

RZ 3856 (# ZUR1311-059) 12/10/2013
Computer Science 4 pages

Research Report

Performance of Random Arbitration in Switching Fabrics

Lydia Y. Chen*, Nikolaos Chrysos*

*IBM Research – Zurich
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich

Performance of Random Arbitration in Switching Fabrics

Lydia Y. Chen
IBM Research Zurich Lab

4 Saeumerstrasse
Rueschlikon, Switzerland
yic@zurich.ibm.com

Nikolaos Chrysos
IBM Research Zurich Lab

4 Saeumerstrasse
Rueschlikon, Switzerland
cry@zurich.ibm.com

ABSTRACT
This paper presents a throughput analysis for switches or
switching fabrics with small output buffers, where a sched-
uler needs to compute approximate matchings, i.e., match
multiple inputs to the same output. We adopt a random ar-
bitration scheme, which is an extension of Parallel Iterative
Matching (PIM) [1, 3]. We propose a performance analysis
based on a Markov Chain modeling of output credits and
further devise an iterative solving procedure for it. The an-
alytical results match very well with simulations of various
switch and buffer sizes. Our analysis and experiments also
show that with very modest output buffers, switches of any
size can provide full throughput under uniformly distributed
traffic.

1. INTRODUCTION
Modern switches and switching fabrics conventionally em-

ploy virtual output queues (VOQs) at network adapters, in
order to mitigate head-of-line blocking. The core of the
switch, often a crossbar, can either be bufferless or buffered.
Previous research on random arbitration for bufferless cross-
bars found that the throughput of large switch sizes is bounded
by 63 %. With the rapid advances in IC technology, cross-
bars containing crosspoint buffers have become popular [4]
and are shown to reach 100 % throughput under uniform
traffic [1]. However, their scalability is restricted by the
quadratic growth of the number of crosspoint buffers, and
the dimension of crosspoint buffers, which depend on the
round-trip time (RTT) of VOQ-crossbars.

In this paper, we study an alternative architecture, which
can reduce the buffer requirements in buffered crossbars, by
having a linear growth of the number of buffers, and making
the buffer size independent of the RTT. As the scheduler in
such an architecture needs to match multiple inputs to the
same output, we refer to such matchings as approximate, as
opposed to the exact matchings required in bufferless cross-
bars. To our best knowledge, this architecture was mainly
studied through simulations. We first extend the Parallel
Iterative Matching (PIM) scheduling algorithm [1], to com-
pute approximate matchings. Furthermore, we derive the
throughput analysis using a Discrete Time Markov Chain
(DTCM) modeling, which is solved by a proposed interac-
tive procedure.

Although in this paper we consider a single-stage switch,
our analysis serves as a first approximation for scheduled
multi-stage switching fabrics [2].

1.1 Architecture and Random Arbitration

SCHEDULER

VOQs

VOQs

VOQs

request

grantinputs outputs

RTT=P

switching

fabric
pkt buf

for B pkts

Figure 1: Switch model for N=3.

Fig. 1 depicts a N×N switch architecture, consisting of a
scheduler, N output buffers with sizes of B packets, and N
VOQs with sufficiently large space. We assume synchronous,
slotted time, and fixed-size packets, whose transmission take
one time slot. Packet arrivals are i.i.d uniformly distributed.
Arriving packets issue a request to the scheduler and wait in
VOQs. Upon receiving scheduler grant, packets are injected
into the switching fabric and wait in the output buffers,
which drain one packet per unit time. Note that when B = 1
packet, this model corresponds to a bufferless crossbar with
VOQs.

Inputs required by scheduler are the pending VOQ re-
quests, pr[][], and the values of credit counters cr[]. The
scheduler manages the pending requests using per-VOQ coun-
ters, and implements a credit-based flow control by using
credit counters, cr[i]. Contention is resolved by per-output
and per-input arbiters. Similar to PIM, each input and
output operates in parallel. But whereas PIM computes
an exact matching, our algorithm computes an approximate
match after the following handshaking.

1. Each unmatched input j sends a request to every out-
put i for which pending VOQ requests is greater than
zero, i.e., pr[i][j] > 0.

2. If an output i with non-zero credit counter receives a
request from m inputs, it will choose k = min(cr[i],m)
of them to grant, randomly. The output will notify
each input whether its request was granted.

3. If an input j receives one or more grants, it chooses

24

2

request grant accept

2

3

4

1

2

3

4

1

inputs outputs

2

3

4

1

2

3

4

1

inputs outputs

2

3

4

1

2

3

4

1

inputs outputs

PIM2

PIM

Figure 2: Generalized PIM for B=2 (PIM2); with
gray dashed lines we show the selections of PIM as
in [1].

one to accept randomly, and notifies that output.

At the end of this handshaking, the head-of-line pack-
ets on matched VOQ are injected and every output arbiter
decreases its credit counter by the number of accept no-
tifications it received. To render the size of buffers being
independent of the RTT, we use a credit prediction scheme
so that the credits allocated to inputs can be returned in ad-
vance. In particular, our scheduler increases credit counters
that are below B by one, before computing a new match.

In Fig. 2, we borrow a scenario from [1] to show the
steps of the generalized PIM algorithm for B = 2 (PIM2),
assuming that all credit counters are set to 2. PIM is also
depicted using gray dashed lines. In this scenario, input
1 has a packet for output 2, while input 3 has packets for
outputs 2 and 4. In generalized PIM2, output 2 grants both
inputs 1 and 3, whereas in PIM it has to select one, and
randomly grants input 3.

In both PIM and PIM2, input 3 receives two grants, and
randomly selects that from output 4. As shown in the fig-
ure, PIM2 finds a maximum-size bipartite graph matching,
whereas PIM leaves input 3 unmatched.

2. THROUGHPUT ANALYSIS
We derive the maximum throughput of the aforementioned

system, for a given output buffer size, B. At every time slot,
an output has x credits available, x ∈ [1, B], and randomly
selects x input ports to grant. Meanwhile, an input may
receive up to y grants, y ∈ [0, N], from different outputs,
only one of which can be accepted.

The maximum throughput of the system is equivalent to
the average utilization of an output, as the traffic is uni-
formly distributed. One can further show the equivalence of
the utilization of outputs and inputs. Let UO(T) and UI(T)
denote the utilization of outputs and inputs measured over
an interval of T consecutive time slots respectively. As out-
put buffers (of size B) never overflow, UO(T) cannot lag
behind by more than B

T
. On the other hand, conservation

law states that output utilization may exceed input utiliza-
tion by up to B

T
(due to packets in output buffers). There-

fore, we know |UO(T) − UI(T)| ≤ B
T

. As T → ∞, the
steady state utilization of outputs and inputs are equiva-
lent, UO(T) ∼= UI(T). In the remainder of this paper, we
denote U as the steady state utilization of the system.

When B=1, the scheduler holds exactly one credit for each

1 B2

Figure 3: State transition diagram for the number
of available credits at an output.

output at every time slot and performs identically to PIM.
Following the derivation in [3], the input utilization is equal
to the probability that an input port receives at least one
grant, Pr(y ≥ 1). This probability is equal to one minus
the probability that all N outputs grant remaining N − 1
inputs, i.e., 1− (N−1

N
)N . As N →∞

U = Pr(y ≥ 1) = 1−
(
N − 1

N

)N
∼= 1− e−1. (1)

However, when B > 1, it’s not as straightforward as B =
1 for obtaining Pr(y ≥ 1), as the number of credits, x,
available at every output, may vary between 1 and B. In
steady state, each output holds an average number of credits,
β = E[x], whose derivation is detailed in subsection 2.1. As
a result, we obtain

U = Pr(y ≥ 1) = 1−

((
N−1
β

)(
N
β

))N = 1−
(
N − β
N

)N
. (2)

One can straightforwardly obtain the upper bound of U
by the following lemma:

Lemma 2.1. When B > 1,

U ≤ 1−
(
N −B
N

)N
.

Proof. From Eq. 2, Pr(y ≥ 1) is monotonically increas-
ing with β, and is maximized when β = B. As a result,
1 − (N−B

N
)N is the upper bound of P (y ≥ 1) and U as

well.

2.1 Output Credit Modeling
To derive the average number of credits at outputs, β, we

model the number of credits at an output, x, as a Discrete
Time Markov Chain (DTMC) process with state space, x =
{1 . . . B}.

Fig. 3 depicts the state transition diagram. Let the transi-
tion matrix be aB×B matrix, P, where Pij = Pr{x = j|x = i}
is the probability of changing from state x = i to x = j. The
state transition depends on a, denoting the number of out-
put grants accepted by inputs. At the end of the time slot,
the output decreases its credit counter by one for each ac-
cepted grant. Note that if the credit update phase results
in the output having less than B credits, one credit will be
returned back at the beginning of the next time slot.

Assume the output is at state i, and randomly grants i
inputs. If a inputs accept the grants from this output (a ≤
i), the next state is x = j = min(i− a+ 1, B). For instance,
when a = i, i.e., all grants are accepted, in the next time slot
the output will have exactly one credit, i.e., j = 1. On the
other hand, if a = 0, i.e., no grant is accepted, in the next
time slot the output will have j = min(i+1, B) credits. Note
that when the current state has full credits, i = B, the next

state can also have full credits j = B under two scenarios:
(1) no grant is accepted by the inputs (a = 0), or (2) exactly
one grant is accepted (a = 1).

We will derive Pij using qa, the probability a grant is
accepted at an input. Note probability qa depends on the
particular state of each output; to avoid modeling the en-
tire state spaces of all outputs simultaneously, we employ
a numerical procedure to estimate qa in the next subsec-
tion. Transition from state i to j implies that a = i− j + 1
grants were accepted and j − 1 (i − a) rejected; therefore,
Pij =

(
i

i−j+1

)
qi−j+1
a (1 − qa)j−1, as shown in the first case

of Eq. 3. The second case of Eq. 3 accounts for PB,B ,
which is the sum of the probabilities of no grant accepted
(
(
i
0

)
(1 − qa)B), and one grant accepted (

(
i
1

)
q1a(1 − qa)B−1).

The rest of the transitions have zero probability.

Pij =

(

i
i−j+1

)
qi−j+1
a (1− qa)j−1 if i <= B, j ≤ i+ 1;(

i
1

)
q1a(1− qa)i−1 +

(
i
0

)
(1− qa)i, if i = B, j = B;

0, otherwise.

(3)
Once P(qa) is obtained, the steady state probability of

available output credits, π = {π1 . . . πB}, can be computed
by the following equations:

πP = π,
∑
i

πi = 1. (4)

The average number of available output credits at an output
is thus

β = E[x] =
∑
i

iπi.

Finally, substituting β into Eq. 2, we obtain the system
throughput.
A lower bound of utilization: One may also derive a
lower bound of output utilization by 1−πB . When an output
is at state x ∈ [1, B−1], it implies that at least one input has
accepted the output grant, and the output is busy. Now an
output is at state x = B under two scenarios: (1) the output
is idle, e.g. all inputs rejected its grant; or (2) exactly one
input has accepted its grant, and the output is busy. Thus,
the probability that an output is idle is less than πB , and

U ≥ 1− πB . (5)

2.2 Iterative Solving Procedure for the DTMC
of Available Output Credits

To solve the DTMC of available credits at an output, one
needs to obtain qa and substitute it into Eq. 3 and Eq. 4.
Instead of deriving qa in a closed form expression, we propose
using the following observation to obtain the appropriate
numerical value for it. The probability of a grant being
accepted by some inputs is approximately the inverse of the
average number of grants that the input receives, E[y]. Due
to the fact that outputs randomly grant inputs, in the long
run E[y] = E[x] = β. Therefore, we know that

qa ∼=
1∑
i iπi

=
1

β
. (6)

We use an iterative solving procedure based on incremen-
tal qa, illustrated in Algorithm 1. The algorithm initializes
qa = 0, iteratively obtains P(qa), and solves β =

∑
i iπ.

If the relative difference between qa and 1/β, is greater
than a predefined value, ε, the algorithm iterates with new

1 2 3 4 5 6 7 8
0.5

0.6

0.7

0.8

0.9

1

number of total credits (B)

U
ti
liz

a
ti
o

n

upper
average
simulation

(a) 8×8 switch.

1 2 3 4 5 6 7 8 9 10 11 12
0.5

0.6

0.7

0.8

0.9

1

number of total credits (B)

U
ti
liz

a
ti
o

n

upper
average
simulation

(b) 32×32 switch.

1 2 3 4 5 6 7 8 9 10 11 12
0.5

0.6

0.7

0.8

0.9

1

number of total credits (B)

U
ti
liz

a
ti
o

n

upper
average
simulation

(c) 128×128 switch.

1 2 3 4 5 6 7 8 9 10 11 12
0.5

0.6

0.7

0.8

0.9

1

number of total credits (B)

U
ti
liz

a
ti
o

n

upper
average
simulation

(d) 256×256 switch.

Figure 4: Simulation v.s analytical results: through-
put under different switch and buffer sizes.

qa = qa + δ; otherwise the algorithm terminates. Note that
values δ and ε may vary, and affect the quality of the solu-
tion.

Algorithm 1 Iterative Procedure: π and β

Initialization: qa = 0, β = B.
while |1/β − qa|/qa ≤ ε do

Let qa = qa + δ
Solve πi with P(qa)
Compute β =

∑
i iπi

end while

From our experience, we find that the proposed algorithm
is fairly stable with reasonable convergency when qa is first
set to 0, and then iteratively increased by δ. A variation
of this iterative procedure is to update qa = 1/β in each
iteration. Compared to increasing qa by δ in each iteration,
this alternative can potentially converge faster but, based
on our numerical experiments, with less stability.

3. NUMERICAL RESULTS
We present the comparisons of analytical to simulation

results with respect to different buffer sizes, B, and switch
sizes, N , in Fig. 4. The simulation results presented are the
average of four independent simulation runs, using different
random generation seeds. Each subfigure comprises separate
plots for (1)simulation results, (2)average: using Eq. 2,
where β is computed through the proposed DTMC, and (3)
upper: the upper bound of throughput from lemma 2.1.
One can observe that the results from the analysis match
very closely with simulated values, especially for intermedi-
ate B values, namely between 2 and 8 packets. Moreover,
the difference between the upper bound and the average of

throughput diminishes with increasing B and increasing N .
Note that for B = 1, both analysis and simulation are iden-
tical to the throughput of PIM, i.e., 0.63, for large N . We
also observe that the dependency between buffer size and
switch size diminishes with increasing B. For example, in
order to achieve 96% utilization, an 8 × 8 switch needs 4
credits, whereas 32 × 32 needs 5 credits. But when B is
greater than 8, all switch sizes can achieve ≥ 99% utiliza-
tion. Lastly, but most importantly, it is straightforward to
compute the throughput for larger switch sizes, using the
proposed analytical model.

4. CONCLUSIONS
We presented a throughput analysis for switching fab-

rics with small output buffers that employ random arbitra-
tion to compute approximate matchings. We computed the
maximum sustainable throughput from the average avail-
able credits at outputs, which is obtained through a DTMC
modeling. We also devised an iterative solving procedure
for the DTMC of available output credits, based on the re-
ceived grants at inputs. Moreover, we provided upper and
lower bounds of the throughput. Both our analysis and com-
puter simulation results showed that, even using small out-
put buffer sizes, using random arbitration to compute ap-
proximate matchings yields almost 100% throughput.

5. REFERENCES
[1] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P.

Thacker. High-speed Switch Scheduling for Local-Area
Networks. ACM Transactions on Computer Systems,
11(4):319–352, 1993.

[2] N. Chrysos and M. Katevenis. Scheduling in
non-blocking buffered three-stage switching fabrics. In
Proc. IEEE INFOCOM, 2006.

[3] N. McKeown. The iSLIP Scheduling Algorithm for
Input-queued Switches. IEEE/ACM Trans. Netwokr,
7(2):188–201, 1999.

[4] R. Rojas-Cessa, E. Oki, and H. J. Chao. On the
Combined Input-crosspoint Buffered Switch with
Round-Robin Arbitration. IEEE Transactions on
Communications, 53(11):1945–1951, 2005.

