµ,

satisfy (5). Its MTTDL is given by MTTDL ≈ 1/(nλPDL).
The relative error in the approximation tends to zero as λ/µ
tends to zero.

B. Probability of Data Loss in Rebuild Mode (PDL)

This section show how PDL is estimated so that MTTDL

can be obtained using Proposition 1.

1) Exposure Levels: Consider an erasure coded storage

system with an (l,m)-MDS code. We model the system as

evolving from one exposure level to another as nodes fail and

rebuilds complete. At time t ≥ 0, let Dj(t) be the amount

of user data that have lost j symbols of their corresponding

codewords, for 0 ≤ j ≤ r̃ (note that r̃ = m− l + 1). At time

t, the system is said to be in exposure level e, 0 ≤ e ≤ r̃, if

e = maxDj(t)>0 j.

2) Direct Path Approximation: Denote the probability of

the direct path to data loss by PDL,direct, that is,

PDL,direct := Pr{exposure level path 1 → 2 → · · · → r̃}. (6)

Now the following approximation holds for generally reliable

nodes satisfying (5) [13].

PDL ≈ PDL,direct. (7)

The relative error in the approximation tends to zero as λ/µ
tends to zero.

C. Probability of the Direct Path to Data Loss (PDL,direct)

Consider the direct path to data loss, that is, the path 1 →
2 → · · · → r̃ through the exposure levels. At each exposure

level, the intelligent rebuild process attempts to rebuild the

most-exposed data, that is, the data with the least number of

codeword symbols left (see Section II-F). Let the rebuild times

of the most-exposed data at each exposure level in this path be

denoted by Re, e = 1, · · · , r̃− 1. Let te, e = 2, · · · , r̃, be the

times of transitions from exposure level e−1 to e following a

first-node failure. Let ñe be the number of nodes in exposure

level e whose failure before the rebuild of most-exposed data

causes an exposure level transition to level e+ 1. Denote the

time period from te until the next failure of node i by E
(i)
te

.

The time, Fe, until the first failure among the ñe−1 nodes that

causes the system to enter exposure level e from e− 1, is

Fe := min
i∈{1,··· ,ñe−1}

E
(i)
te−1

, e = 2, · · · , r̃. (8)

At exposure level e, let αe be the fraction of the rebuild time

Re still left when a node failure occurs causing an exposure

level transition, that is, let

αe := (Re − Fe+1)/Re, e = 1, · · · , r̃ − 2. (9)

It can be shown that αe is uniformly distributed in (0, 1) [26,

Lemma 2]. Now, denote by 1/µe the following conditional

means of Re:

1/µe := E[Re|Re−1, αe−1], e = 2, · · · , r − 1. (10)

The actual values of 1/µe depend on the codeword placement

and this will be further discussed in later sections of this paper.

Now, the distribution of Re given Re−1 and αe−1 could be

modeled in several ways. We consider the model B presented

in [15], namely,

Re|Re−1, αe−1 = 1/µe w.p. 1 for e = 2, · · · , r̃ − 1. (11)

This model assumes that the rebuild time Re is determined

completely by Re−1 and αe−1 and no new randomness is

introduced in the rebuild time of exposure level e. For further

discussion on this model see [15]. Now, in the critical exposure

level r̃−1, let Sr̃−1 denote the speed of rebuild and E[Dr̃−1]
denote the expected amount of data to be rebuilt. Define

Region A: pS ≤ sB/ (lE[Dr̃−1]) , (12)

Region B: sB/ (lE[Dr̃−1]) < pS
(1)
≪ λ/µ. (13)

These two regions represent the two main ways in which

the presence of sector errors affects the reliability of the

system. This is because, in the critical exposure level, to

rebuild E[Dr̃−1]amount of data, lE[Dr̃−1] amount of data

has be read from the surviving nodes. The probability of

a critical sector error in this lE[Dr̃−1] amount of data is

pSlE[Dr̃−1]/(sB). In region B, the probability of a critical

sector error is essentially one. This means that as soon as the

system enters the critical state (i.e. exposure level r̃−1), there

is a sector error in the critical data with probability almost

one, and the system experiences irrecoverable data loss. In

region A, the probability of a critical sector error is less than

one and its influence on the system reliability depends on the

relative magnitudes of the probability of a critical sector error

and the probability of a node failure. As E[Dr̃−1] depends

on the underlying codeword placement scheme, the regions

A and B also depend on the placement scheme. Now, the

probability of the direct path to data loss is given by the

following proposition.



Proposition 2: Consider an (l,m)-MDS erasure coded stor-

age system with generally reliable nodes whose failure and

rebuild distributions, Fλ and Gµ, satisfy (5). Let the proba-

bility of a sector being in error be pS (pS ≪ λ/µ). Consider

the direct path 1 → 2 → · · · → r̃ through the exposure levels

in which the rebuild times Re satisfy (11). The probability of

this direct path is given by

PDL,direct ≈

{

(

1 + pSlSr̃−1

sBλñr̃−1

)

P noSE
DL,direct(r̃) in region A,

P noSE
DL,direct(r̃ − 1) in region B,

(14)

where P noSE
DL,direct(x) denotes the probability of the direct path

to data loss for a system with zero sector error probability

and maximum exposure level r̃ = x. Regions A and B

are as defined in (12) and (13). The relative error in the

approximation in (14) tends to zero as λ/µ tends to zero.

Proof: See Appendix A.

The expressions for P noSE
DL,direct(r̃) are given by [26, Prop. 3].

IV. EFFECT OF LATENT ERRORS ON RELIABILITY

Let MTTDLnoSE(r̃) denote the MTTDL in the absence of

sector errors. Then, from (7) and Propositions 1 and 2,

MTTDL(r̃) =







MTTDLnoSE(r̃)
(

1+
pSlSr̃−1
sBλñr̃−1

) in region A,

MTTDLnoSE(r̃ − 1) in region B.

(15)

As expected, the presence of latent sector errors reduces the

MTTDL. In region A, the MTTDL is reduced by a factor that

increases with pS . However, in region B, the MTTDL is equal

to the MTTDL of a redundancy scheme with one parity less.

The extents of the two regions in terms of pS depend on the

expected amount of data to be rebuilt in the critical exposure

level, which in turn depends on the underlying codeword

placement scheme.

A. Clustered Codeword Placement

Let Dclus.
1 , · · · , Dclus.

r̃−1 denote the amounts of data to be

rebuilt in exposure levels 1, · · · , r̃−1, respectively. Following

the first node failure, the amount of data to be rebuilt is

Dclus.
1 = c. The fraction of data not rebuilt in exposure

level one when a transition to exposure level two occurs is

α1 and it is uniformly distributed in (0, 1). Therefore, the

expected amount of data to be rebuilt in exposure level two is

E[Dclus.
2 ] = Dclus.

1 /2 = c/2. Continuing by the same logic, we

obtain E[Dclus.
r̃−1] = c/2r̃−2. Therefore, by the definitions (12)

and (13),

Region A (clus.): pS ≤ sB2r̃−2/(lc), (16)

Region B (clus.): sB2r̃−2/(lc) < pS
(1)
≪ λ/µ. (17)

For a system using clustered codeword placement, the rebuild

process involves reading data from l nodes of the affected

cluster at an average bandwidth of cµ from each node,

computing the lost codeword symbols, and writing them to

a spare node at an average bandwidth of cµ. Therefore, the

average speed of rebuild in exposure level r̃−1 is Sclus.
r̃−1 = cµ.

The failure of any of the surviving l nodes of the critical

cluster before rebuild completion causes data loss. Therefore,

ñclus.
r̃−1 = l. Substituting these values of Sclus.

r̃−1 and ñclus.
r̃−1 in (15),

MTTDLclus.(r̃)=

{

MTTDLclus., noSE(r̃)

(1+ pScµ

sBλ )
(region A)

MTTDLclus., noSE(r̃ − 1) (region B)
(18)

The expression for MTTDLclus., noSE(r̃) is given by [26, Prop.

4]. Furthermore, condition (37) can be seen to hold true for

clustered placement as follows:

ñclus.
r̃−1λD

clus.
r̃−1/S

clus.
r̃−1 = lλDclus.

r̃−1/(cµ) ≤ lλc/(cµ) ≪ 1. (19)

Here, the first inequality follows from noting that the amount

of most critical data to be rebuilt in the direct path never

exceeds the total amount of data stored on one node (that is,

c), and the final inequality follows from the assumption (4).

B. Declustered Codeword Placement

Let Ddeclus.
1 , · · · , Ddeclus.

r̃−1 denote the amounts of data to be

rebuilt in exposure levels 1, · · · , r̃−1, respectively. Following

the first node failure, the amount of data to be rebuilt is

Ddeclus.
1 = c. The fraction of data not rebuilt in exposure level

one when a transition to exposure level two occurs is α1 and

it is uniformly distributed in (0, 1). In contrast to clustered

placement scheme, not all of the unrebuilt part of this Ddeclus.
1

amount of data loses its second codeword symbol. Due to the

nature of the declustered placement scheme, the two failed

nodes store codewords of only a fraction (m − 1)/(n − 1)
of this data. The intelligent rebuild process only rebuilds this

fraction of the data in the second exposure level. Therefore,

the expected amount of data to be rebuilt in exposure level

two is E[Ddeclus.
2 ] = 1

2
m−1
n−1 D

declus.
1 = 1

2
m−1
n−1 c. Continuing by

the same logic, we obtain E[Ddeclus.
r̃−1 ] = 1

2r̃−2 c
∏r̃−2

e=1

(

m−e
n−e

)

.

Therefore, by the definitions (12) and (13), the regions A and

B for clustered placement are given by

Region A (declus.): pS ≤
sB2r̃−2

lc

r̃−2
∏

e=1

(

n− e

m− e

)

, (20)

Region B (declus.):
sB2r̃−2

lc

r̃−2
∏

e=1

(

n− e

m− e

)

< pS
(1)
≪

λ

µ
. (21)

For a system using declustered codeword placement, the

distributed rebuild process in exposure level r̃ − 1 involves

reading the required codeword symbols of the data to be rebuilt

from all the n−r̃+1 surviving nodes of the system, computing

the lost codeword symbols, and writing them to the spare space

of these nodes. This process requires reading lc amount of

data, as well as writing c amount of data, from and to all

n− r̃+1 surviving nodes in parallel. As each of the n− r̃+1
nodes has an average read-write rebuild bandwidth of cµ, and

as l times more data is read from each node than what is

written during the distributed rebuild process, the average rate

of rebuild in exposure level e is Sdeclus.
r̃−1 = (n−r̃+1)cµ/(l+1).

The failure of any of the n − r̃ + 1 surviving nodes during

rebuild causes data loss. Therefore, ñdeclus.
r̃−1 = n − r̃ + 1.



Table II
RANGE OF VALUES OF DIFFERENT PARAMETERS

Parameter Meaning Range

c amount of data stored on each node 10 TB
n number of storage nodes 10 to 1000

1/λ mean time to failure of a storage node 30000 h
1/µ mean time to read/write c amount of

data from/to a node
30 h

s size of a sector 512 B

pS probability of a sector having an error 10−15 to 10−6

B average burst size for sector errors 1.05

Substituting these values of Sdeclus.
r̃−1 and ñdeclus.

r̃−1 in (15),

MTTDLdeclus.(r̃)=







MTTDLdeclus., noSE(r̃)
(

1+
pScµl

sBλ(l+1)

) (region A)

MTTDLdeclus., noSE(r̃ − 1) (region B)
(22)

The expression for MTTDLdeclus., noSE(r̃) is given by [26, Prop.

5]. Moreover, condition (37) can be seen to hold true for

declustered placement, similar to (19).

C. Other Symmetric Placement Schemes

The regions A and B and the corresponding MTTDL

expressions can be derived for all other symmetric placement

schemes in a similar manner as above.

Remark 1: When the probability of encountering a latent

error in the critical state is less than one (i.e. in region A),

the MTTDL is reduced by a factor
(

1 + pScµl
sBλ(l+1)

)

due to

the presence of latent sector errors. This factor is the same

for all symmetric data placement schemes except clustered

placement. In addition, it is independent of the number of

nodes in the system as well as the number of parities in the

erasure code. For clustered placement, the MTTDL is scaled

down by a factor
(

1 + pScµ
sBλ

)

in region A due to the presence

of latent errors. This factor is independent of both parameters,

l and m, of the erasure code.

Remark 2: When the probability of encountering a latent

error in the critical state is almost one (i.e. in region B), the

MTTDL of the system is equal to the MTTDL of a system

with one less parity and no sector errrors.

V. NUMERICAL RESULTS

In this section, we present the effect of latent errors on

reliability by plotting the MTTDL of clustered and declustered

placement schemes for a range of values of the system

parameters. According to [19], [20], [22], the range of practical

relevance of parameters used in the numerical results are listed

in Table II.

Figures 2, 3, and 4 show the difference in the MTTDL

behavior with respect to the number of nodes in the system

between regions A and B. Figures 2(a), 3(a), and 4(a) show the

MTTDL behavior when the effect of sector errors is negligible

in region A. However, when the probability of sector errors

increases and reaches a level at which, when the system

enters a critical state, it always experiences data loss due to a

critical sector error, then the MTTDL behavior of the system

resembles that of a system with one parity less. This can be

observed by comparing Figure 3(b) with Figure 2(a), and by

comparing Figure 4(b) with Figure 3(a).

Figures 5(a) and 5(b) show the MTTDL behavior with

respect to pS for a fixed number of nodes. For 1/λ = 30000
h and 1/µ = 30 h, the practical values of pS in the range of

10−9 to 10−8 (without any scrubbing or intradisk redundancy)

lie mostly in region B. For double parity codes, this means that

declustered and clustered placement have the same reliability

for practical values of pS . For triple parity codes, the difference

in reliability between declustered and clustered placement is

reduced. By reducing pS by two to three orders of magnitude

and using declustered placement, significant improvements

in reliability can be achieved. Note also that these curves

depend on the ratio λ/µ. All curves move to the right when

λ/µ increases. Therefore, when node failures become more

frequent, it is more likely that declustered placement performs

much better in terms of reliability than clustered placement for

systems with two or more parities.

VI. CONCLUSIONS

The effect of latent sector errors on the reliability of a

variety of erasure coded data storage systems was investigated.

The key findings of this article can be summarized as follows:

• The effect of latent errors depends on the relative magni-

tudes of the probability of encountering a critical sector

error versus the probability of encountering a critical node

failure.

• When the probability of encountering a sector error in the

critical state is almost one, the reliability of the system

is similar to the reliability of a system with no sector

errors and one parity less, e.g., reliability of RAID-6 with

sector errors resembles that of RAID-5 without sector

errors. This effect has been observed in literature for

RAID systems with clustered data placement [21]. In this

paper, this effect is shown to be true for all symmetric

placement schemes and all MDS erasure codes.

• When the probability of encountering a sector error in

the critical state is less than one, the MTTDL is scaled

down by a factor that depends on the probability, pS , of

a sector having a latent error. This factor is the same for

all symmetric data placement schemes except clustered

placement. In addition, it is independent of the number

of nodes in the system as well the number of parities in

the erasure code.

• If the effective probability, pS , of a sector having an error

is reduced by means of scrubbing or intradisk redundancy,

larger gains in reliability can be achieved for declustered

placement when compared to other symmetric placement

schemes.

• It is observed that the practical values of pS and λ/µ lie in

an important range of values where the reliability can be

significantly improved by using a combination of declus-

tered data placement and either intradisk redundancy or

scrubbing.
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Figure 2. MTTDL vs. number of nodes for systems using single parity codes with pS = 0 for region A and pS = 10−7 for region B.
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Figure 3. MTTDL vs. number of nodes for systems using double parity codes with pS = 0 for region A and pS = 10−7 for region B.
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Figure 4. MTTDL vs. number of nodes for systems using triple parity codes with pS = 0 for region A and pS = 10−7 for region B.
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APPENDIX A

PROOF OF PROPOSITION 2

Consider a sample direct path with Re = τe, e = 1, · · · , r̃−
1, and αe = ae, e = 1, · · · , r̃ − 2.1 Denote the vector

(τ1, · · · , τr̃−1) by ~τ and (a1, · · · , ar̃−2) by ~a for notational

convenience. Then, the probability of this direct path, denoted

by PDL,direct(~τ ,~a), is

PDL,direct(~τ ,~a) = Pr{R1 = τ1} × Pr{F2 < R1|R1 = τ1}

× Pr{α1 = a1|R1 = τ1, F2 < R1}

× Pr{R2 = τ2|R1 = τ1, F2 < R1, α1 = a1}

× Pr{F3 < R2|R1 = τ1, F2 < R1, α1 = a1, R2 = τ2}

· · · × Pr
{

Fr̃ < Rr̃−1 or CSE
∣

∣Re = τe, Fe′+1 < Re′ ,

αe′ = ae′ , ∀ e ∈ {1, · · · , r̃ − 1}, ∀ e′ ∈ {1, · · · , r̃ − 2}
}

. (23)

1This is a shorthand notation referring to a direct path to data loss with
τe < Re ≤ τe + δτe, e = 1, · · · , r̃ − 1, and ae < αe ≤ δae, e =

1, · · · , r̃ − 2, where δτe and δae are positive infinitesimal quantities.



If we denote the mean of R1 by 1/µ1, based on the rebuild

model described in Section II-F, it follows that R1 is dis-

tributed according to some distribution Gµ1
that satisfies (5),

that is, R1 ∼ Gµ1
. Therefore, the first term in (23) reduces to

Pr{R1 = τ1} = gµ1
(τ1)δτ1, (24)

where δτ1 denotes an infinitesimal increment in τ1. Now,

denote by pCSE the probability of critical sector error given

that the system has reached exposure level r̃− 1 through this

sample direct path:

pCSE = Pr
{

CSE
∣

∣Re = τe, Fe′+1 < Re′ , αe′ = ae′ ,

∀ e ∈ {1, · · · , r̃ − 1}, ∀ e′ ∈ {1, · · · , r̃ − 2}
}

(25)

Using pCSE the last term in (23) can be split into two:

Pr
{

Fr̃ < Rr̃−1 or CSE
∣

∣Re = τe, Fe′+1 < Re′ , αe′ = ae′ ,

∀ e ∈ {1, · · · , r̃ − 1}, ∀ e′ ∈ {1, · · · , r̃ − 2}
}

= pCSE + (1− pCSE) Pr
{

Fr̃ < Rr̃−1

∣

∣Re = τe, Fe′+1 < Re′ ,

αe′ = ae′ , ∀ e ∈ {1, · · · , r̃ − 1}, ∀ e′ ∈ {1, · · · , r̃ − 2}
}

. (26)

All terms in (23) other than (24) and (26) fall into three types:

A: Pr
{

Fe < Re−1

∣

∣Re′ = τe′ , Fe′′+1 < Re′′ , αe′′ = ae′′ ,

∀ e′ ∈ {1, · · · , e− 1}, ∀ e′′ ∈ {1, · · · , e− 2}
}

, (27)

B: Pr
{

αe = ae
∣

∣Re′ = τe′ , Fe′+1 < Re′ , αe′′ = ae′′ ,

∀ e′ ∈ {1, · · · , e}, ∀ e′′ ∈ {1, · · · , e− 1}
}

, (28)

C: Pr
{

Re = τe
∣

∣Re′ = τe′ , Fe′+1 < Re′ , αe′ = ae′ ,

∀ e′ ∈ {1, · · · , e− 1}
}

. (29)

From Lemmas 1, 2, and 3 in [26], expressions A, B, and C

reduce to ñe−1λτe−1, δae, and δ(τe − 1/µe)δτe, respectively.

Here, δ(τe − 1/µe) denotes the Dirac delta function with

a spike at 1/µe, and δαe and δτe denote an infinitesimal

increment of αe and τe, respectively. Substituting (24), (26),

and the expressions A, B, and C in (23), the probability of a

sample direct path, PDL,direct(~τ ,~a), becomes

PDL,direct(~τ ,~a) ≈ λr̃−2 × ñ1 · · · ñr̃−2 × τ1 · · · τr̃−2 × gµ1
(τ1)

× δa1 · · · δar̃−2 × δτ1 · · · δτr̃−1

× δ(τ2 − 1/µ2) · · · δ(τr̃−1 − 1/µr̃−1)

× ((1− pCSE)ñr̃−1λτr̃−1 + pCSE). (30)

The probability of the direct path to data loss, PDL,direct, is

the sum of the probabilities, PDL,direct(~τ ,~a), of all possible

sample direct paths. As the infinitesimal increments in (30)

tend to zero, the sum becomes an integral. Therefore,

PDL,direct ≈ λr̃−2 × ñ1 · · · ñr̃−2

×

∫

τ1

· · ·

∫

τr̃−1

∫

a1

· · ·

∫

ar̃−2

(

τ1 · · · τr̃−2gµ1
(τ1)

× δ

(

τ2 −
1

µ2

)

· · · δ

(

τr̃−1 −
1

µr̃−1

)

× ((1− pCSE)ñr̃−1λτr̃−1 + pCSE)d~ad~τ

)

. (31)

Here, the integrals are from 0 to ∞ for τe, e = 1, · · · , r̃ − 1,

and from 0 to 1 for ae, e = 1, · · · , r̃− 2. Changing the order

of integrals, integrating over τr̃−1, and rearranging, we obtain

PDL,direct ≈ λr̃−1 × ñ1 · · · ñr̃−1

×

∫

a1

· · ·

∫

ar̃−2

∫

τ1

· · ·

∫

τr̃−2

(

τ1 · · · τr̃−2
1

µr̃−1
gµ1

(τ1)

× δ

(

τ2 −
1

µ2

)

· · · δ

(

τr̃−2 −
1

µr̃−2

)

×
(

1 + pCSE

µr̃−1

ñr̃−1λ

(

1−
ñr̃−1λ

µr̃−1

))

dτr̃−2 · · · dτ1d~a

)

. (32)

Let the amount of critical data to be rebuilt in exposure level

r̃−1 be Dr̃−1. This amount is dependent on the sample direct

path. For the codeword reconstruction process, the l surviving

symbols of this data needs to be read from the surviving

nodes. So the total amount of data that is read during the

reconstruction process is lDr̃−1. The probability of a critical

sector error in this data, pCSE, is given by (3):

pCSE = PS(lDr̃−1) ≈ min(1, lDr̃−1pS/(sB)). (33)

Since the exact value of Dr̃−1 is path dependent, we consider

the expected value of Dr̃−1, namely, E[Dr̃−1], and distinguish

between two regions, A and B, as defined in (12) and (13). In

region B, the probability of a critical sector error is essentially

one. So,

pCSE ≈

{

lDr̃−1

sB
pS in region A,

1 in region B.
(34)

Region A: Let the average speed of rebuild in exposure level

r̃ − 1 be Sr̃−1. The average amount of time taken to rebuild

this data is then given by

1/µr̃−1 = Dr̃−1/Sr̃−1. (35)

The speed of rebuild Sr̃−1 depends on the codeword placement

scheme but is independent of the sample direct path. From (35)

and (34), we obtain

pCSE

µr̃−1

ñr̃−1λ

(

1−
ñr̃−1λ

µr̃−1

)

=
pSlSr̃−1

sBλñr̃−1

(

1−
ñr̃−1λDr̃−1

Sr̃−1

)

.

(36)

For systems with generally reliable nodes satisfying (4), it can

be shown that

ñr̃−1λDr̃−1/Sr̃−1 ≪ 1 (37)

for all symmetric placement schemes (see Sections IV-A, IV-B,

and IV-C). Therefore, (36) reduces to

pCSE

µr̃−1

ñr̃−1λ

(

1−
ñr̃−1λ

µr̃−1

)

≈
pSlSr̃−1

sBλñr̃−1
, (38)

which is independent of the sample direct path because Sr̃−1

is independent of the sample path. Substituting (38) into (32),

and recognizing the remaining terms as P noSE
DL,direct(r̃), we get

(14) for region A.

Region B: In region B, the probability, pCSE, of a critical sector

error is equal to one. Therefore, (31) reduces to P noSE
DL (r̃− 1)

and we obtain (14) for region B.


