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Abstract. When creating a model transformation in a test-driven approach the
creation of a high-quality test suite is desirable. The quality definition usually
incorporates the adequacy and the minimality of the test suite. When expanding
a test suite, the overall quality of it should not be affected in a negative way.
In order to calculate the quality of a test suite, coverage analysis can be used.
If during the new test case creation the coverage analysis results are taken into
consideration, lowering the negative impact on the quality of the test suite can be
achieved more easily. However, creating models for the new test cases is not an
easy task, especially not if the quality of the test suite has to be as high as possible.
In this paper we present a method which can be used for creating models for new
test cases. This method incorporates a periodical coverage analysis, so we can
create new test cases while the low negative impact on the quality of the test suite
is guaranteed.

1 Introduction
A crucial aspect when creating a model transformation in a test-driven approach is the
quality of the test suite. This aspect can be measured in many ways, e.g. creating metrics
on the language of the input models [4], creating a coverage analysis approach [5,6] or
measuring redundancy of the test cases [27]. Creating test models for a model transfor-
mation is a time consuming task and needs a lot of effort if a software engineer wants
to create a test suite with as high quality as possible.

If a software engineer wants to create an adequate test suite, he or she can define
big test cases which cover as much of the input and output models as possible. How-
ever, creating many test cases is a slow process, and mistakes can be made at many
places. Furthermore, if a test suite consists of big test cases the search for errors in the
model transformation is complicated too. Creating a test suite which consists of small
test models is also time and resource consuming. This problem can be addressed for ex-
ample with model generation, but existing work on model generation (cf. [7,17,24,25])
shows that generating model instances based on a metamodel is a complicated and de-
vious task.

In this paper, we define some constraints during the model generation process, with
these the model instantiation can become a very useful tool for building high-quality
test suites. We introduce our method for building test suites, which have a high quality
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regarding two aspects: the specification coverage achieved with the test cases is max-
imal (i.e. the test suite is adequate), and the test cases are as simple as possible. For
guaranteeing the maximized specification coverage, the information which is gathered
during the periodical coverage analysis [19] is used, while the simpleness of test cases
is provided by the derivation process which yields the new test cases.

Model generation is usually done with the usage of grammars [26], which define
the same models as the metamodels, or with the usage of model fragments [7], which
are essentially building blocks of the possible models. We use a different approach and
create a semi-automatic, iterative generation process for new test models. The process
derives models for the new test cases from the models of the former test cases and the
metamodels. After that they have to be verified by the software engineer for validness.

The paper is structured as follows. First we give some background concerning cov-
erage analysis of model transformations, and describe a running example in Section 2.
In Section 3 we describe algorithms which we will use for deriving new test cases. In
Section 4 we explain how these algorithms can be used to create a simple test case
set with maximum specification coverage. We discuss related work in Section 5 and
conclude in Section 6.

2 Background
In this section we introduce a running example, which we will use in the following sec-
tions. After that we describe the theoretical foundations of the combined coverage ap-
proach [6], which we will use in our derivation algorithms, and provide a brief overview
of the “Test Suite Analyzer for model transformations” tool, which we used to gather
information about coverage while creating the test suite.

2.1 Running example
The simple case study, which we will use in the following sections as a running example
to represent our method is a model transformation which transforms one input model
into one output model. The metamodel for the input models of the transformation is a
simplified subset of the BPMN metamodel [16] and can be seen in Figure 2-1.1. The
metamodel for the output models describes a simple graph representation and can be
seen in Figure 2-1.2.

In the case study we created a model transformation from this simplified BPMN
metamodel to the simple graph representation in a straightforward way: we transformed
SequenceFlows into Edges with an arbitrary weight, and FlowNodes into Nodes with
an adequate label.

2.2 The combined coverage approach
A model transformation transforms one or more input models into one ore more output
models. The input and output models involved in the transformation are in the so-called
implementation or concrete layer, while there is a so-called specification or definition
layer above them.

The specification of the input and output models can be given in many ways
e.g. with metamodels or with grammars. Although the expressive powers of these are
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essentially not equivalent [18], in this paper we focus on models defined in the con-
text of a metamodel. A metamodel defines the relations of classes for a model, these
relations can be e.g. inheritance, association, etc.

The specification of a model transformation is basically the transformation con-
tract [9]. The notion of the transformation contract is based on the design-by-contract
approach [23], applying it for the context of model transformations. A transformation
contract contains three kinds of contract rules:

i) precondition rules, which are applied for the input models;
ii) postcondition rules, which are applied for the output models;

iii) transformation rules, which define the relations between input and output models.

For measuring coverage the concept of test requirements is applied [2]. In the com-
bined coverage approach [6] there are two kinds of test requirements: they can be code
based or specification based.

A code based test requirement can for example be derived from every statement in
the implementation. Such a test requirement is covered if that particular statement is
executed. For code based coverage analysis numerous tools have been developed in the
previous years (e.g. [8], [13], etc.).

Specification based test requirements can be derived from different criteria. In our
approach we use the class coverage, attribute coverage and association coverage crite-
ria [11], and furthermore the contract coverage and feature coverage criteria [6].

In our running example we used a transformation contract which was created for
testing and demonstrating purposes, containing the following rules:

– (precondition) a BPMN Process which contains at least one FlowNodemust have
at least one StartEvent and at least one EndEvent;

– (precondition) a Gatewaymust be “reasonable”, i.e. it must be connected to at least
three SequenceFlows;

– (postcondition) a SimpleGraph which contains at least one Node must have at
least one Node with label starting with “start event” and at least one Node with
label starting with “end event”;

(2-1.1) A simplified subset of the
BPMN metamodel (2-1.2) A simple graph metamodel

Fig. 2-1: Metamodels for the simple case study
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(2-2.1) The
“empty”
BPMN
Process

(2-2.2) Test model for
containing one SequenceFlow,
with an abstract notation on top

(2-2.3) Test model for
containing one Activity, with

an abstract notation on top

Fig. 2-2: Example models for the running example

– (transformation) a Gateway must preserve the count of its incoming and outgoing
edges during the transformation.

We created one feature for the input metamodel, which is the so-called nested subpro-
cess feature (a model has the nested subprocess feature if it contains at least one subpro-
cess which contains at least one subprocess, i.e. it can be defined with the OCL expres-
sion self.flowElements->exists(x | x.oclIsTypeOf(Subprocess)) from
the context of the class Subprocess).

All the defined test requirements are enumerated in Appendix B.
If we examine the example input models, shown in Figure 2-2, we can enumer-

ate many missing (i.e. non-covered) test requirements: for example the class coverage
requirement for Gateway or Subprocess, and the attribute and association test require-
ments which are connected with these classes.

2.3 Using the Test Suite Analyzer
In our recent work [19] we introduced a prototypical tool, named “Test Suite Analyzer
for model transformations”, which can measure specification and code coverage of a
JUnit Test Suite, created for testing a model transformation. In this section we give a
brief overview of the tool, for details the reader is referred to [19].

The Test Suite Analyzer is a prototypical tool, which can create a so-called coverage
report during the execution of a test suite. There are two phases in the usage of the tool:
in the first phase the model transformation contract and the metamodel features are
defined. These definition determine the contract and feature test requirements. After
this, test requirements are defined for class, attribute and association coverage [11],
which include defining equivalence partitions [2] for the latter two. In the second phase,
along the execution of the test suite, the coverage report is generated and persisted.

The coverage report includes the code and specification coverage data of the test
suite, regarding the metamodels and the model transformation. After that an analysis
can be performed which can reveal some aspects of the test suite: its adequacy (the
achieved coverage, regarding the defined test requirements) or its minimality (redun-
dant test case detection). Uncovered test requirements can also be identified during the
analysis.
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Fig. 2-3: Coverage report example, showed with the Test Suite Analyzer UI

In Figure 2-3 an example coverage report can be seen. In this example coverage
report the test suite consists of two test cases for a model transformation which involves
one input and one output model. On the left side an overview of the report can be seen,
while on the right side the detailed footprint of the first test case is showed. The bottom
shows an overview of the specification coverage achieved with the test cases and the
comparison of two test cases. As an example, from this single view it can be seen that
the class Subprocess or any of its attributes and associations are not covered with the
test suite.

3 Deriving New Test Cases
In this section we discuss, how new test cases can be derived from existing ones, if
the data containing the specification coverage of the current test suite is given. We pro-
vide here algorithms for deriving input models for the new test cases, expected output
models can be created afterwards with using the model transformation on the derived
input model. The algorithms can be used for deriving new output models too (based
on the output models of the former test cases), but after this the input models have to
be created manually, because the inverse of the transformation usually can not be done
programmatically.

First, we introduce the notion of coverage count of test requirements, which is based
on the work of Bauer et al. [6], here we use a variant of their definition and build new
notions on it. We create the definitions for model transformations which include one
input and one output model, but they can be easily adjusted to model transformations
which involve more models.
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We provide examples for every definition and algorithm, based on the test case set
given in the previous Section, in Figure 2-2.

Definition 1 (Coverage count of test requirements [6]). Let tc denote an arbitrary test
case from a test case set, in which the derived specification based test requirements are
denoted with tr1, tr2, . . . trn. In this case ∀ k ∈ [1..n] : cc(trk) denotes the non-negative
integer which states, how many times that particular test requirement is covered by the
tc test case.

For example, two coverage counts from the given test case set:
cc(trClassCoverage′StartEvent′ ) = 2;
cc(trClassCoverage′Event′ ) = 4;
cc(trClassCoverage′Gateway′ ) = 0 /

Definition 2 (Base class of test requirement). We call a metamodel class the base
class of a specification test requirement, if that particular test requirement is derived
from that class or an attribute of that class. We denote the base class of test requirement
tr with base(tr).

For example: base(trClassCoverage′Gateway′ ) = Gateway;
base(trAttributeCoverage′Subprocess#transaction′{true}) = Subprocess /

Definition 3 (Sub-hierarchy of metamodel). A part of a metamodel is a sub-hierarchy
if it contains only a class and all classes which can be (directly or indirectly) derived
from that class. We denote a sub-hierarchy of a metamodel as sub(metamodel, class).

For example the sub-hierarchy sub(BPMN Metamodel, FlowNode) contains the fol-
lowing classes: FlowNode, Gateway, Event, StartEvent, EndEvent, Activity,
Subprocess /

3.1 Deriving a test case for class coverage
If regarding the given test case set a test requirement derived from a metamodel class
is not covered, then we can try to derive a new test case from the former test cases. For
this, we define an ordering on the classes of a metamodel, and after that we provide an
algorithm for deriving a model for a new test case.

Definition 4 (Root class). We call a distinguished metamodel class the root class if it
is the top level container of every other class instances in a model.

For example the root class of the BPMN Metamodel is the Process class. /

Definition 5 (Class ordering). Let Mpart = (M,C,R) be a partial metamodel, where C
is the set of the classes from the metamodel M and R is the set of the composition and
inheritance relations in the metamodel M. Let G = (V ,E, l,w) be a directed, labeled and
weighted graph, the so-called ordering graph, where:

– |V | = |C|;
– l : V → {class names in C} is the labeling function, and it is a bijection (i.e. v ∈ V :

if node v represents the class c ∈ C, then l(v) is the name of class c);
– E = {r | r ∈ R ∧ r is composition} ∪ {r | r ∈ R ∧ r is inheritance} ∪ {inverse of r |

r ∈ R ∧ r is inheritance};
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– w : E → {1; 2; 3; 4; 5; 6} is the weight function, following the rules for e ∈ E:

w(e) =



1 , if and only if it is derived from a composition relation and the
target of the edge is representing a concrete class

2 , if and only if it is derived from a composition relation and the
target of the edge is representing an abstract class

3 , if and only if it is derived from an inheritance relation, the direction
of the edge is the opposite as in the metamodel and the target of the
edge is representing a concrete class

4 , if and only if it is derived from an inheritance relation, the direction
of the edge is the opposite as in the metamodel and the target of the
edge is representing an abstract class

5 , if and only if it is derived from an inheritance relation, the direction
of the edge is the same as in the metamodel and the target of the
edge is representing a concrete class

6 , if and only if it is derived from an inheritance relation, the direction
of the edge is the same as in the metamodel and the target of the
edge is representing an abstract class

h

Fig. 3-1: The graph derived from the BPMN metamodel

The ordering of the classes is defined by their minimum distance from the node
of the root class in the ordering graph, which can be e.g. computed with Dijkstra’s
algorithm on the ordering graph, with the node representing the root class as a start
node, and given the rule that if there are more possible next nodes, we order them into
alphabetical order. Every node which is not reachable from the root node is added to the
end of the ordering in alphabetical order (note: the non-connected classes are usually
data or enumeration classes).

For example, the graph created from the BPMN metamodel (Figure 2-1.1) can
be seen in Figure 3-1, hence the order of the classes is: Process < FlowElement
< SequenceFlow < FlowNode < Activity < Gateway < Event < Subprocess <
EndEvent < StartEvent.
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We define the distance of two classes c1 and c2, noted with d(c1; c2) similarly
with Dijkstra’s algorithm, taking the node representing c1 as the start node, and cal-
culating the distance from it to c2 (note that this distance notion is not symmetric,
e.g. d(Process, FlowElement) = 2, while d(FlowElement, Process) = ∞).

We say that the class c1 is smaller than c2, if it c1 is earlier in the ordered sequence
of classes than c2 (e.g. Activity is smaller than Event). /

Given this ordering, we can derive a new test case for a non-covered class from the
available test cases with Algorithm 1.

In Algorithm 1 we assume that the test requirements derived from metamodel
classes are ordered regarding the defined class ordering (Defintion 5). The phrase “clos-
est base (tr) instance” at line 6 means a class instance whose type is either base (tr)
or if it is abstract then a derived concrete class from it, which is the closest-smallest
class to the non-covered class in the defined class ordering (where closest means their
distance is minimal and smallest means the smallest of these classes regarding the or-
dering). A substitution is possible (line 5) if the new class instance can be a part of the
model, regarding the composition relations in the metamodel. A class c1 is container of
an other class c2 (line 12), if there is a directed edge from c1 to c2 in the ordering graph,
with the weight of 1 or 2.

The subroutine described in Algorithm 2 creates a new class instance. The new class
instance is the next class, from the context of a parameter class and regarding the defined
class ordering. The “new valid instance” phrase means that if there are some necessary
containments, then those classes have to be instantiated too. Note that because of the
conditions in both parts of Algorithm 1, before invoking this subroutine, it can always
return a new class instance.

An example for the first derivation strategy (lines 2–10) is a derivation from
the third example model (Figure 2-2.3) for the class Gateway. In this case the
algorithm finds the coverage count cc(trClassCoverage′FlowElement′ ) = 5, and because
Gateway ∈ sub(BPMN Metamodel, FlowElement), it copies this model. After this it
checks whether a gateway can be the part of the model regarding the containment re-
lations, and because it can, it substitutes the closest-smallest FlowElement instance,
which is the Activity instance. Hence the derived model is the same as the base one,
except that the Activity is substituted with a Gateway.

An example for the second derivation strategy (lines 11–17) is a derivation from
the first example model (Figure 2-2.1) for the class Subprocess. In this case the al-
gorithm finds the coverage count cc(trClassCoverage′Process′ ) = 1, and because Process is
a container for Subprocess, it copies this model. After this it adds a new association
from the Process instance to a new Subprocess instance. Hence the derived model
contains a Process and a Subprocess instance with a containment relation between
them.

3.2 Deriving a test case for attribute coverage
If regarding the given test case set a test requirement derived from an attribute from a
class from the metamodel is not covered, then we can try to derive a new test case from
the former test cases. For this, we define an ordering on the attributes of a metamodel,
and after that we provide an algorithm for deriving an input model for a new test case.
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Input : current test case set; not covered class class; metamodel M
Output: new input test model result, if it is derivable

1 foreach test case tc from current test case set do
2 foreach test requirement tr from tc do
3 if cc(tr) > 0 and class ∈ sub (M, base (tr)) then
4 result← copy of input model of tc;
5 if substitution is possible then
6 substitute closest base(tr) instance with CreateClassInstance (M,

class) in result;
7 return result;
8 end
9 end

10 end
11 foreach test requirement tr from tc do
12 if cc(tr) > 0 and base (tr) is a container of class then
13 result← copy of input model of tc;
14 add association to CreateClassInstance (M, class) from base(tr) in

result;
15 return result;
16 end
17 end
18 end
19 return can not derive new test case input model;

Algorithm 1: Derive a new test case for new class coverage

Input : metamodel M; class class
Output: a new class instance

1 foreach class currentClass from sub(M, class) do
2 if currentClass ≥ class and currentClass is not abstract then
3 return new valid instance of currentClass;
4 end
5 end
6 return can not create new class instance;

Algorithm 2: Create class instance function
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Definition 6 (Attribute ordering). Let C denote the set of classes in a metamodel M.
Let c ∈ C : Ac denote the set of attributes of class c. We define an ordering on Ac in the
following way for attr1, attr2 ∈ Ac:

attr1 < attr2
def .
⇐⇒


typename of attr1 < typename of attr2

, if typename of attr1 , typename of attr2
name of attr1 < name of attr2

, if typename of attr1 = typename of attr2

The equivalence partitions are ordered in their natural ordering.
If c1, c2 ∈ C : c1 < c2 (regarding Definition 5) then we say that Ac1 < Ac2 . Thus we
defined an ordering on the attributes of a metamodel M.
We denote the class, containing attribute attr with cont(attr) (i.e. attr ∈ Ac ⇔

cont(attr) = c). /

For example, the attributes of the BPMN metamodel (Figure 2-1.1)
are ordered as: Gateway.type{(−∞; 0]} < Gateway.type{[1; ∞)} <
Subprocess.transaction{false} < Subprocess.transaction{true}.

Given this ordering, we can derive a new test case for a not covered attribute from
the available test cases with Algorithm 3. In Algorithm 3 we assume that the test re-
quirements derived from metamodel attributes are ordered regarding the defined at-
tribute ordering (Defintion 6).

If for example we have a model which contains a Gateway instance, with a value for
the attribute type from the first equivalence partition, we can derive a new model based
on this, adjusting the value of the attribute to fit into the second equivalence partition.

3.3 Deriving a test case for association coverage
If regarding the given test case set a test requirement derived from an association in a
metamodel is not covered, then we can try to derive a new test case from the former test
cases. For this, we define an ordering on the associations of a metamodel, and after that
we provide an algorithm for deriving an input model for a new test case.

Definition 7 (Association ordering). Let C denote the set of classes in a metamodel
M. Let c ∈ C : ASc denote the set of associations of class c. We define an ordering on
ASc in the following way for assoc1, assoc2 ∈ ASc:

assoc1 < assoc2
def .
⇐⇒ name of assoc1 < name of assoc2

The equivalence partitions are ordered in their natural ordering.
If c1, c2 ∈ C : c1 < c2 (regarding Definition 5) then we say that ASc1 < ASc2 . /

For example, the associations of the BPMN metamodel (Figure 2-1.1) are ordered
as following:
Process.flowElements{0} < Process.flowElements{[2; ∞)} <
< SequenceFlow.source{1} < SequenceFlow.target{1} <
< Subprocess.flowElements{0} < Subprocess.flowElements{[2; ∞)}.
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We denote the class, which contains the associations assoc with from(assoc), and the
class, which is associated with it with to(assoc).

Given this ordering, we can derive a new test case for a not covered association
from the available test cases with Algorithm 4. In Algorithm 4 we assume that the test
requirements derived from metamodel associations are ordered regarding the defined
association ordering (Defintion 7).

At line 6 we can simply modify the multiplicity of the association, because we have
at least one. If the missing equivalence partition contains less associations we remove
the necessary amount, if it contains more, we create as much copies as needed. Note
that the subroutine described in Algorithm 2 can always return a new class instance,
when invoked from Algorithm 4.

For example if we have a model which contains a Subprocess instance with
zero FlowElements in it, then we create a new model with an association from the
Subprocess instance to two new SequenceFlow instances (for the equivalence parti-
tion {[2; ∞)}).

On the other hand if we have a model which contains a Subprocess with at least
two FlowElements in it, then we can create a new model with zero FlowElements in
the Subprocess (for the equivalence partition {0}).

3.4 The limits of test case derivation
The contract rules and the features are defined in the Test Suite Analyzer for model
transformations as Java classes, hence we can not create such simple algorithms for de-
riving test cases as in the case of class, attribute or association based test requirements.
However, the new test cases for not covered contract rules and features should be made
regarding similar guidelines which are noticeable in the derivation processes for other
test requirements: the new test cases should be as small as possible and cover as few, yet
uncovered test requirement as possible. As a rule of thumb the contract rule and feature
test requirements should be covered in alphabetical order.

For code coverage, new test cases can not be derived, but given the code coverage
report and the semantics of the model transformation, we can create new test cases,
which use formerly unused parts of the transformation routine (or simplify the routine
if it contains unnecessary parts).

3.5 Determining optimal derived test model
The formerly described derivation algorithms create a model for a new test case based
on an arbitrary chosen former model, which from a new model for covering that partic-
ular test requirement can be derived. Usually there are more than one former test cases
which can be the base of the derivation, and there can be big differences in the derived
test models. In this section we provide a notion for the optimal derived test model,
which is based on our empirical results.

For this, we define the test case derivation in a more formalized way with the notion
of footprints. We use the footprint definition of Bauer et al. [6], and derive new notions
from it. With the usage of ordered footprints, in theory, the derived test models with the
algorithms described in Sections 3.1, 3.2 and 3.3 can be generated automatically.
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Input : current test case set; not covered attribute attr; missing equivalence partition
eqp of attr

Output: new input test model result, if it is derivable

1 foreach test case tc from current test case set do
2 foreach test requirement tr from tc do
3 if cc(tr) > 0 and base(tr) = cont(attr) then
4 result← copy input model of tc;
5 change value of attr in result to fit into eqp;
6 return result;
7 end
8 end
9 end

10 return can not derive new test case input model;

Algorithm 3: Derive a new test case for new attribute coverage

Input : current test case set; missing association assoc; missing equivalence
partition eqp of assoc; metamodel M

Output: new input test model result, if it is derivable

1 foreach test case tc from current test case set do
2 foreach test requirement tr from tc do
3 if cc(tr) > 0 and base(tr) = from(assoc) then
4 result← copy input model of tc;
5 if association multiplicity in from(assoc) , 0 then
6 modify cardinality of assoc in result to fit into eqp;
7 else
8 add new association from from(assoc) in result to

CreateClassInstance (M, to(assoc)) in the needed amount;
9 end

10 return result;
11 end
12 end
13 end
14 return can not derive new test case input model;

Algorithm 4: Derive a new test case for new association coverage



13

Definition 8 (Footprint [6]). Let tc denote an arbitrary test case from a test case set, in
which the derived specification based test requirements are denoted with tr1, tr2, . . . trn.
In this case the footprint of tc is defined as the following list:
fp(tc) B< cc(tr1), cc(tr2), . . . , cc(trn) > /

Definition 9 (Restricted footprint, ordered restricted footprint). Let tc denote an
arbitrary test case from a test case set, its footprint is fp(tc). Furthermore, let t denote a
test requirement type. The possible test requirement types are:

t =



classinp , if and only if it is derived from a class
from the input metamodel

classout , if and only if it is derived from a class
from the output metamodel

attrinp , if and only if it is derived from an attribute
from the input metamodel

attrout , if and only if it is derived from an attribute
from the output metamodel

associnp , if and only if it is derived from an association
from the input metamodel

assocout , if and only if it is derived from an association
from the output metamodel

contract , if and only if it is derived from the contract
featinp , if and only if it is derived from a feature

from the input metamodel
featout , if and only if it is derived from a feature

from the output metamodel

We say that fp(tc) is restricted to the test requirement type t if it contains only the
test requirements with type t. We denote this kind of footprint with fp|t (tc).

We say that fp|t (tc) is ordered, if it is ordered regarding the corresponding ordering
(e.g. if t is classinp or classout then we use Definition 5, etc.). We denote ordered
restricted footprints with ofp|t (tc). /

Definition 10 (Ordered footprint). For a test case tc the ordered footprint, denoted
with ofp(tc) is the sequence of ordered restricted footprints in the following way:

ofp(tc) B< ofp|classinp (tc); ofp|attrinp (tc); ofp|associnp (tc);
ofp|classout (tc); ofp|attrout (tc); ofp|assocout (tc);
ofp|contract (tc); ofp|featinp (tc); ofp|featout (tc) > /

For every test case, we determine whether it can be a base of derivation or not.
If it can be a base, then we derive the new input model. After we have derived all the
possible new test cases we calculate a sub-footprint for each base and new test case. This
sub-footprint can be defined as sfpinp B< ofp|classinp (tc); ofp|attrinp (tc); ofp|associnp (tc) >
(naturally if we are creating a new test case for the output model, the sub-footprint sfpout,
which consists of the ordered restricted footprints of the output model in the same order
can be used).

We denote the length of a footprint as follows: len(fp) B ‖fp‖2 (we are using the
euclidean length definition, which is defined, hence essentially fp ∈ Nn).
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We denote the difference of the derived and the base models as follows: diff B
len(fpderived) − len(fpbase).

We calculate then a so-called difference ratio for every derived-base footprint pair
as follows:

ratio(fpderived; fpbase) B


∞ , if diff < 0
0 , if diff = 0
ediff · ln len(fpderived) , if diff > 0

The derived test model with the smallest ratio is the so-called optimal derived test
model. If there is more than one, then we choose the one with the shortest base sfp of
them (if there are more of those, then we choose the first in the order of the test cases).

4 Method for Building a Test Case Set
In this section we introduce a method for building a test case set for a model transfor-
mation, based on the data we gather during the periodical coverage analysis. We use the
method in the context of a test-driven development approach introduced in our recent
work [19], hence the method presented here can be easily integrated into it. We also
use a similar case study we used in [19], which involves a model transformation from
a simplified subset of the BPMN to a simple graph, these metamodels can be seen in
Figure 2-1 on page 3.

First we introduce the method by using it to build up a test case set from scratch.
In the second part we briefly discuss the usage of the method with a more realistic case
study. We discuss the method for model transformations which include one input and
one output model, but it can be easily adjusted to model transformations which involve
more models.

4.1 Detailed description of method
In this subsection we describe our method in detail. The description of the two case
studies we carried through can be found in Appendix A.

An overview of our method can be seen on Figure 4-1. The subprocess “Maximize
‘input model class’ coverage”, can be seen in Figure 4-2, the other subprocesses (“Max-
imize . . . coverage”) are similar to this, they differ only in their “subject”.

When starting to build a test case set from scratch, we start with an initial test case
which involves the “empty model”, meaning that the input model is containing only
the single instance of the root class (Definition 4). We assume that this is a valid input
model and can be transformed into a valid (also “empty”) output model.

After this, we generate an initial coverage report, this activity involves executing the
test suite which is composed from the test cases in the test case set. From the coverage
report it should be determined what is the next missing test requirement, regarding the
corresponding test requirement ordering (Definitions 5, 6 and 7). Using the correspond-
ing derivation algorithm (desribed in Section 3), we can now derive a new test model.
The validity of this new model should be verified by the software engineer. If the model
is valid, then we can derive the next model, if it is invalid, it has to be “repaired” and a
new coverage report should be generated afterwards.
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Fig. 4-1: Overview flow of expanding a test case set

4.2 Summary of the empirical results

With our method we can generate a test case set which provides maximum specification
coverage. This generated test case set does not include any redundant test cases, because
every new test case has at least one new component which is not covered with the former
test cases. Our method can be seen as a generating a base in the linear state which is
defined over the footprints. During this generation process we always add at a new
model which has at least one orthogonal dimension to the test case set (orthogonal to
the subspace defined with the footprints of the former test cases).

We do not state that the generated test case set is “optimal” or “minimal”, but it is
composed of as simple and as small test cases as possible. It is build up in a well defined
way and with some comments the newly covered specification test requirement can be
tracked during the process, which improves the quality of the test suite even further.

In our method we start with one initial test case, containing only the so-called
“empty” models. After this we incrementally build up our test case set, regarding the
ordering defined for footprints (Definition 10). It can be seen that if we are strictly
following this ordering, then starting from the initial test case, using the derivation al-
gorithms (Algorithm 1, 3 and 4) we can always derive a new test case, but after this the
validity of this new test case has to be verified by the software engineer.

It should be noted, that if an initial test case set is given, our method can be used
to increase the specification coverage of the test suite. In this case the initial test case
set is not composed only of the “empty” model, but many test cases, however the flow
of our method is unaffected by this fact. The test case set should be ordered by some
definition of complexity, e.g. it can be ordered in the increasing order of the euclidean
length of the footprints (note that this is an arbitrary ordering and if we build up a test
case set from scratch it is not ordered in this way).
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Fig. 4-2: Flow of creating new test cases in subprocess
”Maximize ‘input model class’ coverage”

5 Related Work
The quality of a test suite can be measured in many ways. McQuillan et al. [22] in-
troduce a code-based coverage criterion which define test requirements based on ATL.
In contrast to their work we focus on specification based coverage. Andrews et al. [3]
define coverage criteria for models composed in UML, while Fleurey et al. [11] adapt
their approach to derive test requirement from the input metamodels of a model trans-
formation. Bauer et al. [6] extend this approach further by introducing the so-called
combined-coverage approach, which includes test requirements for the output mod-
els, the transformation contract and metamodel features too. We use this combined-
coverage approach in our model derivation process.

For generating new instances of a metamodel usually string grammars like in the
work of Alanen and Porres [1], or graph grammars like in the work of Ehrig et al. [10]
are used. Taentzer [26] enhances this method after formalizing the metamodels as type
graphs. When the goal is the generation of test models, usually model fragments are de-
fined (as for example in [7,20,25]) or the generation process is defined over a language
(as for example in [12, 17, 24]). In contrast to those approaches, we propose an itera-
tive method for building a test case set, based on coverage information of the former
iterations.

For determining the similarity between test cases usually a metric is defined as in the
work of Yan et al. [27]. They use the euclidean distance between execution profiles for
measuring the similarity, while we make use of the euclidean distance and the euclidean
length of test case footprints for detecting an optimal extension for former test cases.

6 Conclusion
A good metric for measuring the quality of a test suite can be the specification and code
based coverage which is achieved by the test cases in the test suite. In this paper we have
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provided a method for creating a test suite which generates maximum specification cov-
erage at the end. This method is a direct enhancement to the test-driven approach we
introduced in [19]. It is based on a so-called footprint of test cases which is a vectorial
representation of the coverage achieved by a test case. This footprint allows a detailed
analysis and is used in our method for the identification of missing test requirements,
and from this information new test cases can be derived. In our semi-automatic ap-
proach we can derive test cases which are valid regarding the metamodel, but can be
invalid regarding the full definition of the language. As described by Kleppe [18], usu-
ally a metamodel is not a full definition of a language, hence our future work includes
incorporating other parts of the language definition (like semantic constraints described
in OCL) into our method besides generating of derived test cases programatically. Our
future work also includes the reduction of a complex test suite based on the analysis of
the footprints while keeping the specification coverage on the same level.
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A Case studies
A.1 A simple case study
The input model from the case study for the initial test case can be seen in Appendix D
in Figure D-1.1.

After creating test0001 (containing the “empty” model), we generate an initial
coverage report, this activity involves executing the test suite which is composed from
the test cases in the test case set. From the coverage report it should be determined
what is the next missing test requirement, regarding the corresponding test requirement
ordering (Definitions 5, 6 and 7). In our case study the first missing test requirement is
derived from the class of the input metamodel, called SequenceFlow. Using the second
part of Algorithm 1, we derive a new test case from the initial one, as seen in Figure D-
1.2. Taken the BPMN metamodel (and the BPMN 2.0 specification [16]) into account
this model is invalid, because a SequenceFlow must have a source and a target, so
we modify it to the model seen in Figure D-1.3, as this is the least complex model which
contains a SequenceFlow. Because we had to modify a derived model, we gather the
coverage information again.

The next missing test requirement is derived from the metamodel class Activity.
We can derive a new test case from test0001, similarly as deriving test0002 (we
do not describe in detail, how we determine the optimal base model, the method is
described in Section 3.5, the ratios for different derivations in our case study can be
seen in Appendix C). This new input model can be seen in Figure D-1.4. This test
case is also invalid, thus we have to modify it. We simply created the input model seen
in Figure D-1.5 (In the following the models of test cases are going to be denoted in
abstract syntax in the figures, because the concrete syntax is becoming too complex).
Because we had to modify a derived model, we gather the coverage information again.

The next class in the input metamodel which is not covered yet is the Gateway. We
derive the new test case from test0003 (using the first part of Algorithm 1), as seen
in Figure D-1.6. This derived model is invalid, because regarding our transformation
contract, a Gateway must have at least three connected SequenceFlows, hence we
modify the derived model to a valid one, e.g. as it can be seen in Figure D-1.7. Because
we had to modify a derived test case manually, we gather the coverage information.

There is still one class in the input metamodel which is not covered, the
Subprocess. We can derive the new test case from test0003 (using the first part of
Algorithm 1), as it can be seen in Figure D-1.8. This test case is valid, but because we
have now full class coverage on the input model, we gather the coverage information
again.

After this we aim for the test requirements derived from the attributes in the input
metamodel. There are two, which are not covered yet, one derived from the integer
attribute from the equivalence partition {[1; +∞)} of type from the class Gateway and
one other derived from the boolean attribute from the equivalence partition {true} of
transaction from the class Subprocess. For the first one, we derive a new test case
from test0004 (Figure D-2.1) and for the second one, we derive a new test case from
test0005 (Figure D-2.2). Both models are derived with Algorithm 3, and are valid, so
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we do not have to modify them. After this, the attribute coverage in the input metamodel
is full, so we gather the coverage information again.

After this we aim for the test requirements derived from the associations in the input
metamodel. There is only one, which is not covered yet, derived from the reference
flowElements from the class Subprocess, from the equivalence partition {[2; +∞)}.
We can derive a test case from test0005, as seen in Figure D-3.1 using the second
part of Algorithm 4, but it is invalid, so we modify it to the model which can be seen in
Figure D-3.2. Because we modified a derived test case manually, we gather the coverage
information.

After this we would have focused on the output model. However every test require-
ment is already covered by the test case set, so we did not have to create new ones.

After this, we would have aimed for the test requirements derived from the trans-
formation contract, but in our case study they are all covered with the available test
cases.

Next we focus on the feature coverage of the input model. There is one feature
defined: the nested subprocess feature and this is not covered yet. The nested subprocess
feature is fulfilled by a model if it contains at least one subprocess which contains at
least one subprocess, hence we can create a test case as seen in Figure D-4.1, but this is
invalid, so we modify it to the one seen in Figure D-4.2.

A.2 Realistic case study
In this section we describe a second case study we carried through using our method. It
was based on the model migration test case for Transformation Tool Contest 2010 [21].
The case study involves the model migration of UML Activity Diagrams from the UML
1.4 Specification [14] to the UML 2.2 Specification [15]. We used the metamodels
available in [21] with some slight modifications, they can be seen in Appendix E along
with the detailed description of the case study. The figures for test cases can be seen
in Appendix G, they are denoted in abstract syntax when it is possible, and in concrete
syntax only if it is necessary. The initial, “empty” input model can be seen in Figure G-
1.1.

The first uncovered test requirement is derived from the class Partition, hence a
second test case can be derived from test0001 as seen in Figure G-1.2, with the second
part of Algorithm 1. However, it is invalid, because a Partition has to be associated
with at least one ModelElement, regarding the UML 1.4 Specification. Thus we modify
the model to get what can be seen in Figure G-1.3.

The next uncovered test requirement is derived from the class Guard, for this we
can derive a new model from test0002 as seen in Figure G-1.4. We can not derive a
new test model from test0001, because we can not connect the Guard instance into
the model (it is contained in a Transition, and test0001 has zero Transitions).
In test0002 we connect the new Guard instance to the first Transition as de-
scribed in the second part of Algorithm 1, and because a Guard contains exactly one
BooleanExpression, we instantiate that too. We do not have to modify this derived
model.

The next uncovered test requirement is derived from the class ObjectFlowState.
We derive a new test case from test0002 as seen in Figure G-1.5. We use the first part
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of Algorithm 1 and substitute the ActionState instance with an ObjectFlowState
(we choose the ActionState because there are three classes which are the closest from
the ObjectFlowState and the smallest of them is the ActionState). The derived
model is invalid, because the initial state can not have an ObjectFlowState on the
other side of its outgoing Transition, regarding one of the postconditions rules of our
transformation contract. Thus we modify the model to the one seen in Figure G-1.6.

All the classes in the input model are covered with the fourth test case. The next
uncovered test requirement is derived from the attribute and equivalence partition
ActionState.isDynamic{true}. We derive test0005 as seen in Figure G-2 from
test0002.

The next uncovered test requirement is derived from the association and equivalence
partition ActivityGraph.partitions{[2; ∞)}. For this we can derive a new model
from test0001 as seen in Figure G-3.1. As described earlier a Partition has to have
at least one element, and regarding other semantic rules concerning the partitions, we
modified the model to the one seen in Figure G-3.2.

The next uncovered test requirement is derived from the association and equiva-
lence partition StateMachine.transitions{1}. For this we derive the invalid model
seen in Figure G-3.3. We modify this to the simplest possible model with only one
Transition, seen in Figure G-3.4.

The next uncovered test requirement in the input model is derived from the associ-
ation and equivalence partition ObjectFlowState.type{1}. For this we derive a new
test model from test0004 as seen in Figure G-3.5.

The last uncovered test requirement is derived from the association and equivalence
partition StateVertex.incoming{[2; ∞)}. For this we derived the model seen in Fig-
ure G-3.6 from test0007. Since only join and junction PseudoStates may have
more then one incoming Transitions, we modify the model to the one seen in Fig-
ure G-3.7.

The sole test requirement not covered yet in the output model was the class
DecisionNode. For this we derived a new test case from test0001 as seen in Fig-
ure G-4.1. This is invalid, hence we have to modify it as seen in Figure G-4.2.
Note that if we would have defined test requirements for the different values in the
PseudoStateKind enumeration, then this test requirement would have been fulfilled
with an input model created for the enumeration value junction.

Next we would have aimed for the contract coverage, but the contract was already
fully covered with test0008. Because there are no features defined, we are finished
with the test case set generation.

With these ten test cases the coverage was maximized. After this we added the
test case given in [21] (see Figure G-5) as test9999. This test case provides a big
specification coverage, which is around 86% (it covers 88 test requirements of the 102).
The not covered test requirements can not be covered with big test cases, e.g. there is
only one valid model which contains only one Transition, and that is a small model.

B Test Requirements for the Simple Case Study
We defined the following specification based test requirements with the tool for our
running example:
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– one class coverage test requirement for every metamodel class;
– two attribute coverage test requirements for Gateway.type with the equivalence

partitions {{(−∞; 0]}; {[1; ∞)}};
– two attribute coverage test requirements for Subprocess.transaction with the

equivalence partitions {{false}; {true}};
– one attribute coverage test requirement for Edge.weight with the equivalence par-

tition {(−∞; +∞)};
– two association coverage test requirement for Process.flowElements with the

equivalence partitions over the multiplicity of the association: {{0}; {[2; ∞)}};
– two association coverage test requirement for Subprocess.flowElements with

the equivalence partitions over the multiplicity of the association: {{0}; {[2; ∞)}};
– three association coverage test requirement for SimpleGraph.edges with the

equivalence partitions over the multiplicity of the association: {{0}; {1}; {[2; ∞)}};
– two association coverage test requirement for SimpleGraph.nodes with the

equivalence partitions over the multiplicity of the association: {{0}; {[2; ∞)}};
– four association coverage test requirements for SequenceFlow.source,
SequenceFlow.target, Edge.source and Edge.target with the equivalence
partitions over the multiplicity of the association: {1};

– one contract rule coverage test requirement for every contract rule;
– one feature coverage test requirement for the nested subprocess feature.

C Ratios for Derived Test Cases in the Simple Case
Study

With bold the base test cases are typed. Non-derivable cases are noted with ND.

test0001 test0002 test0003 test0004 test0005 test0006 test0007
test0002 1.2452
test0003 1.8305 2.2182
test0004 2.5227 2.4670 2.1524
test0005 3.3338 3.3513 2.4787 3.0105
test0006 ND ND ND 0 ND
test0007 ND ND ND ND 2.0302 ND
test0008 ND ND ND ND 5.7716 ND 5.7716

Table 1: Ratios for derived-base footprint pairs during the simple case study

In the last case the length of the sub-footprints of both base test cases was the same
(7.6158), hence we choose test0005 as a base test case.

D Figures for Test Cases in the Simple Case Study
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(D-1.1) The “empty” model (test0001)
(D-1.2) Derived model for the second test

case

(D-1.3) Modified model for the second test
case (test0002) (D-1.4) Derived model for the third test case

(D-1.5) Modified models for the third test
case (test0003) (D-1.6) Derived model for the fourth test case

(D-1.7) Modified model for the fourth test
case (test0004)

(D-1.8) Derived model for the fifth test case
(test0005)

Fig. D-1: Test cases for maximized class coverage in the simple case study

(D-2.1) First derived model for attribute
coverage (test0006)

(D-2.2) Second derived model for attribute
coverage (test0007)

Fig. D-2: Test cases for maximized attribute coverage in simple case study

(D-3.1) Derived model for reference coverage
(D-3.2) Modified model for the ninth test

case (test0008)

Fig. D-3: Test cases for maximized association coverage in the simple case study
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(D-4.1) First attempt for covering the nested
subprocess feature

(D-4.2) Test case for covering the nested
subprocess feature (test0009)

Fig. D-4: Test case for maximized feature coverage in the simple case study

Fig. E-1: The metamodel of the simplified UML 1.4 Activity Diagram

E Details of the UML Case Study
The realistic case study involves migrating models representing Activity Diagrams in
the UML 1.4 Specification [14] to models which corresponds to the UML 2.2 Specifi-
cation [15]. The simplification of the metamodels is based on [21].

The transformation is as straightforward as it can be. The transformation contract
consists of the relevant semantic rules of the two specifications, namely:

– precondition rules:
• if an Activity Diagram contains at least one State in addition to the
StateMachine.top, then there has to be exactly one PseudoState with
kind = initial and exactly one FinalState;

• a PseudoState with kind = fork must have exactly one incom-
ing Transition and at least two outgoing Transitions, similarly a
PseudoState kind = join must have at least two incoming and exactly one
outgoing Transitions;

• the PseudoState kind = fork and PseudoState kind = join

PseudoStates must be well-nested;
• the PseudoState with kind = initial must have zero incoming
Transitions, similarly the FinalState must have zero outgoing
Transitions;

• the PseudoState with kind = junction must have one or two incoming
Transitions;
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Fig. E-2: The metamodel of the simplified UML 2.2 Activity Diagram

Fig. E-3: The ordering graph of the simplified UML 1.4 Activity Diagram

• any State if not stated otherwise must have exactly one incoming and exactly
one outgoing Transition;

• StateMachine.top must be CompositeState;
• an Activity Diagram must be traversable from the PseudoState with
kind = initial

– postcondition rules:
• Decisions must have one or two incoming ActivityEdges with the follow-

ing restrictions:
a) if there is one incoming ActivityEdge, and the type of it is
ControlFlow, then all the outgoing ActivityEdges have to be
ControlFlows;

b) if there are two incoming ActivityEdges, and both of them are
ObjectFlows, then the all of the outgoing ActivityEdges have to be
ObjectFlows;
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• if an Activity Diagram contains at least one ActivityNode, then there has to
be exactly one InitialNode and exactly one ActivityFinalNode;

• if the source or target of an ActivityEdge is an ObjectNode then it has
to be an ObjectFlow otherwise it has to be a ControlFlow;

• a ForkNode must have exactly one incoming ActivityEdge and at least two
outgoing ActivityEdges, similarly a JoinNode must have at least two in-
coming and exactly one outgoing ActivityEdges;

• the ForkNodes and JoinNodes must be well-nested;
• the InitialNode must have zero incoming ActivityEdges, similarly the
ActivityFinalNode must have zero outgoing ActivityEdges;

• the InitialNode must have a ControlFlow as outgoing ActivityEdge;
• an ObjectFlow has to have at least one ObjectNode attached (as source or

as target);
• any ActivityNode if not stated otherwise must have exactly one incoming

and exactly one outgoing ActivityEdge;
• an Activity Diagram must be traversable from the InitialNode;

– transformation rules:
• both models must have the same amount of contents in every
Partition→ActivityGroup;

• both models must have the same amount of Partitions→ActivityGroups;
• both models must have the same amount of
StateVertexes→ActivityNodes;

• both models must have the same amount of Transitions→ActivityEdges.

The ordering of the metamodel classes, regarding Definition 5 is the following in
the metamodels:

– for the UML 1.4 metamodel (Figure E-1):
ActivityGraph < Partition < StateMachine < ModelElement <

< Transition < Guard < State < BooleanExpression <

< ActionState < CompositeState < FinalState < ObjectFlowState <

< StateVertex < PseudoState < PseudoStateKind

– for the UML 2.2 metamodel (Figure E-2):
Activity < ActivityEdge < ActivityGroup <

< ActivityNode < ValueSpecification < ActivityFinalNode <

< ActivityPartition < ControlFlow < DecisionNode < ForkNode <

< InitialNode < JoinNode < ObjectFlow < ObjectNode <

< OpaqueAction < OpaqueExpression

The ordering graph for the UML 2.2 metamodel is simple, the root class is the
Activity. The ordering graph for the former UML 1.4 specification is complex, it
can be seen in Figure E-3, the root class is the ActivityGraph. The ordering of the
attributes and associations are trivial, we do not enumerate them.

We defined the following test requirements for the UML case study:

– one class coverage test requirement for every metamodel class;
– two attribute coverage test requirements for ActionState.isDynamic with the

equivalence partitions {{false}; {true}};
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– three association coverage test requirements for ActivityGraph.partitions
with the equivalence partitions {{0}; {1}; {[2; ∞)}};

– two association coverage test requirements for Partition.contents with the
equivalence partitions {{0}; {[2; ∞)}};

– one association coverage test requirement for Guard.expression with the equiv-
alence partition {1};

– one association coverage test requirement for StateMachine.top with the equiv-
alence partition {1};

– one-one association coverage test requirement for Transition.source and
Transition.target both with the equivalence partition {1};

– three-three association coverage test requirements for StateVertex.incoming
and StateVertex.outgoing with the equivalence partitions {{0}; {1}; {[2; ∞)}};

– two association coverage test requirement for CompositeState.subvertex with
the equivalence partitions {{0}; {[2; ∞)};

– two association coverage test requirement for ObjectFlowState.type with the
equivalence partitions {{0}; {1}};

– two times three association coverage test requirements for Activity.edges and
Activity.groups with the equivalence partitions {{0}; {1}; {[2; ∞)}};

– two association coverage test requirements for Activity.nodes with the equiva-
lence partitions {{0}; {[2; ∞)}};

– two association coverage test requirements for ActivityEdge.guard with the
equivalence partitions {{0}; {1}};

– one-one association coverage test requirement for ActivityEdge.source and
ActivityEdge.target both with the equivalence partition {1};

– two association coverage test requirements for ActivityGroup.contents with
the equivalence partitions {{0}; {[2; ∞)}};

– three-three association coverage test requirements for ActivityNode.incoming
and ActivityNode.outgoing with the equivalence partitions
{{0}; {1}; {[2; ∞)}};

– one contract rule coverage test requirement for every contract rule.

F Ratios for Derived Test Cases in the UML Case Study
With bold the base test cases are typed. Non-derivable cases are noted with ND.

The decisions in the case of test0004 and test0005 are based on
the lengths: len(sfpinp(test0002)) = 11.5758; len(sfpinp(test0003)) =

12.3288; len(sfpinp(test0004)) = 14.7648.
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test0001 test0002 test0003 test0004 test0005 test0006 test0007 test0008 test0009
test0002 3.0950
test0003 ND 5.3337
test0004 4.0439 0 0
test0005 ND 0 0 0
test0006 12.2165 587.1415 1277.0502 16779.9361 1062.5925
test0007 30.4602 ∞ ∞ ∞ ∞ ∞

test0008 ND ND ND 5.4855 ND 6.1544 ND
test0009 264.3699 9.8417 9.3191 10.4912 9.8417 11.6860 8.5878 10.7007
test0010 1.8558 5.2886 5.2886 5.2578 5.2886 5.3453 3.4148 5.0856 5.2578

Table 2: Ratios for derived-base footprint pairs during the UML case study

G Figures for Test Cases in the UML Case Study

(G-1.1) The “empty” Activity Diagram in
UML 1.4 (test0001)

(G-1.2) The derived test model for the second
test case

(G-1.3) The modified test model for the
second test case (test0002)

(G-1.4) The derived test model for the third
test case (test0003)

(G-1.5) The derived test model for the fourth
test case

(G-1.6) The modified test model for the
fourth test case (test0004)

Fig. G-1: Test cases for maximized input metamodel class coverage in the UML case
study
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Fig. G-2: Test case for maximized attribute coverage in the UML case study (the
derived test model for the fifth test case, test0005)

(G-3.1) The derived test model for the sixth
test case

(G-3.2) The modified test model for the sixth
test case (test0006)

(G-3.3) The derived test model for the
seventh test case

(G-3.4) The modified test model for the
seventh test case (test0007)

(G-3.5) The derived test model for the eighth
test case (test0008)

(G-3.6) The derived test model for the ninth
test case

(G-3.7) The modified test model for the ninth
test case (test0009)

Fig. G-3: Test cases for maximized association coverage in the UML case study

(G-4.1) The derived test model for the tenth
test case

(G-4.2) The derived test model for the tenth
test case (test0010)

Fig. G-4: Test cases for maximized output metamodel class coverage in the UML case
study
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Fig. G-5: Test case for the UML case study given in [21]


