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SUMMARY

This chapter provides an introduction to cloud niiogeand simulation technologies

with focus on performance and scalability. We withphasize the value of modeling and
simulation technologies in the context of cloud pong and provide a short general
introduction to these technologies to make the @hapore self-contained. Specific
requirements against modeling and simulations a@pb cloud computing are discussed
motivating our simulation-based approach. We willlioe in some detail how various
hardware and software objects of clouds can be leddss individual entities and then
glued together to form a simulation model of a ctatgcloud. Besides addressing key
concepts like modeling of contention and data sedatien, we will describe workload
generation and also address some general challasgesiated with cloud modeling and
simulations. Finally, we will describe the variatages of a cloud modeling project
using the simulation of OpenStack image deploymoentlouds as an example.

INTRODUCTION

Cloud computing is perceived as a game changirmtdogy to provide respectively to
consume data center resources [1]. Various nortitural attributes like performance
and scalability, cost and energy efficiency as wasltesiliency, high-availability and
security are considered vital to enable furthemghoof cloud computing [2].

To ensure a cloud design addressing these attsibarbeengineering approach limited
only to measurements, tuning and fixing defectwissufficient. In general these
activities happen late in the development respelstidteployment cycle. Therefore they



can not sufficiently address cloud design issuaghErmore, only a very limited set of
scenarios can be handled this way due to time eswlirce limitation's

Modeling and simulation technologies can help tevéte these issues. They can be
applied to model various cloud attributes like gyattissipation or to evaluate different
pricing models. For definiteness, this chapter feitlus on performance and scalability.
The discrete-event simulation approach describeel ¢tmuld be generalized to also
address non-functional cloud features like eneffigiency or costs, but it needs to be
augmented with other simulation techniques likertted simulations for the sake of
completeness. Such multi-domain simulations areheyhe scope of this chapter.

Performance modeling and simulation techniquesleraperformance analysis of cloud
designs and capacity planning early in the devetayiraycle at large scale with
moderate costs and respecting the strict time caingd of an industrial development
project. Although being widely used and well eg&di®d in various branches of
information and telecommunication industries, thpl&ation of these techniques to
cloud computing provides some new challenges daenaplexity, diversity, agility and
scale.

In the next sections we will first provide a shiotroduction to performance modeling
and simulation technologies and provide some rateto choose simulation
technologies in the industrial context.

Then we will discuss specific requirements agaimstlelind clouds, followed by a
survey of publications and tools currently avaidabére.

The next section addresses the question, whehe idévelopment and deployment life-
cycle of a cloud performance modeling and simuratieethods can be applied.

We will then identify the various objects of a aibtinat need to be modeled. This
includes hardware and software components as we&loakloads consisting of various
types of requests. We will also propose approptetels of modeling abstractions for
the various cloud objects. Furthermore, we wilcdss the modeling of some key
performance related concepts like contention agchsatation in the cloud.

Some challenges associated with a cloud simulatioject are described next, especially
the specification of objectives, parameterizatwalibration, execution and result
analysis.

Finally, a real-life cloud simulation project wilk described including all project phases,
execution characteristics and some typical results.

We will end this chapter with a conclusion.

! Although most development projects face thesetditioins, their impact on cloud computing is espcia
severe due to the huge resources and costs reqoice€ate and manage large-scale clouds.
2 We will frequently use the terms ,modeling“ andmsilating* as synonyms throughout the chapter.



MODELING AND SIMULATION OVERVIEW

To make this chapter more self-contained, we peaidhort survey of the two major
approaches used to model performance and scajatfiltardware and software
components, namely analytic queuing modeling ardrdie-event simulation
technologies.

Analytic queuing modeling uses mathematical motieldescribe the performance of
systems consisting of hardware and software comysras well as workload requests
interacting with them [3][4][5][6]. As a simple example here we may think of requests
(SQL queries) posted by clients and arriving aataldase server. Both the arrival of
requests and their handling at the server can lieled as stochastic processes using
probability distributions for their inter-arrivahtes respectively the service times. In
some especially simple cases, these stochastiegses can then be solved analytiéally
to obtain explicit expressions for observables dkerage response times and queue
lengths, see Fig. 1.

Fig. 1. Typical results of simple analytic queuing modelitige average response tilR@nd the average number of requests as a
function of the service tim8and the utilizatiorp.

Unfortunately, in the majority of real-life casagh explicit solutions are not available
so that significant idealizations are requiredtfer system components and workloads
under consideration. In fact there are quite a@hN-known and highly important
performance relevant features in the context aid$owvhere analytic methods are
difficult to apply [6], e.g.:

* Blocking:
All hardware (active) resources like processor &yend network bandwidth as
well as all software (passive) resources like datalzonnection pool sizes or
number of operating system threads in a cloudiaite fWhen a request has to
wait for such a resource due to contention, itxetien blocks. This may impact
the execution rate at other resources. E.g. a stquaating for a database
connection currently in use by other requests caprozeed using available
network bandwidthto access the database server.

% In fact analytic modeling can be considered asaadh of applied mathematics, namely probability an
stochastic processes. It has a long tradition aaslfirst applied by A. Erlang to model performanée
telephone systems at the beginning of the lastucgifif].

*|.e. using a ,paper-and-pencil* approach and abiimg on approximations or numerical methods.

® Therefore sizes of connection pools are alwaysigamdidates for performance tuning in clouds.



e Bulk arrivals:
A single “launch instances” laA$equest may contain many instances to be
provisioned at the same instance of time in clouds.

» Forking / rejoining of requests:
Basically all data transfer in clouds is done imfmf blocks of packets requiring
a segmentation (forking) of one large request amaller ones; this request is
completed when all of its child requests have cetea (rejoined).

* Load balancing:
Adaptive load balancing is heavily used within @ledo ensure an optimal
utilization of resources.

e Mutual exclusion:
Frequently data structures in clouds require amat@access of requests for
updating to ensure their consistency (e.g. networKiguration data at
hypervisors). This is frequently implemented bycsatled “critical sections” of
code protected by a lock which can only be ownedn®/request at each
instance of time.

* Non-exponential service times:
The usage of (negative) exponential probabilityritistions to model service
times is key in analytic modeling, but in cloudsvése times will in general
violate this assumption.

e Simultaneous resource possession:
One of the key methods to enhance 10 performancirds is the use of
asynchronous IO resulting in requests owning sévesaurces at the same
instant of time, namely processor cycles and ressuof the 10 subsystem.

» Transient states:
Significant workload fluctuations (e.g. dependingtbe time of the day) result in
cloud states far away from equilibrium.

On the other hand, various approximation schenea\ailable here and analytical
modeling is highly efficient in terms of resouraasumption and execution time [3].

A simulation is an imitation of the operation ofeal-world process or system over time
implemented on a computer system [8][9]. In sciesiog engineering simulation
technologies have a long tradition and are extehs@applied [10] for processes or
systems that change their state continuously aver see Fig. 2) and can be described
by (systems of) differential equations. Howeveest methods are of limited value when
applied to cloud computing, because of the inhérel$crete, non-continuous behavior

® |aaS stands for Infrastructure as a Service; forendetails see [1].



of cloud components and worklodd$his motivates the application of another
simulation technology, namely discrete-event simaies (also known as event-driven
simulations) which only model state changes atrdisdimes (see Fig. 2).

A

state
state

>

time time

Fig. 2. The left figure shows a ystem with state changimgtiouously as a function of time. Such systemgueatly occur in
physics and engineering and are modeled by (systéndifferential equations. The right figure shoavsystem with state changing
only at discrete times. Basically all systems usddformation technology including clouds fall inthis category. Differential
equations are not well suited to model such systemnause of their discrete nature.

Although a detailed discussion of discrete-evemiugations [8][9] is beyond the scope of
this chapter, we provide here a brief descriptidme key idea of discrete-event
simulations is to model the system operation oglyhie sequence of events that cause
changes in system state at discrete points in fliyygical events are, e.g., arrivals or
departures of requests occurring at system comperiéunture events that are already
scheduled at a particular point in time are ket fature event list. As illustrated in the
core discrete-event algorithm in Fig. 3, the siraraepeatedly picks from this event list
the earliest next event, hands it over to the paldr event handler that is associated with
the event, and sets the simulation clock to th@#veccurrence time. A particular event
handler, e.g., might be responsible for perfornihmegnecessary state update for a
specific system component at arrival of a specéopuest. Typically, a handler also
schedules new upcoming events into the future digtnwhich may be events modeling
the next arrival of the same kind or a departirguest targeted to another system
component. This core process is repeated untgithalation ending condition is

reached. This way, the dynamic system behaviaonectly modeled by immediate time
jumps across the non-relevant time periods betwabeequent events. These time jumps
make discrete-event simulation superior in efficieto the also known activity-based
simulation method (also known as time-driven sirtiates) where time is incremented in
sufficiently small equidistant steps thereby wagtiomputing time during non-relevant
time periods.

In cloud simulations, the time between two evestypically several seconds, while the
average time to handle one event is approximatetylsecond on contemporary
computer systems. Leveraging parallel simulatiehnelogies to handle many events
concurrently, this enables the accurate simulasidarge clouds for long time intervals.

Furthermore, the remarkable simplicity of the cdiszrete-event algorithm results in a
high flexibility and enables a straightforward siation of the results of analytic queuing
modeling and especially also of the items mentidndte previous section. Applying

" E.g. on processor level request execution is drivethe discrete processor clock and on cloud leye
events like arrival and departure of launch instagri@aS requests at compute nodes.



discrete-event simulations to cloud computingeéras feasible to simulate almost all
performance relevant features of clouds with acgasabeyond what can be measured
with the currently available cloud measurementdool

Still, significant efforts are required to implenieneaningful cloud simulation models
and their execution may require significant resesrand execution time.

To sum up, for cloud modeling discrete-event simoies seem to be superior in terms of
accuracy and flexibility. This is essential in adustrial context. The greater efficiency
of analytic methods can be offset (at least pdyjialy leveraging parallel simulation
technologies on appropriate contemporary compyttess. Therefore we have selected
discrete-event simulations as our primary tool tdei clouds with the option to use
simulation models as a basis for analytic queuing@ling efforts.

CLOUD MODELING AND SIMULATION REQUIREMENTS

Although performance modeling and simulation te¢bgies as introduced in the
previous section are widely used and well estabtish various branches of information
and telecommunication industries [11][12], theipkgation to clouds provides some new
challenges due to complexity, diversity, agilitydastale [13].

* The hardware infrastructure of clouds consisteofers, networking switches
and storage subsystems and all of these compomeadsto be taken into account
on an equal footing. This is in contrast to mosthef performance simulation
work focusing on (parts of) just one of these congras.

* A cloud being a complex system with intricate iat#ions between hardware and
software modules, we need to treat both softwanmkfleevs and hardware
infrastructure as first class citizens when simotaend-to-end performance.

* In general the software heuristics for managingsidg a cloud change at a
much higher rate than the available cloud hardwdrastructures; therefore it is
important to introduce separate modules for sinmdatoftware heuristics and the
hardware infrastructure to support a rapid impletagon of new cloud software
heuristics for an unchanged hardware infrastrucngevice versa.

» The market for cloud solutions being highly dynansiculations of new clouds
must be provided in a timely manner, i.e. we ne@eslpport a rapid prototyping.

* We need to allow for selectively and rapidly adddggails to the simulation of
specific hardware or software components to inea¢as credibility of the
simulation effort if required by the stakeholdef@@imulation effort.
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execute event handler:
update system state and request attributes
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i

simulationCompleted =
checkTerminationCondition()

Fig. 3. The core algorithm of a discrete-event simulatingiee.

» Last but not least the enormous size of contempalaud data centers requires
highly scalable simulation technologies.

Besides addressing these challenges, a key pdmfirsd a useful abstraction level for
modeling the system and workload under investigafidis is largely determined by the
goals of the modeling effort, but must ensure miadedf typical cloud level objects like
compute nodes, switches, routers, hypervisorsjalirnachines, load balancers, firewalls
with an appropriate level of dethil

In fact there are quite a few simulation framewdiksclouds available, see [13] - [26].
For definiteness, we will describe the approacliuis¢l3] and [14] to address the
challenges mentioned above in more detail, but miottis chapter is independent of the
concrete simulation framework under consideration.

8 |.e. cloud simulations can not simply reuse timeutation approaches applied to model processosamre
crossbar switches to support hardware design.



MODELING AND SIMULATION OF CLOUDS

Although clouds are in general highly complex systethey consist of a rather small set
of fundamentally different hardware and softwarédmg blocks, see Fig. 4. The key
modeling challenges here are to

» identify the appropriate building blocks

* model these building blocks on an appropriate abstm level

* enable their modular and scalable combination tll lmomplex clouds
» support implementation of request workflows on asi levels of detail

Virtual Machines ~ Firewalls
(Workflows) /Workloads
Compute nodes e
% s
Router
crus” ~ ©
Memory (] S < Switches
Disks /
Disk Arrays HBAs/NICs

Fig. 4. Samples of modeled cloud hardware and software onegs

We distinguish between active resources represghtndware resources like processor
cores, disks and switches where requests spenddimeg&ecution and passive resources
representing software artifacts like database ottiores or thread pools. Requests do not
spend time for execution at these passive resquraefrequently need to own one or
many of them to access an active resource.

As a typical example for a model of an active (maak) resource, we take a closer look
at the model of a network device, see Fig. 5. tiststs of basic building blocks (“Lego
bricks”) providing bandwidth to model the ports androssbar switch, another “Lego
brick” providing processor cycles and a module empénting the software workflow
details including the creation of routing tablesndialization of the simulation. Using
different parameterizations of the components, ghmsilation module can be used to
model a wide variety of network devices like swashrouter and firewalls. A request
enters the network device at a port, traversesritgsbar, spends some time at a
processor core, looks up the appropriate port ctdeddo the next target in the routing
table of the workflow module and finally leaves thevice via this pott

® This low-level request workflow within a networkwce is in general initiated be a high-level wékf
request implementing e.g. a cloud level softwardiegation.



bidirectional ports

routing

crossbar switch
processor core(s)

Fig. 5. A general network device The red line indicatesfibv of a request.

A typical scenario for the application of passiesaurces is the simulation of so called
critical regions, see Fig. 6. Such regions allowy @me concurrent request to proceed

and are used e.g. to ensure consistency of dattagydn this case a request has to queue
for a token provided by a token pool to acces<thieal region and spend some time for
execution within it. After leaving the critical e, the request releases the token again
and other requests waiting may try to obtain itoadmg to a specified arbitration policy.

pool of
tokens
4 g . @(\\
blocking ’ N
4
queue ‘ \
\
\
R E—
> >
4
critical region -~ release
aquire resource " e . resource
~ ~" - = ~— e e
phase 1 phase 2 phase 3

time

v

Fig. 6. Modeling a critical region allowing only one requéhread) concurrently in flight

Models of large-scale clouds are created by combimore basic modules, e.g.
processor cores, switches and disks to create puternode, compute nodes and
switches to create a rack and several intercondeatiks and storage units to create a
data centéf. Finally, these can be combined to build a cloomisésting of a number of
world-wide distributed data centers, see Fig. & Kéy design concepts of a simulation
framework supporting this approach are modularity the ability to replicate (“copy-
and-paste”) objects at any level of complexity.

191t is important to note, that modules may be repthby more fine-grain of coarse-grain models gt an
level of this building-block approach.



»Lego approach®:
create compound objects by combining existing bricks

=
st &

Internet

»Lego++ approach”:
create new objects by copying existing objects

Fig. 7. Complex compound modules can be created by contbinore basic modules, e.g. a server rack by compicompute

nodes with various VMs, disk arrays and network ponents. Using these racks, a data center carbthereated by a copy-and-

paste approach. Finally, a cloud consisting of mler of world-wide distributed data centers cao &ls created by applying the
copy-and-paste approach, this time applied onckxiter level.

For a simple taxonomy of cloud requests, see Figughermore, we can associate
various levels with requests. Requests at a higlvet are then initiating request
workflows at a lower level. The highest level resfuaorkflows are in general associated
with applications at cloud level and implementedhi@ context of virtual machines
(VMs), the lowest level request workflows with assig hardware components like disk
media. This allows the implementation of new cléexkl application workflows without
the need to take details of low-level device ra&at®rkflows into account and vice-

versa.

Request

CloudManagement Application

Deploylmage Logon AddUser ..  OneTierRequest TwoTierRequest
Fig. 8. Request taxonomy with the request of type “Requesits root

In the workload generator module (the internetim ¢ontext of clouds, see Fig. 7), all
functionality related to generating, initializing@posting requests of various types
against the cloud is implemented. Furthermore ay miso be used to collect all request
related statistics.

M Device related statistics like utilization and gedengths are in general collected at the device
simulation modules.
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We will now focus on some key cloud modeling aspdcat are quite independent of the
concrete resources and requests under considerBBoause all cloud resources are
limited and demand may well be bigger than resauiasilable in the cloud, arbitration
(respectively scheduling) of resources to requestssential. A simple FCFS arbitration
is frequently used in [14], but it is straightfomsiao implement more complex schemes.
Another key feature when modeling clouds is segatemt and reassembly of requests,
especially of requests modeling the transfer o d&er the network. Such segmentation
allows a request to be in flight concurrently atesal devices resulting in an increased
throughput. Therefore it is essential to model segation even if some compromises
concerning granularity have to be m&dgiven the finite time and resources provided to
execute simulations.

CLOUD MODELING AND SIMULATION CHALLENGES

Modeling and simulation of cloud performance isoagsted with some specific
challenges caused by their highly volatile nature scale.

« Architectural and workload details of clouds aramiing rapidly. This is caused
e.g. by new processes of delivering software lietinuous delivery [27].
Besides requiring fast updates of the simulatio@themselves, this makes
their precise parameterization difficult. The peblcan be alleviated by
focusing on the prediction oélative values of performance metrics against a
known baseline, e.g. modeling timerease of request throughput when updating
the cloud.

» For calibrating models, high quality measuremenma dath a detailed
specification of workloads and cloud infrastructacenponents are of great
value. Unfortunately, such data is rarand this is significantly impacting model
accuracy.

* Due to constraints in time and available resouncesgsurement data is in
general available only for small or medium sizesldss. Using this data for
parameterization and calibration, there is a caraldle risk to overlook
resources of importance for clouds at large sd#be taking these resources into
account will most likely result in significant mdae errors.

« To enable non-expert users to execute cloud simuakata limited set of
modeling scenarios should be made available as/es@ccessible via a web
user interface. The challenge here is to idenhi&yrmost useful scenarios and a
small set of associated key parameters to be edgosenon-expert user.

12E g. itis not feasible to model a MTU size of Q4fytes in large cloud networks due to the excessiv
amount of events associated with processing sanehgiianular data segmentation.

13 This is especially the case for end-to-end measenés on large scale clouds due to constrainisi t
and resources.
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SIMULATION PROJECT CASE STUDY: OPENSTACK IMAGE DEPLOYMENT

We will use the simulation of image deployment ipe@Stack [28] managed clouds as
an example of a concrete cloud simulation projadt@escribe its phases below.

1. Specification of objectives
In the ideal case, the objectives of a simulatimjget are specified and agreed on
with the stakeholders at the beginning of a sinhaproject. In our case,
objective is to study the impact of concurrencytlmoughput and response time
of image deployment requests for various clouditgctures. Furthermore, we
want to learn about various device utilizations atehtify bottlenecks.

2. Design and Specification
In this phase, the appropriate cloud architecttodse simulated are specified as
well as key workload characteristics. In our cage metwork topologies, levels of
concurrency, images to be deployed and overalldckizes.

3. Implementation
The specified OpenStack image deployment workfla9] js implemented for
various cloud architectures, e.g. for the one petliin Fig. 9.

4. Parameterization
Key workload and infrastructure related parameikesservice times and
resource consumptions have to be extracted fronaél@measurements and
documentations. When no data is available, reasewvahies based on past
experience have to be used. Various tradeoffs talse made (e.g. concerning
size of data packets) to balance between exectit@nand simulation accuracy.

5. Calibration
Available measurements for concurrent image depénmare used for
calibration. To factor out various unknown detailghis data, we use relative
numbers comparing performance metrics for conctiineage deployments
versus single image deployment numbers for eaahasice see Fig. 10.

managed-from node

100 managed-to nodes (horizon, nova-api,...)
(nova-compute / hypervisor)

hierarchy of 48 x 10 Gbps switches

Fig. 9. An OpenStack managed cloud with all OpenStack memagt components on one compute node, but withratepaodes
for the managed-to system
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Bulk Arrival of Deployment Requests

B Measurements
M Simulation
1 5 8 20

Concurrent image deployment requests in bulk arriva |

Relative response times
O P N W M U1 O N 00 ©

Fig. 10.A number of scenarios with a bulk arrival of imatgployment requests is used for calibration ofsiheulation. Note that we
use relative response times versus the responsddinone request here.

6. Execution
The key performance metric characterizing the ettecwf discrete-event
simulations is the event throughput. We obsenfe@ughput of approximately
1.2 million events per second on one contemporanyptite node using the
OMNEST simulation software. This number as welitassize of the cloddthat
can be simulated is largely determined by the tymamount of available
memory® '°. The execution time depends critically on the negliaccuracy: to
ensure a deviation of less than a few percent fmstrsimulation results, the
number of executed requests should be at leasbitghars of magnitude greater
than the number of concurrent requests in the cloud

7. Result Analysisand Visualization
Visualization seems to be mandatory to convey satmn results. For some
simple examples here see figures 11 — 15. Figuremd 12 show image
deployment throughput respectively response tineesahstrating saturation at
approximately 4 (single compute node) respecti28ymany compute nodes)
concurrent requests. Figure 13 shows the queughlémglocks at the hypervisor,
e.g. for a software resource. Figure 14 shows emeased utilization of an
external disk interface at the OpenStack imagesigmy for many compute
nodes. This indicates that in the case of distimlguimage deployment requests to
many compute nodes, the bottleneck moves fromtevad to a hardware
resource.

“We think of the size of a cloud in terms of itsrasftructure and the concurrent number of requests i
flight.

13 At the current level of detail, a single computele with 96 GB main memory is sufficient to simalat
various image deployment scenarios on cloud datterewith approximately 1000 compute nodes and
associated storage and network devices. Largedslaould require either a higher level of abstractr
parallel simulations on a cluster.

1% This is because discrete-event simulations neegdate data structures representing system sitite w
high frequency resulting in a high rate of 10 opierss.

13



Throughputs

2500
2000
1500 -
< 1000
500 |

B MultiComputeNodes
SingleNode

1 4 8 12 16 20 24 28 32 36 40
Number of concurrent deployment
requests

Fig. 11.Image deployment throughputs for various levelafaurrency for a cloud architecture with a singienpute node only and
with many compute nodes.

Mean Response Times

600
400
g‘ B MultiComputeNodes
L @ SingleNode
200
0 u

1 4 8 12 16 20 24 28 32 36 40

Number of concurrent deployment
requests

Fig. 12.Image deployment response times for various lefvebocurrency for a cloud architecture with a singbmpute node only
and with many compute nodes.

Mean Queue Lengths for Locks at
Hypervisor

20

15

10 1 IS|aneN0de
5 4
0 4

12 16 20 24 28 32 36 40

Number of concurrent deployment requests

Fig. 13.Queue length for image deployment for various I@feoncurrency for the single node cloud architeetNo significant
queueing occurs here in the node architecture méhy compute nodes.
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Mean Disk Array External Interface

Utilizations
20

15

10 + B MultiComputeNodes

Utilization [%)]

1 4 8 12 16 20 24 28 32 36 40
Number of concurrent deployment
requests

Fig. 14.Utilization of the external interface at the Opext&timage repository indicating an icreased corgarfor bandwidth here.
In the single node case the utilization here idigiéde. Comparing this with the results in figut8 shows, how the bottleneck moves
from software to hardware in case of multiple cotepuwodes.

CONCLUSION

Cloud modeling and simulations can be of greatevédusupport the design of workload
optimized clouds, especially because of the prtikécosts and time associated with the
creation of large-scale test clouds. The challehges are to address cloud agility and
scalability, treat all hardware and software congs of a cloud as first class citizens
and make cloud modeling and simulation technologéssly accessible for non-experts.
This requires quite a different modeling approdwntin traditional simulation domains
like microprocessor design or networking. Progtessbeen made, but more research
and innovations are required to enable a more wjalead use of these highly valuable
technologies.
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