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Abstract—Network devices supporting 100G links are

in demand to meet the communication requirements of A S >
. : sevdeveds Z:

computing nodes in datacenters and warehouse computers. F32339328 VEM N’

In this paper, we propose TQ and TQ-Smoothtwo light- %myjm

weight, fair schedulers that accommodate an arbitrarily Etocsss
large number of requestors and are suitable for ultra- Boonsoses =
high-speed links. We show that our first algorithm, TQ, oo i3 o0 %

as well its predecessor, DRR, may result in bursty ser- MW% :>
vice even in the common case where flow weights are ?%H%,

approximately equal, and we identify applications where

this can damage performance. Our second algorithm, (a) Scheduling in a network interface, based on ur-
TQ-Smooth, improves short-term fairness to deliver very ~ gency, connection’s window, tenant's subscription,

smooth service when flow weights are approximately equal, etc.
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while allocating bandwidth in a weighted fair manner. In e . [Switen Fabric ) s
many practical situations, a scheduler is asked to allocate ] : - 2] &\ | |3 A
resources in fixed-size chunks (e.g. buffer units), whose | $, :},:},f} s —|[E
size may exceed that of (small) network packets. In such g |- = =1 1 | (|
cases, byte-level fairness will typically be compromised “] . : Sk (At )
when small-packet flows compete with large-packet ones. Flows Table p— requests =)

We describe a novel scheme that dynamically adjusts the o _ _ _
service rates of request/grant buffer reservation to achiee  (b) In a switching fabric with virtual output queues

byte-level fairness based on received packet sizes. (VOQs), a packet scheduler may be needgdat
ingress to prioritize packet injections, and at egress,

(ii) to forward reassembled packets(i) to allocate
|. INTRODUCTION egress buffer space for packets that wait at VOQs at

Current datacenters (DCs) enclose many thousand§9®SS interfaces [9], [10].
of digital appliances capable of processing and storig 1. Possible applications of fast packet schedulers.
massive amounts of data. When seen in isolation, these
appliances are not always superior to what users may
have at home. But the confinement of many of them

within a small spot and the big-data applications that the Atthe same time, the DCN infrastructure changes in

can collectively engage in make datacenters articula\rq)/ays that can radically modify the landscape. Intelligent
y engag P hétwork interfaces (NIs) attached to (or coexisting with)

interesting. Datacenter networks (DCNSs) are playmgrocessing cores, which can provide low-latency / high-

a critical compounding function in datacenters. In . ndwidth pathwavs fo remote brocesses. is a lon
still somewhat turbulent field, there have been man P y P ] g
recent proposals to reshape DCNs so that the Iat%Jrught goal —see Fig. 1(a) for an illustration, and refer
can successfully meet stringent and in some cases eVOeIIIS] for an exam.ple study. o _
divergent requirements. Many of these proposals focys"nother trend is large, flattened switching fabrics
on management, transport, or network level protoco@z,'g' 1(b)) to deal with _the increasing volume of inter-
targeting better exploitation of the existing infrasturet SETVer (east-west) traffic. Such fabrics are expected to
by DC applications [2], [3], [4], [5], [6] provide equidistant ports with homogeneous quality-of-
service guarantees to enable the seamless integration of

This is an extended version of a HIPEAC INA-OCMC pape"arge numbers of Compute and Storage nodes.
[1], entitled "Arbitration of many thousand flows at 100G and . .
beyond” by ACM, NY, USA ©2013, ISBN: 978-1-4503-1784-9, Switches and NlIs with 40G Ethernet portS are now

doi>10.1145/2482759.2482761 becoming available, and the industry is already preparing



for 100G Ethernet. If any lesson has been learned frdta cost, coming on top of DRR, may be excessively high
the past it is that bandwidth is rarely in excess. Althoudbr ultra-high speed links. In addition, our DRR-based
today there probably are only few processes that saturatheme easily integrates further improvements (Sec. 1V)
a 100G link, this may not be the case in the near futunehich would not be readily possible with a timestamp-
The adoption of RDMA and FCoE (Fibre Channel ovdrased scheduler.
Ethernet) technologies in converged datacenter networks$n Sec. Il we describe our scheduling schemes and
will soon enable a single node to generate flows thatitline their behavior. Then, in Sec. Ill, we evaluate
can saturate even a 100G link. In addition, in a multthem using computer simulations. Section IV focuses
VM, multi-tenant DCN environment, any link can easilyon a particular application of the scheduler, namely,
become congested. Thus, it is a basic requirement fbe allocation of credits of an egress buffer to a set of
modern converged network architectures [7] to slice tliequestors in a large switching fabric. For this applica-
capacity into well isolated traffic classes with perfortion, we describe how to maintain close to ideal byte-
mance guarantees. level fairness and point out some interesting trade-offs
On the other hand, scheduling becomes extremebgarding the sizing of buffer subunits. Finally, Sec. V
challenging as network size and line speed increase. Eoncludes our findings.
instance, the duration of a 64B Ethernet frame on a 100G
line is just~6 ns. At the same time, in a warehouse- II. ULTRA-FAST PACKET SCHEDULING
scale computer, or in a multi-core processor, a schedule(i

_ n packet-switched networks, distributed packet sched-
may arbitrate among several hundreds to thousandsu?

rs are commonly responsible for slicing up the band-
Rith. Weighted round-robin is a flexible scheduling

tion of a fair scheduler extremely difficult. _ rioritizing requests using service weights. One can pre-
In this paper we propose a packet scheduling sche

figure or dynamically change weights to requestors,
that scales to large numbers of requestors and uItra—fggt that each weight assignment represents either the

”T‘e Iratgs. Pt%Ckit s_ch(?dule;sthha\;\eﬂ\lzeeirl Stligiedlgxﬁ%ﬂiimum bandwidth share (e.g. weights sum up to a 100)
SIVely since the beginning of the [11], [12], [ ]'of each flow or the relative urgency/importance of one

The simplicity vs. efficiency trade-offs that thdeficit :
request over the other. We assume that flows are simpl
round-robin (DRR)introduced in the mid-1990s have q PY

dered it the algorith t choice | i groups of requests. Each flow may present its demand
rendered 1t the algonithm of chalce in many operaliNginer 55 a gueue of unprocessed data packets or as a
systems and network devices [15].

) : equest counter of unprocessed data units. We disregard
Alternative schemes have since been proposed t

o . _ ossibility of two or more flows being merged into
maintain the samé (1) asymptotic complexity of DRR P y g g

hil idi h ice 1161, 1171 1181, H a common queue or counter.
while providing smoother service [16], [17], [18]. How- We next present our two algorithm$andem Queue

ever, these algorithms add considerable bookkeepi ) and Tandem Queue Smooth (TQ-Smooffiyeir
and logic complexity. For modern ASICs, which ma ames originate from their control queues that work in

accommodate multiple high-speed links and SUPPQLdem and propel their operation
scheduling multiple flows in parallel, fair schedulers with '

low complexity are hence of great interest.

Our algorithm is built upon ideas from DRR: A. Tandem Queue: a DRR derivative
a. it preserves the simplicity of the original DRR The scheduler keeps a configurable weight parameter
algorithm, wy € Nt and aservice-creditr; counter for each flow

b. smoothes out burstiness, especially when tiememory. A descriptor of any eligible flow is always
weights of the active flows are close to each othepresent in one of tweontrol queueswhich we name
c. provably provides weight-proportional fair servicehighQ and lowQ. Refer to Algo. 1. At any time, the

For comparison, stratified-RR groups flows of roughl§ChecIUIer selects_the floyi_/ at the _head O_f one of those
equal bandwidth requirements into a flow class [17]. fontrol queues, giving strict priority to highQ whenever
uses a timestamp-based scheduler to select a class, hfjnon-empty. Note that the selected fighis always
DRR to select a flow within the class selected. While it &€moved from the corresponding control queue. Assume
true that the timestamp-based scheduler arbitrates am8ify the selected flovf is assigned.. units of service,

significantly fewer candidates than the number of flow&/nere L may correspond to the bytes of a head-of-line
(HOL) packet or to a number of buffer units. Next, the

In the common case, flow weights are likely to be equal. schedulea) decrementsr; by L, and(b) increments it



by wy if f was dequeued from lowQ. If is still eligible f; is at the head of lowQ, and thus the scheduler
after receiving this service or if it becomes eligible afteselects it first and serves its HOL packet. The scheduler
an inactivity period, the scheduler will insert it at themeawill then incrementcry, by (wy, — L). The updated
of lowQ if cry < 0 and at the rear of highQ otherwise.cry, will be positive if wy, > L, in which case the
scheduler will enqueug; in highQ. Being alone in
highQ, f; will be selected anothégf:;, —1) times, sending

Algorithm 1 Tandem Queue (TQ)

Init: Vf, cry =0,
Select next flow:

f = null; selectedLowQ = false;

if highQ.empty = truethen

if lowQ.empty = falsethen

f = lowQ.dequeue();
selectedLowQ = true;
end if
else
f = highQ.dequeue();
end if
if f=£ null then
crp=cry-L,;
if selectedLowQhen
Cry =Cry + Wi,
end if
ServeL units from flow f
Reprogram flow (f)
end if
Reprogram flow (g):
if g is eligible then
if cry > 0; then

one packet each time, whetg, = [=£]. Eventually,
cry, = wy, — kg, - L <0, and the scheduler will enqueue
fi at the rear of lowQ. Next, the scheduler will select
the new head of lowQf;, and will similarly serve it for
kg, times untilery, = wy, — kg, - L <0.

Let avisitinclude the entire service assigned to flgw
contiguously in timé; also denote byounda segment in
the execution of the algorithm that visits each active flow
exactly once. From the discussion above, it then follows
that, in the first round, each flow received service roughly
proportional to its weight. If a flow received more service
(e.g. 70) than what its weight allows (50), it will end up
with a negative credit (-20), which will be accounted for
by giving the flow less service in the next round. Thus,
if we denote bys;(m) the service given to an active
flow f when the arbiter visits it for then™ time, and
cry(m) its credit after them!” visit, then it is easy to
see thatsy(m) = wyg +crg(m—1) —crg(m). By letting
S(ti,t2) = > s¢(i), noting that—Liyax < cry < wy,
and by evaluating the sum, we immediately obtain the
following result, which is analogous to Lemma 2 in [15]:

Lemma 1: In any intervalt;,t2) during which all

highQ.enqueue(qg); flows in the system are active, and flgiis visitedm
else times, the aggregate service assigned twill be (m —
lowQ.enqueue(q); 1) - wp — Lmax < Sf(t1,t2) < (m+1) - ws + Lmax
end if The TQ scheme differs from DRR because for a set
end if of simultaneously active flows with positive credits, TQ

will serve one packet from each flow in a RR fashion.

Note that by constrainingu; > Lmax, We prevent In contrast, DRR will serve the flow selected in a burst
a flow's credit from dropping too lo#v hencecr; € until its credit has been exhausted, or the next packet is
(—Lmax wy). Note also that if we used only one controlarger than the remaining credit. DRR avoids serving a
queue, then the service would be RR: after being serv@acket when this is not accommodated by the current
a flow would be assigned the lowest priority among agiredit of the flow; this might leave a flow with up
other eligible flows. Obviously, such a scheme will nd0 L., — 1 credits (surplus) for the next round. Our
be fair if packets have variable size; additionally, flo@cheme, in contrast, serves a flow even if the flow’s credit
weights will not have any effect. By having a low@s not sufficient for its next packet, and this can create
and a highQ, our algorithm maintaimgightedfairness, a debit (negative credit) of magnitude up fehax — 1.
independently of the per-flow packet-size distribution®levertheless, for a time interval in which the set of active

This is described next. flows does not change, our algorithm has similar fairness
Consider a time intervalt,t,) during which flows properties as DRR.
(f1,---, fn) are continuously active, i.e., eligible for Given that the eligibility of flows does not change,

service. In addition, assume that all flows start witthe highQ will always contain at most one flow; this
cry = 0 and are initially in lowQ, and that all packetscan easily be inferred from the algorithm description. It
in the system ard. bytes long. Assume that initially

3We ignore here the trivial case whefeis the only active flow
2Negative credits are also used in [18]. and thus receives all service.



1) scheduler allocates . .
)buﬁer_credits avail. buffer—credits may be no more buffers available. Effectively must

fl's src |- - nabust “S“aﬂsze“’ 5% wait for f; to replenish some buffers. If; does not
busy |"""--{T] <--. 57 forward the granted data fast enough, then the output
2) sends data ° , -~ s{Scheduer ) E‘l@% queue can underflow, and the output line can stay idle
slowly v r ‘ even though it could instead serygs packets.
Ir ——o-> w—’ - g
/ __Queue J frequently empty We now describe a second algorithitandem Queue
fszesrc _______ . Smooth (TQ-Smoothwhich improves the smoothness
€| 312 requests not granted frequently enough (or short-term fairness) of TQ in such practical cases

when flows have approximately equal but relatively large

Fig. 2. A scheduler allocating buffer space of an OUIp%eights. The main idea is to prevent one flow from

gueue to requesting sources. Buffer credits get repl‘?ﬂbnopolizing the highQ for a long time

ished when data is forwarded out of the queue. In particular, assume that flow is now served from
lowQ, and is enqueued in highQ. At this point, if lowQ

then also follows that the algorithm visits flows in a Rfvggﬁ_iewgtﬁemzis? t:IJg ﬂ?}gaznglgmégrhgor\{mﬂis o

fashion, much like in DRR: between any two visits toO. g ’

flow f;, all other active flows will have received one visityISIt new flows from lowQ. Once lowQ drains out, the

. - scheduler serves the flows enqueued on the highQ in a
Thus, all active flows are visited the same number ; .
) ) . R fashion, at one packet per visit. TQ-Smooth shares
times, plus-minus one. Then, from Lemma 1, it follows

that, in the long run, the service given to each flow will'2ny parts with TQ. Algorithm 2, below, depicts their

be proportional to that flow’s weight, independent of thglﬁerences.

packet size distributions of the flows. Algorithm 2 TQ-Smooth: modifications to TQ.
Init: avoidHighQ= false;

B. Improving the short-term fairness of TQ scheduling Select next flow:

As shown in [15], in any execution of DRR, and SelectedLowQ = false; o
for any pair of flows that are active int,t,): I highQ.empty = truev avoidHighQ = true then
Sfl(tl,tg)/’wfl — SfQ(tl,tg)/wh < ¢, wherec is a f= |OWQ'dequeueO;
constant with respect to the number of flows and depends SélectedLowQ = true;
oNn Lmax. The same inequality also holds true for TQ if €lse
the set of active flows does not change(in, t5). The f = highQ.dequeue();
above sets a constant upper bound for the differenceend f
between the normalized service rates received by anyf SelectedLowQ\ lowQ.empty = falsethen
flow pair. (The ideal, fluid GPS scheduler provides @avoidHighQ = true
continuously equal normalized service rates to active®€Se
flows [13].) However, in practice, constaninay be large avoidHighQ = false;
enough to hurt performance. end if

Consider for instance that we configure three flows,
f1, f2, and g, with weightswy, = wy, = 100 - Lmax The key to understanding why TQ-Smooth provides
andw, = Lmax. The intention is to treat flowg; and weight-proportional fair service is the following. A flow
f2 equally, but if one of them competes with flayy it that is selected from the lowQ will enter the highQ, re-
should get 10@ more service. Iff; and f, are active enter it a number of times, and finally return to the
while g is not, then both TQ and DRR will serve lowQ. In such a time period, the floy is scheduled
(100 - Lmax) bytes from each flow in turn, thus leadinga number of times that is proportional to its weigh
to burstiness. To make things worse, a large MTU mand inversely proportional to the amount of service it
elicit an increase of the weights and therefore of serviceceives for one scheduling operation (e.g. the packet
burstiness. size). At the end of this period, the flow drops off the

Burstiness is traditionally undesired in packetighQ. This results in denser visits to flows with higher
switched networks. In Fig. 2, we depict a scheduler thatight or smaller packets, which will remain on highQ
allocates buffers of a (flow-controlled) destination queulnger.
The scheduler first visits flowf;, becausefs presented We can formally prove this by introducing the no-
its requests a couple of clock cycles late. If the scheduteyn of the super-round Assuming that all flows are
is too bursty, then, befor¢, gets a first chance, therecontinuously active, a super-round begins with all of




them in lowQ, includes the visit to one or more flows, )
and ends up the next time instant when all flows fall
into lowQ again. Observe that in each super-round every
active flow is visited at least twice: once from the front
of lowQ and once from the front of highQ. In terms
of aggregate service, a super-round is equivalent to a
round in the original algorithm or DRR. In particular,
if s3(M) is the sgrvice of f _during the Mt super- ol ,
round andcr¢(M) is f's credit at the end of it, then A A S

. 20000 30000 40000 50000 60000 70000 80000 90000
Sf(M) = wy + crf(M — 1) — crf( ) The fO"OWIng Time (nanoseconds)
Lemma can be proven by taking the somL, s3(n (a) Expl: TQ/DRR

iy | WW«WHM

Lemma 2: In any intervalt,,t2) that comprises ex-
actly M super-rounds, the aggregate service assigned
to f will be (M — 1) - wf — Lmax < Sy(ti,t2) <
(M +1)-ws + Lmax
22000 22500 23”#’&;12%&3;‘35& 24500
' ‘ | [

1 s seton we svaate TQ and TQSmooth s W ' (1T mu"\
computer simulations. We do not present the results for -
DRR separately as they match closely with those of TQ. 20600 30000 40000 5%?,?12 (Gnofnooosgfoon%os)soooo 90000

In our experiments, we configured a scheduler to (b) Expl: TQ-Smooth.
arbitrate the access on a 100G link. The flows that
compete for the link queue up their packets in front dfig. 3. Results for experiment 1.
the scheduler. In every iteration, the scheduler selects a
flow and serves its HOL packet; therefore, the scheduler
decrementsr by the exact amount of service assignesending one packet from each flow in turn. This is when
to the flow selected. We sétnha equal to the maximum all flows are active in highQ. When flow 0 drops off the
transfer unit (MTU) = 1500B. The duration of aiy,ax  highQ, the visits to flows 1 and 2 become denser. Next,

= T

. L'"'T |

Flow Id of Serviced Packet

I11. EVALUATION

Flow Id of Serviced Packet

packet on the link is 120 ns. the service credit of flow 1 becomes negative, which

We ran the following experiments. leaves flow 2 alone in highQ to receive its fair share,

« Expl: Three persistent flows, all having a weightntil it also drops into the lowQ, thus ending a super-
w = 100 - Lmax and sending.max packets. round.

« Exp2: Three persistent flows, all having a weight The results of TQ and TQ-Smooth for Exp3 are
w = 100 - Lmax. Flows 0, 1, and 2 send 1500Bpresented in Figs. 5 (a) and (b). As can be seen, TQ-
512B, and 64B packets, respectively. Smooth serves one packet at a time visiting a different

« Exp3: Same as Expl, but for ten (10) persistefitow in each iteration. This validates the smoothness
flows. of the algorithm regardless of the number of flows. In

In all experiments, all algorithms assigned to flowEld- 5, the horizontal axis measures time in 1500B frame

equal shares of the 100G link. durations.
In Figs. 3(a) and (b), we present the service time-series
of TQ and TQ for Expl. As can be seen, TQ serves flows
in bursts ofw bytes, each one lasting fdi00 120 ns.
On the other hand, TQ-Smooth provides much smootherAs outlined in Sec. | and Fig. 1(b), large switching
service, serving one packet at the time in a RR fashidabrics strongly benefit from end-to-end flow and con-
as shown by the inlet of Fig. 3(b). gestion control schemes. In these settings, a scheduler
Figures 4(a) and (b) present our results for Exp2. Is used at every egress port to allocate egress buffer
this experiment, flow O sends larger packets than flow dpace to the requesting sources. This simple proactive
which sends larger packets than flow f2. As can be sestheme can prevent overloaded egress buffers (and their
in the figure, TQ again serves flows in burstsuobytes. accompanying saturation trees) and eliminate deadlocks
On the other hand, TQ-Smooth frequently round-robinis, the reorder/reassembly buffers [9] [10].

IV. OPTIMIZED BUFFER CREDIT ALLOCATION
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The operation of a credit scheduler at a fabric-egress
port is depicted in more detail in Fig. 6. To inject a
packet of sizes, a source must first post a request
and receive a grant foy = [7] buffer units from
the corresponding egress scheduler. Althougtan be
greater tharb, for simplicity we assume that < b, so
g = 1. The scheduler stores the outstanding requests in
per-flow request counters that are held in on-chip arrays.
Each requested or granted credit is for one buffer unit,
even when the requesting packet is of smaller size. The
scheduler also maintains the overall number of available
buffer units (e.g., for one 802.1q priority) in a buffer-
credit counter, consuming one buffer credit for each grant
provided to a flow, and replenishing one for each packet
that departs from the egress queue.

The credit scheduler considered here selects the next
flow using TQ-Smooth The service credit;r, of each
flow counts buffer units, and.max iS the maximum
number of buffer units that the scheduler allocates in one
shot to a flow. For simplicity, we assume thax = 1,
noting that in practiceLnax > 1, e.g., to reduce the
bandwidth overhead of grant messages. The weight of
each flow must be greater than or equallig,y, i.e.,
wy > 1, and corresponds to the number of grants that
we want to allocate to a flow in one super-round.

A. Long-versus-short packet fairness

At the application layer, high-bandwidth flows mainly
comprise MTU packets. Short packets are primarly used
for synchronization and other control functions, such as
barriers, remote read requests, cache invalidations, TCP
acks, flooding network addresses, etc. At an aggregation
point in the network, where multiple application layer
flows converge, short packets may constitute a significant
fraction of the traffic and handling them fairly is impor-
tant for obtaining low upper-layer protocol latencies.

In this section, we present our solution to allow the
network designer to select the most appropriate buffer
unit size based on design trade-offs, without having to
worry about excessively punishing short-packet flows.

In practice, the buffer memory cannot be divided into
arbitrarily small units so as to satisfy each extra byte
of payload in a non-overprovisioned fashion. Instead, it
is typically divided into fixed-size slots (buffer units),
whose size is a trade-off between memory utilization
and bookkeeping overhead. The larger the buffer units,
the smaller the size and the number of pointers that link
them together; on the other hand, too large a buffer unit

Fig. 5. Results for experiment 3; note that time measures'Although any other DRR derivative would work as well, as

in 1500B transfer-time units.

explained in Sec. II-B and Fig. 2, the smooth service of TQaStin
is highly desirable when allocating buffers.



Ingress port 1

= — The scheduler provides a grant as described before,
ey Earesspont decrementing the buffer-credit count and the counter of

N’ 8 = . . . .

. SIS [Pufere |« ‘ outstanding credit requests by one, but now it debits 8

=) ) N e (32B) subunits to the selected flofy decrementingr ¢
13) rcv packet o by 8

=

. = Buffer Queue Observe that the scheduler is still oblivious of the size
ngress portN | —|" Fa] + of individual packets. All it sees is the cumulative request
— [z | Fabric |— count from each flow, where each request is for a buffer

o unit. Thus all that it knows is that each injected packet
Fig. 6. A scheduler at an egress port of a switching fabrigi fit into a buffer unif.

that allocates buffer units in the corresponding egresSte first time that the scheduler encounters the granted

queue to the requesting ingress ports. Note that the figiite  ets (and learns their size) is when the latter reach
omits the service-credit increment ly;. The numbers

the egress port. In our scheme, when an egress port
shown here are fob = 2568, k = 32B, and Lmax = 1.  receives a granted packet, it informs its scheduler about
Ikn:oir;xperlments, optimal performance is achieved fﬂ{e unused sut_)units :L(b;s)J’ which ba_nks them in

the correspondingr, counter, thus returning the unused
subunits that were debited to its account when the grant
was issued to the flow. Hence, as will be shown in more

orkload includes manv small packets. In the rema'nd%?ta“ below, thecr; counter is effectively decremented
w inciu y P ' ! [ 2] subunits for a grant of 1 credit followed by the

of the paper, without loss of generality, we consid , :

buffer units of sizeb equal to 256 bytes. ?eceptlon of packet of size.
Now consider two ingress ports sourcing 64- and 256-

byte packets, respectively, which target the same fabrig- Experiments

egress port. Although the corresponding credit scheduler _ _

may grant the two sources equally, the 256B one will We conducted computer simulations to test the pro-

achieve four times more [bytes/sec] throughput. Nogg)sed scheme. In our tests, tvyo flows request_ credits at
that this problem can be solved if we resort to gafylll speed from an egress credit scheduler, which grants

buffer units, as the 256B flow would then need four 64Bmax = 1 (buffer-unit) credits at a time.

grants to inject a packet; but fairness could be agalfSt! (baseline test)Here we did not use the proposed
compromised under a mix of 65B and 128B packets. OPtimization, or, equivalently, the buffer subunits were

The solution to this problem given in [9] is to allow the?au@! in size tob. One flow was sending 2568, and

source to inject anultipacket segmetfior each grant that the other 64B, withb equal to 256B. Both flows had
ights equal to 100. As expected, the 256B flow

it receives. Each such segment may comprise multipl€ _
small packets or even fragments from larger packets tifgPtured 80% of the egress link.

belong to the same flow. In this way, a short-packet _

flow can fully utilize the service it is assigned by thd €St2: Next, we set the buffer subunit o= 32B, and
output credit scheduler. However, this method requir@§cordingly scaled up the flow weights by a factor of 8,
considerable extra bookkeeping per buffer-unit in ord&ftting them to 800. Now, upon granting a buffer unit to

to maintain the payload boundaries (and the headell§)V /- the scheduler decreases by j; = 8, and when
from multiple variable-size packets. the egress port receives a packet of sizer 256B, it

. . L (256—3s)
Here we present an alternative solution that achieVB§r€asesy by |=53=]. Thus, for each packet that
long-vs-short packet faimess as shown in Fig. 6. WB€64B flow sends, its service credit is first decremented
logically divide each buffer unit intd buffer subunits by 8 and later incremented by 6, for a net “debit” of 2.
of k bytes each, and let the service credit)(keep track 1€ COSt per byte’s) of this flow is thus 1/32. On the
of subunits. Correspondingly;max, and the weights of Other hand, for each packet that (8868 flow sends,
flows, wy, must all be scaled by a factor df. Thus its service credit is only decremented by 8, yielding the

decreasing: increases the dynamic range of weights ark@Me COst per byte for either flow.

of service credit variables. ]
: ; _ Note that instead of per-flow request counters we could ra@int
We first consider thak = 32B, and scale UpLmax er-flow request queues to store the size of each individaguest.

andwy by a factor of 8. (Note, howe\_/er1 that Cor‘Side'lglowever for large port numbers, this adds significant costh®
ably better performance can be achieved oK 8B.) implementation.




Remember that when the served flow resides in lowQ, - 3 3 | L o ‘
_ ) : : \ : 2090 o S k= 32 bytes
its service credit gets incremented by its weight. There-5 ;| subunitmustbe <= s min " 7 e R

- D e L EEEEE 2

fore, because the flows have the safig, they will 3 o, [0 77  ooi77oinmi0t N T
receive equal bandwidth shares, which was validated byS g6 |- % % oo Ehemet packets |
our simulations. 3 : :
Test3: Here we repeat test2, but with 64B and 80B flows.
As in test2, each packet costs the 64B flow two service
credits; in contrast, it costs the 80B fl@a- L(25?))7580)J =

3 service credits. Thus, th@,g is 2/64 for the 64B flow

ized flowsndw

e Ethernet packet - -- -

lucky flow, f1
unlucky flow, f2  +

normal

and 3/80 for the 80B one. Lét; denote the bandwidth of 2, :é;lackefgze Ofléﬁlucklyéf?ow (13?85) 224
flow f normalized to the link capacity. As the two flows _ fai for buffer subunit Size— 328
have the same weight, we expect tHg = % - @ Apiproxmate airness for bu s
0.833, and as the scheduler is work conserviSges + ; ; ; ; . ’
Sets = 1. Itfollows thatSess = 0.545 andSees = 0455, g oo/ k=4bytes
These rates were validated in our simulations. ‘i’ P o L S L o S
R T T ee,,,,,,,,_w’
C. Variance of cost per byte g os j j j j j :
In general, theCys of a flow sending packets of size g 04|/" e R e e e
s <b equalsig_L;T)J. As b will, in practice, be an 8'2 """"" - - N - o .
integer multiple ofk, we have that 2oall o cyfowr ]
B B : ! ‘ ‘ ‘ }Jnlucky‘ flow, f% +
Cig = L_EJ — @ (1) RV T 68 100 132 164 196 228
s s s2 = packet size of unlucky flow (bytes)
Ideally, the C1g should be the same for all flows, (b) Ideal fairness for buffer subunit sizé,= 4B.

which would allow the scheduler to assign perfectly fair . . .
bandwidths. However this is not possible because ap- 7 Normalized service rates (.Jf tW.O competing flows.
guantization effects. It is easy to see that€hg reaches T ‘_3 lucky flow ;ends pgckets with S|ze§- k, thus T‘Ot
its minimum Cg . — % for packets with sizes = n - &, losing any service credit. Along the horizontal axis, we
n € NT. Next, we consider some additional packet sizd&@"Y the packet sizé of the un!ucky flows. We re_peated
to find when theC'g is maximized, and thus to quantifythe same experiments for different packet siags=

unfairmess ny - k for the lucky flow and the results were virtually
' il 1 identical to those presented here. In Ethernet networks,
.s:n-k+k—1,Eq.1=>ClB:n.k+k_1>E > 64B
_ _ n+l n+1 51,82 Z .

It can be seen that th€é;g hits local maxima fors =

n-k+1, i.e., for packet sizes that exceed integer multiples therefore, theCF=*™ decreases with increasing sub-

of the buffer subunit size by one byte. In addition, thg,it size. Howevelea; ~— 1 does so as well. and the
magnitudes of these local maxima do not depend,on  *<emin " ’

and are decreasing with. Unlessk = 1, whereCyjg = Talio o= < 2- %5 < 2. Therefore, we have an upper
1, Cyg is smaller forsy = (n + 1) - k + 1 than for bound for the unfairness:
s; = n -k + 1. Note, however, that th€g is not a  For any k < smin, no flow can grab more than twice
strictly decreasing function of. For instance, the;z the bandwidth of an equal weight flow, regardless of the
for s; =n -k + 1 is greaterthan that forsy = n - k. size of packets.

The global maximum ofCys_ is 1, and is realized As we will show later, fairness improves for realistic
with s = 1B packets. Fos € [1, k], Eq. 1 yieldsCi;g = packet sizes, approaching the ideal foK 8.
1. Hence, with packet sizes in this regime, one flow may In Fig. 7(a), we configured two competing flows for
get nearlyk times more bandwidth than another flowb = 256B andk = 32B. The “lucky” flow, fi, is sending
The conclusion is thatve must set the buffer subunits; = 64B packets. Along the horizontal axis, we vary

smaller thansmin. the size of the unlucky flow from 1 to 256B, using 1-
Using Eq. 1, fors = n-k+ 1, which maximizesC; 3, byte increments. The figure plots the bandwidths of the
and fork < smin two flows normalized to the link capacity.
k< smin n+1 2 The results validate our previous analysis. As we dis-
Brac . k+ 1 < k+1 (@) cussed above, the unfairess is maximizedsfoe= 15,



when the lucky flow gets a nearly 32 times higher
bandwidth thanf2, and decreases as moves to the
right towards32B. The network designer can avoid thi%
gross unfairness by selectitg< smjn.

For ss = n - 32B, the two flows achieve equal
bandwidthsregardless of how large we set the packet
size of the lucky flowFor s, = 33B, the lucky flow
gets approximately twice the bandwidth of the unlucky
one. These are the worst-case unfair bandwidths that V{llé
computed forsmin > & using Eq. 2.

Figure 7(a) also shows that for Ethernet packets,
s®her> 64B, and fork = s&he’/2 = 32B, the worst-case 2]
bandwidth ratio drops to 3/2: the normalized bandwidthé
are 0.6 (lucky) and 0.4 (unlucky) for, = 65B.

Ideal fairness: One drawback of setting too low is

that it increases the dynamic range of flows’ weight anéf!
service credit variables. But as we discuss below, the
benefits can offset the cost.

For practical packet sizes, we can achieve virtuaIIV']
perfect fairness by using appropriately small buffer sub-
units. Using Eq. 2, fok = 32B the worst-cas€’jg ratio  [5]
is 1.93, 1.77 fork = 8B, and 1.6 fork = 4B. Note
however that fork = 8 and 4, these worst-case ratios
assume unrealistically small packet sizes= 5B and
9B, respectively.

For k = 8, and Ethernet packet sizes> 64B, the
integern in Eq. 2 will be > 8. Therefore we can obtain
a better lower bound’};**>% < & SinceCig,, =
the worst-case bandwidths ratio is. And for k
the corresponding fairness metric becor@%s: 1.

In Fig. 7(b) we repeated the same experiment as in
Fig. 7(a) but now fork = 4B. As can be seen, for, =  [9]
5B, the lucky flow gets 1.6 times the bandwidth of the
unlucky one. But for realistic packet sizes, egg= 64B,
the two flows achieve virtually the same bandwidths.

(6]

(7]
, (8]

=~ ool

[10]

[11]
V. CONCLUSIONS

We presented a practical packet scheduler, T@—z]
Smooth, that scales to an arbitrarily large number of
requestors. Inspired from the success of DRR, the critical
path of our algorithm comprises only few low-cost opl3l
erations, and therefore is readily implementable at ultra-
fast link speeds. In terms of efficiency, our algorithm
seamlessly integrates smooth service, especially in hé
common case where flow weights are semi-equal, with
weight-proportional fairness. We also described a framgg
work for buffer-credit allocation that uses our algorithms
Finally, we described how to assign equal bandwidths
to small- and large-packet flows even when the pacl@é‘f’]
scheduler is unaware of the packet size, and elaborated
on the optimal buffer-subunit size.
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