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Abstract—Network devices supporting 100G links are
in demand to meet the communication requirements of
computing nodes in datacenters and warehouse computers.
In this paper, we proposeTQ and TQ-Smooth, two light-
weight, fair schedulers that accommodate an arbitrarily
large number of requestors and are suitable for ultra-
high-speed links. We show that our first algorithm, TQ,
as well its predecessor, DRR, may result in bursty ser-
vice even in the common case where flow weights are
approximately equal, and we identify applications where
this can damage performance. Our second algorithm,
TQ-Smooth, improves short-term fairness to deliver very
smooth service when flow weights are approximately equal,
while allocating bandwidth in a weighted fair manner. In
many practical situations, a scheduler is asked to allocate
resources in fixed-size chunks (e.g. buffer units), whose
size may exceed that of (small) network packets. In such
cases, byte-level fairness will typically be compromised
when small-packet flows compete with large-packet ones.
We describe a novel scheme that dynamically adjusts the
service rates of request/grant buffer reservation to achieve
byte-level fairness based on received packet sizes.

I. INTRODUCTION

Current datacenters (DCs) enclose many thousands
of digital appliances capable of processing and storing
massive amounts of data. When seen in isolation, these
appliances are not always superior to what users may
have at home. But the confinement of many of them
within a small spot and the big-data applications that they
can collectively engage in make datacenters particularly
interesting. Datacenter networks (DCNs) are playing
a critical compounding function in datacenters. In a
still somewhat turbulent field, there have been many
recent proposals to reshape DCNs so that the latter
can successfully meet stringent and in some cases even
divergent requirements. Many of these proposals focus
on management, transport, or network level protocols,
targeting better exploitation of the existing infrastructure
by DC applications [2], [3], [4], [5], [6].

This is an extended version of a HiPEAC INA-OCMC paper
[1], entitled ”Arbitration of many thousand flows at 100G and
beyond” by ACM, NY, USA c©2013, ISBN: 978-1-4503-1784-9,
doi>10.1145/2482759.2482761
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(a) Scheduling in a network interface, based on ur-
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(b) In a switching fabric with virtual output queues
(VOQs), a packet scheduler may be needed(i) at
ingress to prioritize packet injections, and at egress,
(ii) to forward reassembled packets or(iii) to allocate
egress buffer space for packets that wait at VOQs at
ingress interfaces [9], [10].

Fig. 1. Possible applications of fast packet schedulers.

At the same time, the DCN infrastructure changes in
ways that can radically modify the landscape. Intelligent
network interfaces (NIs) attached to (or coexisting with)
processing cores, which can provide low-latency / high-
bandwidth pathways to remote processes, is a long
sought goal –see Fig. 1(a) for an illustration, and refer
to [8] for an example study.

Another trend is large, flattened switching fabrics
(Fig. 1(b)) to deal with the increasing volume of inter-
server (east-west) traffic. Such fabrics are expected to
provide equidistant ports with homogeneous quality-of-
service guarantees to enable the seamless integration of
large numbers of compute and storage nodes.

Switches and NIs with 40G Ethernet ports are now
becoming available, and the industry is already preparing
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for 100G Ethernet. If any lesson has been learned from
the past it is that bandwidth is rarely in excess. Although
today there probably are only few processes that saturate
a 100G link, this may not be the case in the near future.
The adoption of RDMA and FCoE (Fibre Channel over
Ethernet) technologies in converged datacenter networks
will soon enable a single node to generate flows that
can saturate even a 100G link. In addition, in a multi-
VM, multi-tenant DCN environment, any link can easily
become congested. Thus, it is a basic requirement for
modern converged network architectures [7] to slice the
capacity into well isolated traffic classes with perfor-
mance guarantees.

On the other hand, scheduling becomes extremely
challenging as network size and line speed increase. For
instance, the duration of a 64B Ethernet frame on a 100G
line is just ∼6 ns. At the same time, in a warehouse-
scale computer, or in a multi-core processor, a scheduler
may arbitrate among several hundreds to thousands of
requestors. The trend towards large distributed switches
and ultra-short packet durations make the implementa-
tion of a fair scheduler extremely difficult.

In this paper we propose a packet scheduling scheme
that scales to large numbers of requestors and ultra-fast
line rates. Packet schedulers have been studied exten-
sively since the beginning of the ATM [11], [12], [13].
The simplicity vs. efficiency trade-offs that thedeficit
round-robin (DRR) introduced in the mid-1990s have
rendered it the algorithm of choice in many operating
systems and network devices [15].

Alternative schemes have since been proposed that
maintain the sameO(1) asymptotic complexity of DRR
while providing smoother service [16], [17], [18]. How-
ever, these algorithms add considerable bookkeeping
and logic complexity. For modern ASICs, which may
accommodate multiple high-speed links and support
scheduling multiple flows in parallel, fair schedulers with
low complexity are hence of great interest.

Our algorithm is built upon ideas from DRR:

a. it preserves the simplicity of the original DRR
algorithm,

b. smoothes out burstiness, especially when the
weights of the active flows are close to each other1

c. provably provides weight-proportional fair service.
For comparison, stratified-RR groups flows of roughly

equal bandwidth requirements into a flow class [17]. It
uses a timestamp-based scheduler to select a class, and
DRR to select a flow within the class selected. While it is
true that the timestamp-based scheduler arbitrates among
significantly fewer candidates than the number of flows,

1In the common case, flow weights are likely to be equal.

its cost, coming on top of DRR, may be excessively high
for ultra-high speed links. In addition, our DRR-based
scheme easily integrates further improvements (Sec. IV)
which would not be readily possible with a timestamp-
based scheduler.

In Sec. II we describe our scheduling schemes and
outline their behavior. Then, in Sec. III, we evaluate
them using computer simulations. Section IV focuses
on a particular application of the scheduler, namely,
the allocation of credits of an egress buffer to a set of
requestors in a large switching fabric. For this applica-
tion, we describe how to maintain close to ideal byte-
level fairness and point out some interesting trade-offs
regarding the sizing of buffer subunits. Finally, Sec. V
concludes our findings.

II. U LTRA-FAST PACKET SCHEDULING

In packet-switched networks, distributed packet sched-
ulers are commonly responsible for slicing up the band-
width. Weighted round-robin is a flexible scheduling
scheme that extends the round-robin (RR) service by
prioritizing requests using service weights. One can pre-
configure or dynamically change weights to requestors,
so that each weight assignment represents either the
minimum bandwidth share (e.g. weights sum up to a 100)
of each flow or the relative urgency/importance of one
request over the other. We assume that flows are simply
groups of requests. Each flow may present its demand
either as a queue of unprocessed data packets or as a
request counter of unprocessed data units. We disregard
the possibility of two or more flows being merged into
a common queue or counter.

We next present our two algorithms,Tandem Queue
(TQ) and Tandem Queue Smooth (TQ-Smooth). Their
names originate from their control queues that work in
tandem and propel their operation.

A. Tandem Queue: a DRR derivative

The scheduler keeps a configurable weight parameter
wf ∈ N+ and aservice-creditcrf counter for each flow
in memory. A descriptor of any eligible flow is always
present in one of twocontrol queues, which we name
highQ and lowQ. Refer to Algo. 1. At any time, the
scheduler selects the flowf at the head of one of those
control queues, giving strict priority to highQ whenever
it is non-empty. Note that the selected flowf is always
removed from the corresponding control queue. Assume
that the selected flowf is assignedL units of service,
whereL may correspond to the bytes of a head-of-line
(HOL) packet or to a number of buffer units. Next, the
scheduler(a) decrementscrf by L, and(b) increments it
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by wf if f was dequeued from lowQ. Iff is still eligible
after receiving this service or if it becomes eligible after
an inactivity period, the scheduler will insert it at the rear
of lowQ if crf ≤ 0 and at the rear of highQ otherwise.

Algorithm 1 Tandem Queue (TQ)
Init: ∀f , crf = 0;
Select next flow:
f = null; selectedLowQ = false;
if highQ.empty = true then

if lowQ.empty = false then
f = lowQ.dequeue();
selectedLowQ = true;

end if
else

f = highQ.dequeue();
end if
if f 6= null then

crf = crf - L;
if selectedLowQthen

crf = crf + wf ;
end if
ServeL units from flowf
Reprogram flow (f)

end if
Reprogram flow (g):
if g is eligible then

if crg > 0; then
highQ.enqueue(g);

else
lowQ.enqueue(g);

end if
end if

Note that by constrainingwf ≥ Lmax, we prevent
a flow’s credit from dropping too low2, hencecrf ∈
(−Lmax, wf ). Note also that if we used only one control
queue, then the service would be RR: after being served,
a flow would be assigned the lowest priority among all
other eligible flows. Obviously, such a scheme will not
be fair if packets have variable size; additionally, flow
weights will not have any effect. By having a lowQ
and a highQ, our algorithm maintainsweightedfairness,
independently of the per-flow packet-size distributions.
This is described next.

Consider a time interval(t1, t2) during which flows
(f1, · · · , fN ) are continuously active, i.e., eligible for
service. In addition, assume that all flows start with
crf = 0 and are initially in lowQ, and that all packets
in the system areL bytes long. Assume that initially

2Negative credits are also used in [18].

fi is at the head of lowQ, and thus the scheduler
selects it first and serves its HOL packet. The scheduler
will then incrementcrfi by (wfi − L). The updated
crfi will be positive if wfi > L, in which case the
scheduler will enqueuefi in highQ. Being alone in
highQ,fi will be selected another(kfi−1) times, sending
one packet each time, wherekfi = ⌈

wfi

L
⌉. Eventually,

crfi = wfi − kfi ·L ≤ 0, and the scheduler will enqueue
fi at the rear of lowQ. Next, the scheduler will select
the new head of lowQ,fj, and will similarly serve it for
kfj times untilcrfj = wfj − kfj · L ≤ 0.

Let avisit include the entire service assigned to flowf
contiguously in time3; also denote byrounda segment in
the execution of the algorithm that visits each active flow
exactly once. From the discussion above, it then follows
that, in the first round, each flow received service roughly
proportional to its weight. If a flow received more service
(e.g. 70) than what its weight allows (50), it will end up
with a negative credit (-20), which will be accounted for
by giving the flow less service in the next round. Thus,
if we denote bysf (m) the service given to an active
flow f when the arbiter visits it for themth time, and
crf (m) its credit after themth visit, then it is easy to
see thatsf (m) = wf + crf (m− 1)− crf (m). By letting
S(t1, t2) =

∑m
i=1 sf (i), noting that−Lmax < crf < wf ,

and by evaluating the sum, we immediately obtain the
following result, which is analogous to Lemma 2 in [15]:

Lemma 1: In any interval(t1, t2) during which all
flows in the system are active, and flowf is visitedm
times, the aggregate service assigned tof will be (m−
1) · wf − Lmax< Sf (t1, t2) < (m+ 1) · wf + Lmax.

The TQ scheme differs from DRR because for a set
of simultaneously active flows with positive credits, TQ
will serve one packet from each flow in a RR fashion.
In contrast, DRR will serve the flow selected in a burst
until its credit has been exhausted, or the next packet is
larger than the remaining credit. DRR avoids serving a
packet when this is not accommodated by the current
credit of the flow; this might leave a flow with up
to Lmax − 1 credits (surplus) for the next round. Our
scheme, in contrast, serves a flow even if the flow’s credit
is not sufficient for its next packet, and this can create
a debit (negative credit) of magnitude up toLmax − 1.
Nevertheless, for a time interval in which the set of active
flows does not change, our algorithm has similar fairness
properties as DRR.

Given that the eligibility of flows does not change,
the highQ will always contain at most one flow; this
can easily be inferred from the algorithm description. It

3We ignore here the trivial case wheref is the only active flow
and thus receives all service.
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Fig. 2. A scheduler allocating buffer space of an output
queue to requesting sources. Buffer credits get replen-
ished when data is forwarded out of the queue.

then also follows that the algorithm visits flows in a RR
fashion, much like in DRR: between any two visits to
flow fi, all other active flows will have received one visit.
Thus, all active flows are visited the same number of
times, plus-minus one. Then, from Lemma 1, it follows
that, in the long run, the service given to each flow will
be proportional to that flow’s weight, independent of the
packet size distributions of the flows.

B. Improving the short-term fairness of TQ scheduling

As shown in [15], in any execution of DRR, and
for any pair of flows that are active in(t1, t2):
Sf1(t1, t2)/wf1 − Sf2(t1, t2)/wf2 ≤ c, where c is a
constant with respect to the number of flows and depends
on Lmax. The same inequality also holds true for TQ if
the set of active flows does not change in(t1, t2). The
above sets a constant upper bound for the difference
between the normalized service rates received by any
flow pair. (The ideal, fluid GPS scheduler provides
continuously equal normalized service rates to active
flows [13].) However, in practice, constantc may be large
enough to hurt performance.

Consider for instance that we configure three flows,
f1, f2, and g, with weightswf1 = wf2 = 100 · Lmax

andwg = Lmax. The intention is to treat flowsf1 and
f2 equally, but if one of them competes with flowg, it
should get 100× more service. Iff1 and f2 are active
while g is not, then both TQ and DRR will serve≈
(100 · Lmax) bytes from each flow in turn, thus leading
to burstiness. To make things worse, a large MTU may
elicit an increase of the weights and therefore of service
burstiness.

Burstiness is traditionally undesired in packet-
switched networks. In Fig. 2, we depict a scheduler that
allocates buffers of a (flow-controlled) destination queue.
The scheduler first visits flowf1, becausef2 presented
its requests a couple of clock cycles late. If the scheduler
is too bursty, then, beforef2 gets a first chance, there

may be no more buffers available. Effectively,f2 must
wait for f1 to replenish some buffers. Iff1 does not
forward the granted data fast enough, then the output
queue can underflow, and the output line can stay idle
even though it could instead servef2’s packets.

We now describe a second algorithm,Tandem Queue
Smooth (TQ-Smooth), which improves the smoothness
(or short-term fairness) of TQ in such practical cases
when flows have approximately equal but relatively large
weights. The main idea is to prevent one flow from
monopolizing the highQ for a long time.

In particular, assume that flowf is now served from
lowQ, and is enqueued in highQ. At this point, if lowQ
is non-empty, we set the variableavoidHighQ. While
avoidHighQ remains true, the scheduler continues to
visit new flows from lowQ. Once lowQ drains out, the
scheduler serves the flows enqueued on the highQ in a
RR fashion, at one packet per visit. TQ-Smooth shares
many parts with TQ. Algorithm 2, below, depicts their
differences.

Algorithm 2 TQ-Smooth: modifications to TQ.
Init: avoidHighQ= false;
Select next flow:
selectedLowQ = false;
if highQ.empty = true∨ avoidHighQ = true then

f = lowQ.dequeue();
selectedLowQ = true;

else
f = highQ.dequeue();

end if
if selectedLowQ∧ lowQ.empty = false then

avoidHighQ = true
else

avoidHighQ = false;
end if

The key to understanding why TQ-Smooth provides
weight-proportional fair service is the following. A flow
that is selected from the lowQ will enter the highQ, re-
enter it a number of times, and finally return to the
lowQ. In such a time period, the flowf is scheduled
a number of times that is proportional to its weightwf

and inversely proportional to the amount of service it
receives for one scheduling operation (e.g. the packet
size). At the end of this period, the flow drops off the
highQ. This results in denser visits to flows with higher
weight or smaller packets, which will remain on highQ
longer.

We can formally prove this by introducing the no-
tion of the super-round. Assuming that all flows are
continuously active, a super-round begins with all of
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them in lowQ, includes the visit to one or more flows,
and ends up the next time instant when all flows fall
into lowQ again. Observe that in each super-round every
active flow is visited at least twice: once from the front
of lowQ and once from the front of highQ. In terms
of aggregate service, a super-round is equivalent to a
round in the original algorithm or DRR. In particular,
if s∗f (M) is the service off during theM th super-
round andcrf (M) is f ’s credit at the end of it, then
s∗f (M) = wf + crf (M − 1) − crf (M). The following

Lemma can be proven by taking the sum
∑M

n=1 s
∗
f (n),

and noting that−Lmax < crf < wf .
Lemma 2: In any interval(t1, t2) that comprises ex-

actly M super-rounds, the aggregate service assigned
to f will be (M − 1) · wf − Lmax < Sf (t1, t2) <
(M + 1) · wf + Lmax.

III. E VALUATION

In this section we evaluate TQ and TQ-Smooth using
computer simulations. We do not present the results for
DRR separately as they match closely with those of TQ.

In our experiments, we configured a scheduler to
arbitrate the access on a 100G link. The flows that
compete for the link queue up their packets in front of
the scheduler. In every iteration, the scheduler selects a
flow and serves its HOL packet; therefore, the scheduler
decrementscr by the exact amount of service assigned
to the flow selected. We setLmax equal to the maximum
transfer unit (MTU) = 1500B. The duration of anLmax

packet on the link is 120 ns.
We ran the following experiments.

• Exp1: Three persistent flows, all having a weight
w = 100 · Lmax and sendingLmax packets.

• Exp2: Three persistent flows, all having a weight
w = 100 · Lmax. Flows 0, 1, and 2 send 1500B,
512B, and 64B packets, respectively.

• Exp3: Same as Exp1, but for ten (10) persistent
flows.

In all experiments, all algorithms assigned to flows
equal shares of the 100G link.

In Figs. 3(a) and (b), we present the service time-series
of TQ and TQ for Exp1. As can be seen, TQ serves flows
in bursts ofw bytes, each one lasting for100 120 ns.
On the other hand, TQ-Smooth provides much smoother
service, serving one packet at the time in a RR fashion
as shown by the inlet of Fig. 3(b).

Figures 4(a) and (b) present our results for Exp2. In
this experiment, flow 0 sends larger packets than flow 1,
which sends larger packets than flow f2. As can be seen
in the figure, TQ again serves flows in bursts ofw bytes.
On the other hand, TQ-Smooth frequently round-robins,
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(b) Exp1: TQ-Smooth.

Fig. 3. Results for experiment 1.

sending one packet from each flow in turn. This is when
all flows are active in highQ. When flow 0 drops off the
highQ, the visits to flows 1 and 2 become denser. Next,
the service credit of flow 1 becomes negative, which
leaves flow 2 alone in highQ to receive its fair share,
until it also drops into the lowQ, thus ending a super-
round.

The results of TQ and TQ-Smooth for Exp3 are
presented in Figs. 5 (a) and (b). As can be seen, TQ-
Smooth serves one packet at a time visiting a different
flow in each iteration. This validates the smoothness
of the algorithm regardless of the number of flows. In
Fig. 5, the horizontal axis measures time in 1500B frame
durations.

IV. OPTIMIZED BUFFER CREDIT ALLOCATION

As outlined in Sec. I and Fig. 1(b), large switching
fabrics strongly benefit from end-to-end flow and con-
gestion control schemes. In these settings, a scheduler
is used at every egress port to allocate egress buffer
space to the requesting sources. This simple proactive
scheme can prevent overloaded egress buffers (and their
accompanying saturation trees) and eliminate deadlocks
in the reorder/reassembly buffers [9] [10].
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Fig. 4. Results for experiment 2.
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Fig. 5. Results for experiment 3; note that time measures
in 1500B transfer-time units.

The operation of a credit scheduler at a fabric-egress
port is depicted in more detail in Fig. 6. To inject a
packet of sizes, a source must first post a request
and receive a grant forg = ⌈s

b
⌉ buffer units from

the corresponding egress scheduler. Althoughs can be
greater thanb, for simplicity we assume thats ≤ b, so
g = 1. The scheduler stores the outstanding requests in
per-flow request counters that are held in on-chip arrays.
Each requested or granted credit is for one buffer unit,
even when the requesting packet is of smaller size. The
scheduler also maintains the overall number of available
buffer units (e.g., for one 802.1q priority) in a buffer-
credit counter, consuming one buffer credit for each grant
provided to a flow, and replenishing one for each packet
that departs from the egress queue.

The credit scheduler considered here selects the next
flow using TQ-Smooth4. The service credit,cr, of each
flow counts buffer units, andLmax is the maximum
number of buffer units that the scheduler allocates in one
shot to a flow. For simplicity, we assume thatLmax = 1,
noting that in practiceLmax > 1, e.g., to reduce the
bandwidth overhead of grant messages. The weight of
each flow must be greater than or equal toLmax, i.e.,
wf ≥ 1, and corresponds to the number of grants that
we want to allocate to a flow in one super-round.

A. Long-versus-short packet fairness

At the application layer, high-bandwidth flows mainly
comprise MTU packets. Short packets are primarly used
for synchronization and other control functions, such as
barriers, remote read requests, cache invalidations, TCP
acks, flooding network addresses, etc. At an aggregation
point in the network, where multiple application layer
flows converge, short packets may constitute a significant
fraction of the traffic and handling them fairly is impor-
tant for obtaining low upper-layer protocol latencies.

In this section, we present our solution to allow the
network designer to select the most appropriate buffer
unit size based on design trade-offs, without having to
worry about excessively punishing short-packet flows.

In practice, the buffer memory cannot be divided into
arbitrarily small units so as to satisfy each extra byte
of payload in a non-overprovisioned fashion. Instead, it
is typically divided into fixed-size slots (buffer units),
whose size is a trade-off between memory utilization
and bookkeeping overhead. The larger the buffer units,
the smaller the size and the number of pointers that link
them together; on the other hand, too large a buffer unit

4Although any other DRR derivative would work as well, as
explained in Sec. II-B and Fig. 2, the smooth service of TQ-Smooth
is highly desirable when allocating buffers.
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Fig. 6. A scheduler at an egress port of a switching fabric
that allocates buffer units in the corresponding egress
queue to the requesting ingress ports. Note that the figure
omits the service-credit increment bywf . The numbers
shown here are forb = 256B, k = 32B, andLmax = 1.
In our experiments, optimal performance is achieved for
k = 4B.

will result in severe underutilization of memory when the
workload includes many small packets. In the remainder
of the paper, without loss of generality, we consider
buffer units of sizeb equal to 256 bytes.

Now consider two ingress ports sourcing 64- and 256-
byte packets, respectively, which target the same fabric-
egress port. Although the corresponding credit scheduler
may grant the two sources equally, the 256B one will
achieve four times more [bytes/sec] throughput. Note
that this problem can be solved if we resort to 64B
buffer units, as the 256B flow would then need four 64B
grants to inject a packet; but fairness could be again
compromised under a mix of 65B and 128B packets.

The solution to this problem given in [9] is to allow the
source to inject amultipacket segmentfor each grant that
it receives. Each such segment may comprise multiple
small packets or even fragments from larger packets that
belong to the same flow. In this way, a short-packet
flow can fully utilize the service it is assigned by the
output credit scheduler. However, this method requires
considerable extra bookkeeping per buffer-unit in order
to maintain the payload boundaries (and the headers)
from multiple variable-size packets.

Here we present an alternative solution that achieves
long-vs-short packet fairness as shown in Fig. 6. We
logically divide each buffer unit intob

k
buffer subunits,

of k bytes each, and let the service credit (cr) keep track
of subunits. Correspondingly,Lmax, and the weights of
flows, wf , must all be scaled by a factor ofb

k
. Thus

decreasingk increases the dynamic range of weights and
of service credit variables.

We first consider thatk = 32B, and scale upLmax

andwf by a factor of 8. (Note, however, that consider-
ably better performance can be achieved fork ≤ 8B.)

The scheduler provides a grant as described before,
decrementing the buffer-credit count and the counter of
outstanding credit requests by one, but now it debits 8
(32B) subunits to the selected flowf , decrementingcrf
by 8.

Observe that the scheduler is still oblivious of the size
of individual packets. All it sees is the cumulative request
count from each flow, where each request is for a buffer
unit. Thus all that it knows is that each injected packet
will fit into a buffer unit5.

The first time that the scheduler encounters the granted
packets (and learns their size) is when the latter reach
the egress port. In our scheme, when an egress port
receives a granted packet, it informs its scheduler about
the unused subunits =⌊ (b−s)

k
⌋, which banks them in

the correspondingcrf counter, thus returning the unused
subunits that were debited to its account when the grant
was issued to the flow. Hence, as will be shown in more
detail below, thecrf counter is effectively decremented
by ⌈ s

k
⌉ subunits for a grant of 1 credit followed by the

reception of packet of sizes.

B. Experiments

We conducted computer simulations to test the pro-
posed scheme. In our tests, two flows request credits at
full speed from an egress credit scheduler, which grants
Lmax = 1 (buffer-unit) credits at a time.
Test1 (baseline test):Here we did not use the proposed
optimization, or, equivalently, the buffer subunits were
equal in size tob. One flow was sending 256B, and
the other 64B, withb equal to 256B. Both flows had
weights equal to 100. As expected, the 256B flow
captured 80% of the egress link.

Test2: Next, we set the buffer subunit tok = 32B, and
accordingly scaled up the flow weights by a factor of 8,
setting them to 800. Now, upon granting a buffer unit to
flow f , the scheduler decreasescrf by s

k
= 8, and when

the egress port receives a packet of sizes < 256B, it
increasescrf by ⌊ (256−s)

32 ⌋. Thus, for each packet that
the64B flow sends, its service credit is first decremented
by 8 and later incremented by 6, for a net “debit” of 2.
Thecost per byte (C1B) of this flow is thus 1/32. On the
other hand, for each packet that the256B flow sends,
its service credit is only decremented by 8, yielding the
same cost per byte for either flow.

5Note that instead of per-flow request counters we could maintain
per-flow request queues to store the size of each individual request.
However for large port numbers, this adds significant cost tothe
implementation.
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Remember that when the served flow resides in lowQ,
its service credit gets incremented by its weight. There-
fore, because the flows have the sameC1B, they will
receive equal bandwidth shares, which was validated by
our simulations.
Test3:Here we repeat test2, but with 64B and 80B flows.
As in test2, each packet costs the 64B flow two service
credits; in contrast, it costs the 80B flow8−⌊ (256−80)

32 ⌋ =
3 service credits. Thus, theC1B is 2/64 for the 64B flow
and 3/80 for the 80B one. LetSf denote the bandwidth of
flow f normalized to the link capacity. As the two flows
have the same weight, we expect thatS80B

S64B
= C1B(64B)

C1B(80B) =
0.833, and as the scheduler is work conserving,S80B +
S64B = 1. It follows thatS64B = 0.545 andS80B = 0.455.
These rates were validated in our simulations.

C. Variance of cost per byte

In general, theC1B of a flow sending packets of size

s ≤ b equals
b

k
−⌊ (b−s)

k
⌋

s
. As b will, in practice, be an

integer multiple ofk, we have that

C1B =
−⌊− s

k
⌋

s
=

⌈ s
k
⌉

s
. (1)

Ideally, the C1B should be the same for all flows,
which would allow the scheduler to assign perfectly fair
bandwidths. However this is not possible because of
quantization effects. It is easy to see that theC1B reaches
its minimumC1Bmin =

1
k

for packets with sizes = n · k,
n ∈ N+. Next, we consider some additional packet sizes
to find when theC1B is maximized, and thus to quantify
unfairness.

• s = n · k + k − 1, Eq. 1⇒ C1B = n+1
n·k+k−1 > 1

k

• s = n · k+1 →, Eq. 1⇒ C1B = n+1
n·k+1 > n+1

n·k+k−1

It can be seen that theC1B hits local maxima fors =
n·k+1, i.e., for packet sizes that exceed integer multiples
of the buffer subunit size by one byte. In addition, the
magnitudes of these local maxima do not depend onb,
and are decreasing withn. Unlessk = 1, whereC1B =
1, C1B is smaller for s2 = (n + 1) · k + 1 than for
s1 = n · k + 1. Note, however, that theC1B is not a
strictly decreasing function ofs. For instance, theC1B

for s1 = n · k + 1 is greater than that fors0 = n · k.
The global maximum ofC1Bmax is 1, and is realized

with s = 1B packets. Fors ∈ [1, k], Eq. 1 yieldsC1B =
1
s
. Hence, with packet sizes in this regime, one flow may

get nearlyk times more bandwidth than another flow.
The conclusion is thatwe must set the buffer subunits
smaller thansmin.

Using Eq. 1, fors = n ·k+1, which maximizesC1B ,
and fork ≤ smin

Ck≤smin
1Bmax

=
n+ 1

n · k + 1
≤

2

k + 1
(2)

minimum−size Ethernet packet

Ethernet packets
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(a) Approximate fairness for buffer subunit size,k = 32B.
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Fig. 7. Normalized service rates of two competing flows.
The lucky flow sends packets with sizesn1 · k, thus not
losing any service credit. Along the horizontal axis, we
vary the packet size of the unlucky flow,s2. We repeated
the same experiments for different packet sizess1 =
n1 · k for the lucky flow and the results were virtually
identical to those presented here. In Ethernet networks,
s1, s2 ≥ 64B.

Therefore, theCk≤smin
1Bmax

decreases with increasing sub-
unit size. HoweverC1Bmin =

1
k

does so as well, and the

ratio
C

k≤smin
1Bmax
C1Bmin

≤ 2 · k
k+1 < 2. Therefore, we have an upper

bound for the unfairness:
For any k ≤ smin, no flow can grab more than twice

the bandwidth of an equal weight flow, regardless of the
size of packets.

As we will show later, fairness improves for realistic
packet sizes, approaching the ideal fork ≤ 8.

In Fig. 7(a), we configured two competing flows for
b = 256B andk = 32B. The “lucky” flow, f1, is sending
s1 = 64B packets. Along the horizontal axis, we vary
the size of the unlucky flow from 1 to 256B, using 1-
byte increments. The figure plots the bandwidths of the
two flows normalized to the link capacity.

The results validate our previous analysis. As we dis-
cussed above, the unfairness is maximized fors2 = 1B,
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when the lucky flow gets a nearly 32 times higher
bandwidth thanf2, and decreases ass2 moves to the
right towards32B. The network designer can avoid this
gross unfairness by selectingk ≤ smin.

For s2 = n · 32B, the two flows achieve equal
bandwidthsregardless of how large we set the packet
size of the lucky flow. For s2 = 33B, the lucky flow
gets approximately twice the bandwidth of the unlucky
one. These are the worst-case unfair bandwidths that we
computed forsmin ≥ k using Eq. 2.

Figure 7(a) also shows that for Ethernet packets,
sether≥ 64B, and fork = sether

min /2 = 32B, the worst-case
bandwidth ratio drops to 3/2: the normalized bandwidths
are 0.6 (lucky) and 0.4 (unlucky) fors2 = 65B.
Ideal fairness: One drawback of settingk too low is
that it increases the dynamic range of flows’ weight and
service credit variables. But as we discuss below, the
benefits can offset the cost.

For practical packet sizes, we can achieve virtually
perfect fairness by using appropriately small buffer sub-
units. Using Eq. 2, fork = 32B the worst-caseC1B ratio
is 1.93, 1.77 fork = 8B, and 1.6 fork = 4B. Note
however that fork = 8 and 4, these worst-case ratios
assume unrealistically small packet sizes,s = 5B and
9B, respectively.

For k = 8, and Ethernet packet sizess ≥ 64B, the
integern in Eq. 2 will be≥ 8. Therefore we can obtain
a better lower boundCk=8,s≥64

1B ≤ 9
65 . SinceC1Bmin =

1
8 ,

the worst-case bandwidths ratio is7265 . And for k = 4,
the corresponding fairness metric becomes68

65 ≃ 1.
In Fig. 7(b) we repeated the same experiment as in

Fig. 7(a) but now fork = 4B. As can be seen, fors2 =
5B, the lucky flow gets 1.6 times the bandwidth of the
unlucky one. But for realistic packet sizes, e.g.,s ≥ 64B,
the two flows achieve virtually the same bandwidths.

V. CONCLUSIONS

We presented a practical packet scheduler, TQ-
Smooth, that scales to an arbitrarily large number of
requestors. Inspired from the success of DRR, the critical
path of our algorithm comprises only few low-cost op-
erations, and therefore is readily implementable at ultra-
fast link speeds. In terms of efficiency, our algorithm
seamlessly integrates smooth service, especially in the
common case where flow weights are semi-equal, with
weight-proportional fairness. We also described a frame-
work for buffer-credit allocation that uses our algorithms.
Finally, we described how to assign equal bandwidths
to small- and large-packet flows even when the packet
scheduler is unaware of the packet size, and elaborated
on the optimal buffer-subunit size.
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