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SUMMARY 
 
This chapter provides an introduction to cloud modeling and simulation technologies 
with focus on performance and scalability. We will emphasize the value of modeling and 
simulation technologies in the context of cloud computing and provide a short general 
introduction to these technologies to make the chapter more self-contained. Specific 
requirements against modeling and simulations applied to cloud computing are discussed 
motivating our simulation-based approach. We will outline in some detail how various 
hardware and software objects of clouds can be modeled as individual entities and then 
glued together to form a simulation model of a complete cloud. Besides addressing key 
concepts like modeling of contention and data segmentation, we will describe workload 
generation and also address some general challenges associated with cloud modeling and 
simulations.  Finally, we will describe the various stages of a cloud modeling project 
using the simulation of OpenStack image deployment on clouds as an example. 

 

INTRODUCTION 
 
Cloud computing is perceived as a game changing technology to provide respectively to 
consume data center resources [1]. Various non-functional attributes like performance 
and scalability, cost and energy efficiency as well as resiliency, high-availability and 
security are considered vital to enable further growth of cloud computing [2]. 
 
To ensure a cloud design addressing these attributes, an engineering approach limited 
only to measurements, tuning and fixing defects is not sufficient. In general these 
activities happen late in the development respectively deployment cycle. Therefore they 
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can not sufficiently address cloud design issues. Furthermore, only a very limited set of 
scenarios can be handled this way due to time and resource limitations1. 
 
Modeling and simulation technologies can help to alleviate these issues. They can be 
applied to model various cloud attributes like energy dissipation or to evaluate different 
pricing models. For definiteness, this chapter will focus on performance and scalability. 
The discrete-event simulation approach described here could be generalized to also 
address non-functional cloud features like energy efficiency or costs, but it needs to be 
augmented with other simulation techniques like thermal simulations for the sake of 
completeness. Such multi-domain simulations are beyond the scope of this chapter. 
 
Performance modeling and simulation techniques enable a performance analysis of cloud 
designs and capacity planning early in the development cycle at large scale with 
moderate costs and respecting the strict time constraints of an industrial development 
project. Although being widely used and well established in various branches of 
information and telecommunication industries, the application of these techniques to 
cloud computing provides some new challenges due to complexity, diversity, agility and 
scale. 
 
In the next sections we will first provide a short introduction to performance modeling 
and simulation technologies and provide some rationale to choose simulation 
technologies in the industrial context.  
  
Then we will discuss specific requirements against modeling2 clouds, followed by a 
survey of publications and tools currently available here.  
 
The next section addresses the question, where in the development and deployment life-
cycle of a cloud performance modeling and simulation methods can be applied. 
 
We will then identify the various objects of a cloud that need to be modeled. This 
includes hardware and software components as well as workloads consisting of various 
types of requests. We will also propose appropriate levels of modeling abstractions for 
the various cloud objects. Furthermore, we will discuss the modeling of some key 
performance related concepts like contention and segmentation in the cloud. 
 
Some challenges associated with a cloud simulation project are described next, especially 
the specification of objectives, parameterization, calibration, execution and result 
analysis. 
 
Finally, a real-life cloud simulation project will be described including all project phases, 
execution characteristics and some typical results. 
 
We will end this chapter with a conclusion. 

                                                 
1 Although most development projects face these limitations, their impact on cloud computing is especially 
severe due to the huge resources and costs required to create and manage large-scale clouds.  
2 We will frequently use the terms „modeling“ and „simulating“ as synonyms throughout the chapter. 
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MODELING AND SIMULATION OVERVIEW 
 
To make this chapter more self-contained, we provide a short survey of the two major 
approaches used to model performance and scalability of hardware and software 
components, namely analytic queuing modeling and discrete-event simulation 
technologies. 
 
Analytic queuing modeling uses mathematical models to describe the performance of 
systems consisting of hardware and software components as well as workload requests 
interacting with them [3][4][5][6]3. As a simple example here we may think of requests 
(SQL queries) posted by clients and arriving at a database server. Both the arrival of 
requests and their handling at the server can be modeled as stochastic processes using 
probability distributions for their inter-arrival times respectively the service times. In 
some especially simple cases, these stochastic processes can then be solved analytically4 
to obtain explicit expressions for observables like average response times and queue 
lengths, see Fig. 1.  
 
 
 

 

 

Fig. 1. Typical results of simple analytic queuing modeling: the average response time R and the average number of requests as a 
function of the service time S and the utilization ρ. 

Unfortunately, in the majority of real-life cases such explicit solutions are not available 
so that significant idealizations are required for the system components and workloads 
under consideration. In fact there are quite a few well-known and highly important 
performance relevant features in the context of clouds where analytic methods are 
difficult to apply [6], e.g.: 
 

• Blocking: 
All hardware (active) resources like processor cycles and network bandwidth as 
well as all software (passive) resources like database connection pool sizes or 
number of operating system threads in a cloud are finite. When a request has to 
wait for such a resource due to contention, its execution blocks. This may impact 
the execution rate at other resources. E.g. a request waiting for a database 
connection currently in use by other requests cannot proceed using available 
network bandwidth5 to access the database server. 
 

                                                 
3 In fact analytic modeling can be considered as a branch of applied mathematics, namely probability and 
stochastic processes. It has a long tradition and was first applied by A. Erlang to model performance of 
telephone systems at the beginning of the last century [7]. 
4 I.e. using a „paper-and-pencil“ approach and not relying on approximations or numerical methods. 
5 Therefore sizes of connection pools are always good candidates for performance tuning in clouds. 
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• Bulk arrivals: 
A single “launch instances” IaaS6 request may contain many instances to be 
provisioned at the same instance of time in clouds. 
 

• Forking / rejoining of requests: 
Basically all data transfer in clouds is done in form of blocks of packets requiring 
a segmentation (forking) of one large request into smaller ones; this request is 
completed when all of its child requests have completed (rejoined). 
 

• Load balancing: 
Adaptive load balancing is heavily used within clouds to ensure an optimal 
utilization of resources. 
 

• Mutual exclusion: 
Frequently data structures in clouds require an atomic access of requests for 
updating to ensure their consistency (e.g. network configuration data at 
hypervisors). This is frequently implemented by so-called “critical sections” of 
code protected by a lock which can only be owned by one request at each 
instance of time. 
 

• Non-exponential service times: 
The usage of (negative) exponential probability distributions to model service 
times is key in analytic modeling, but in clouds service times will in general 
violate this assumption. 
 

• Simultaneous resource possession: 
One of the key methods to enhance IO performance in clouds is the use of 
asynchronous IO resulting in requests owning several resources at the same 
instant of time, namely processor cycles and resources of the IO subsystem. 
 

• Transient states: 
Significant workload fluctuations (e.g. depending on the time of the day) result in 
cloud states far away from equilibrium. 
 

On the other hand, various approximation schemes are available here and analytical 
modeling is highly efficient in terms of resource consumption and execution time [3]. 
 
A simulation is an imitation of the operation of a real-world process or system over time 
implemented on a computer system [8][9]. In science and engineering simulation 
technologies have a long tradition and are extensively applied [10] for processes or 
systems that change their state continuously over time (see Fig. 2) and can be described 
by (systems of) differential equations. However, these methods are of limited value when 
applied to cloud computing, because of the inherently discrete, non-continuous behavior 

                                                 
6 IaaS stands for Infrastructure as a Service; for more details see [1]. 
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of cloud components and workloads7. This motivates the application of another 
simulation technology, namely discrete-event simulations (also known as event-driven 
simulations) which only model state changes at discrete times (see Fig. 2).  
 
            
 
 
 
 
 
 

Fig. 2. The left figure shows a ystem with state changing continuously as a function of time. Such systems frequently occur in 
physics and engineering and are modeled by (systems of) differential equations. The right figure shows a system with state changing 

only at discrete times. Basically all systems used in information technology including clouds fall into this category. Differential 
equations are not well suited to model such systems because of their discrete nature. 

Although a detailed discussion of discrete-event simulations [8][9] is beyond the scope of 
this chapter, we provide here a brief description. The key idea of discrete-event 
simulations is to model the system operation only by the sequence of events that cause 
changes in system state at discrete points in time. Typical events are, e.g., arrivals or 
departures of requests occurring at system components. Future events that are already 
scheduled at a particular point in time are kept in a future event list. As illustrated in the 
core discrete-event algorithm in Fig. 3, the simulator repeatedly picks from this event list 
the earliest next event, hands it over to the particular event handler that is associated with 
the event, and sets the simulation clock to the event's occurrence time. A particular event 
handler, e.g., might be responsible for performing the necessary state update for a 
specific system component at arrival of a specific request. Typically, a handler also 
schedules new upcoming events into the future event list which may be events modeling 
the next arrival of the same kind or a departing request targeted to another system 
component. This core process is repeated until the simulation ending condition is 
reached. This way, the dynamic system behavior is correctly modeled by immediate time 
jumps across the non-relevant time periods between subsequent events. These time jumps 
make discrete-event simulation superior in efficiency to the also known activity-based 
simulation method (also known as time-driven simulations) where time is incremented in 
sufficiently small equidistant steps thereby wasting computing time during non-relevant 
time periods. 
 
In cloud simulations, the time between two events is typically several seconds, while the 
average time to handle one event is approximately a millisecond on contemporary 
computer systems. Leveraging parallel simulation technologies to handle many events 
concurrently, this enables the accurate simulation of large clouds for long time intervals. 
 
Furthermore, the remarkable simplicity of the core discrete-event algorithm results in a 
high flexibility and enables a straightforward simulation of the results of analytic queuing 
modeling and especially also of the items mentioned in the previous section. Applying 

                                                 
7 E.g. on processor level request execution is driven by the discrete processor clock and on cloud level by 
events like arrival and departure of launch instances IaaS requests at compute nodes. 
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discrete-event simulations to cloud computing, it seems feasible to simulate almost all 
performance relevant features of clouds with accuracies beyond what can be measured 
with the currently available cloud measurement tools. 
 
Still, significant efforts are required to implement meaningful cloud simulation models 
and their execution may require significant resources and execution time. 
 
To sum up, for cloud modeling discrete-event simulations seem to be superior in terms of 
accuracy and flexibility. This is essential in an industrial context. The greater efficiency 
of analytic methods can be offset (at least partially) by leveraging parallel simulation 
technologies on appropriate contemporary computer systems. Therefore we have selected 
discrete-event simulations as our primary tool to model clouds with the option to use 
simulation models as a basis for analytic queuing modeling efforts.  
 

CLOUD MODELING AND SIMULATION REQUIREMENTS 
 
Although performance modeling and simulation technologies as introduced in the 
previous section are widely used and well established in various branches of information 
and telecommunication industries [11][12], their application to clouds provides some new 
challenges due to complexity, diversity, agility and scale [13]. 
 

• The hardware infrastructure of clouds consists of servers, networking switches 
and storage subsystems and all of these components need to be taken into account 
on an equal footing. This is in contrast to most of the performance simulation 
work focusing on (parts of) just one of these components. 

• A cloud being a complex system with intricate interactions between hardware and 
software modules, we need to treat both software workflows and hardware 
infrastructure as first class citizens when simulating end-to-end performance. 

• In general the software heuristics for managing and using a cloud change at a 
much higher rate than the available cloud hardware infrastructures; therefore it is 
important to introduce separate modules for simulating software heuristics and the 
hardware infrastructure to support a rapid implementation of new cloud software 
heuristics for an unchanged hardware infrastructure and vice versa. 

• The market for cloud solutions being highly dynamic, simulations of new clouds 
must be provided in a timely manner, i.e. we need to support a rapid prototyping. 

• We need to allow for selectively and rapidly adding details to the simulation of 
specific hardware or software components to increase the credibility of the 
simulation effort if required by the stakeholders of a simulation effort. 
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Fig. 3. The core algorithm of a discrete-event simulation engine.  

 

• Last but not least the enormous size of contemporary cloud data centers requires 
highly scalable simulation technologies. 

 
Besides addressing these challenges, a key point is to find a useful abstraction level for 
modeling the system and workload under investigation. This is largely determined by the 
goals of the modeling effort, but must ensure modeling of typical cloud level objects like 
compute nodes, switches, routers, hypervisors, virtual machines, load balancers, firewalls 
with an appropriate level of detail8. 
 
In fact there are quite a few simulation frameworks for clouds available, see [13] - [26]. 
For definiteness, we will describe the approach used in [13] and [14] to address the 
challenges mentioned above in more detail, but most of this chapter is independent of the 
concrete simulation framework under consideration. 
 

 

                                                 
8 I.e. cloud simulations can not simply reuse the simulation approaches applied to model processor cores or 
crossbar switches to support hardware design. 
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MODELING AND SIMULATION OF CLOUDS 
 
Although clouds are in general highly complex systems, they consist of a rather small set 
of fundamentally different hardware and software building blocks, see Fig. 4.  The key 
modeling challenges here are to 
 

• identify the appropriate building blocks 
• model these building blocks on an appropriate abstraction level 
• enable their modular and scalable combination to build complex clouds 
• support implementation of request workflows on various levels of detail 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Samples of modeled cloud hardware and software components 

We distinguish between active resources representing hardware resources like processor 
cores, disks and switches where requests spend time for execution and passive resources 
representing software artifacts like database connections or thread pools. Requests do not 
spend time for execution at these passive resources, but frequently need to own one or 
many of them to access an active resource.  
 
As a typical example for a model of an active (hardware) resource, we take a closer look 
at the model of a network device, see Fig. 5. It consists of basic building blocks (“Lego 
bricks”) providing bandwidth to model the ports and a crossbar switch, another “Lego 
brick” providing processor cycles and a module implementing the software workflow 
details including the creation of routing tables at initialization of the simulation. Using 
different parameterizations of the components, this simulation module can be used to 
model a wide variety of network devices like switches, router and firewalls. A request 
enters the network device at a port, traverses the crossbar, spends some time at a 
processor core, looks up the appropriate port connected to the next target in the routing 
table of the workflow module and finally leaves the device via this port9.  
 
 
 

                                                 
9 This low-level request workflow within a network device is in general initiated be a high-level workflow 
request implementing e.g. a cloud level software application. 
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Fig. 5. A general network device The red line indicates the flow of a request. 

A typical scenario for the application of passive resources is the simulation of so called 
critical regions, see Fig. 6. Such regions allow only one concurrent request to proceed 
and are used e.g. to ensure consistency of data updates. In this case a request has to queue 
for a token provided by a token pool to access the critical region and spend some time for 
execution within it. After leaving the critical region, the request releases the token again 
and other requests waiting may try to obtain it according to a specified arbitration policy. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Modeling a critical region allowing only one request (thread) concurrently in flight  

 
Models of large-scale clouds are created by combining more basic modules, e.g. 
processor cores, switches and disks to create a compute node, compute nodes and 
switches to create a rack and several interconnected racks and storage units to create a 
data center10. Finally, these can be combined to build a cloud consisting of a number of 
world-wide distributed data centers, see Fig. 7. The key design concepts of a simulation 
framework supporting this approach are modularity and the ability to replicate (“copy-
and-paste”) objects at any level of complexity. 

                                                 
10 It is important to note, that modules may be replaced by more fine-grain of coarse-grain models at any 
level of this building-block approach. 
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Fig. 7. Complex compound modules can be created by combining more basic modules, e.g. a server rack by combining compute 
nodes with various VMs, disk arrays and network components. Using these racks, a data center can then be created by a copy-and-
paste approach. Finally, a cloud consisting of a number of world-wide distributed data centers can also be created by applying the 

copy-and-paste approach, this time applied on data center level. 

For a simple taxonomy of cloud requests, see Fig. 8. Furthermore, we can associate 
various levels with requests. Requests at a higher level are then initiating request 
workflows at a lower level. The highest level request workflows are in general associated 
with applications at cloud level and implemented in the context of virtual machines 
(VMs), the lowest level request workflows with accessing hardware components like disk 
media. This allows the implementation of new cloud level application workflows without 
the need to take details of low-level device related workflows into account and vice-
versa. 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Request taxonomy with the request of type “Request” at its root 

In the workload generator module (the internet in the context of clouds, see Fig. 7), all 
functionality related to generating, initializing and posting requests of various types 
against the cloud is implemented. Furthermore, it may also be used to collect all request 
related statistics11.   
 

                                                 
11 Device related statistics like utilization and queue lengths are in general collected at the device 
simulation modules. 
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We will now focus on some key cloud modeling aspects that are quite independent of the 
concrete resources and requests under consideration. Because all cloud resources are 
limited and demand may well be bigger than resources available in the cloud, arbitration 
(respectively scheduling) of resources to requests is essential. A simple FCFS arbitration 
is frequently used in [14], but it is straightforward to implement more complex schemes. 
Another key feature when modeling clouds is segmentation and reassembly of requests, 
especially of requests modeling the transfer of data over the network. Such segmentation 
allows a request to be in flight concurrently at several devices resulting in an increased 
throughput. Therefore it is essential to model segmentation even if some compromises 
concerning granularity have to be made12 given the finite time and resources provided to 
execute simulations. 
 

CLOUD MODELING AND SIMULATION CHALLENGES 
 
Modeling and simulation of cloud performance is associated with some specific 
challenges caused by their highly volatile nature and scale. 
 

• Architectural and workload details of clouds are changing rapidly. This is caused 
e.g. by new processes of delivering software like continuous delivery [27]. 
Besides requiring fast updates of the simulation models themselves, this makes 
their precise parameterization difficult. The problem can be alleviated by 
focusing on the prediction of relative values of performance metrics against a 
known baseline, e.g. modeling the increase of request throughput when updating 
the cloud. 
 

• For calibrating models, high quality measurement data with a detailed 
specification of workloads and cloud infrastructure components are of great 
value. Unfortunately, such data is rare13 and this is significantly impacting model 
accuracy. 

 
• Due to constraints in time and available resources, measurement data is in 

general available only for small or medium sized clouds. Using this data for 
parameterization and calibration, there is a considerable risk to overlook 
resources of importance for clouds at large scale. Not taking these resources into 
account will most likely result in significant modeling errors. 

 
• To enable non-expert users to execute cloud simulations, a limited set of 

modeling scenarios should be made available as a service accessible via a web 
user interface. The challenge here is to identify the most useful scenarios and a 
small set of associated key parameters to be exposed to a non-expert user.  

                                                 
12 E.g. it is not feasible to model a MTU size of 1500 bytes in large cloud networks due to the excessive 
amount of events associated with processing such fine granular data segmentation. 
13 This is especially the case for end-to-end measurements on large scale clouds due to constraints in time 
and resources. 
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SIMULATION PROJECT CASE STUDY: OPENSTACK IMAGE DEPLOYMENT 
 
We will use the simulation of image deployment in OpenStack [28] managed clouds as 
an example of a concrete cloud simulation project and describe its phases below.  
 

1. Specification of objectives 
In the ideal case, the objectives of a simulation project are specified and agreed on 
with the stakeholders at the beginning of a simulation project. In our case, 
objective is to study the impact of concurrency on throughput and response time 
of image deployment requests for various cloud architectures. Furthermore, we 
want to learn about various device utilizations and identify bottlenecks. 

 
2. Design and Specification 

In this phase, the appropriate cloud architectures to be simulated are specified as 
well as key workload characteristics. In our case e.g. network topologies, levels of 
concurrency, images to be deployed and overall cloud sizes. 

 
3. Implementation 

The specified OpenStack image deployment workflow [29] is implemented for 
various cloud architectures, e.g. for the one outlined in Fig. 9. 
 

4. Parameterization 
Key workload and infrastructure related parameters like service times and 
resource consumptions have to be extracted from available measurements and 
documentations. When no data is available, reasonable values based on past 
experience have to be used. Various tradeoffs have to be made (e.g. concerning 
size of data packets) to balance between execution time and simulation accuracy. 
  

5. Calibration 
Available measurements for concurrent image deployments are used for 
calibration. To factor out various unknown details of this data, we use relative 
numbers comparing performance metrics for concurrent image deployments 
versus single image deployment numbers for each scenario, see Fig. 10.  
 

  
  
  
  
  
  
  
  
  
  
 

Fig. 9. An OpenStack managed cloud with all OpenStack management components on one compute node, but with separate nodes 
for the managed-to system 

100 managed-to nodes
(nova-compute / hypervisor)

managed-from node
(horizon, nova-api,...)

hierarchy of 48 x 10 Gbps switches

InternetInternet

100 managed-to nodes
(nova-compute / hypervisor)

managed-from node
(horizon, nova-api,...)

hierarchy of 48 x 10 Gbps switches

InternetInternet



 

13 

 

  
  
  
  
  
  
  
  
  
  
  
  
  

  

 

 

Fig. 10. A number of scenarios with a bulk arrival of image deployment requests is used for calibration of the simulation. Note that we 
use relative response times versus the response time for one request here. 

6. Execution 
The key performance metric characterizing the execution of discrete-event 
simulations is the event throughput. We observe a throughput of approximately 
1.2 million events per second on one contemporary compute node using the 
OMNEST simulation software. This number as well as the size of the cloud14 that 
can be simulated is largely determined by the type and amount of available 
memory15 16. The execution time depends critically on the required accuracy: to 
ensure a deviation of less than a few percent for most simulation results, the 
number of executed requests should be at least two orders of magnitude greater 
than the number of concurrent requests in the cloud. 
 

7. Result Analysis and Visualization 
Visualization seems to be mandatory to convey simulation results. For some 
simple examples here see figures 11 – 15. Figures 11 and 12 show image 
deployment throughput respectively response times demonstrating saturation at 
approximately 4 (single compute node) respectively 28 (many compute nodes) 
concurrent requests. Figure 13 shows the queue length for locks at the hypervisor, 
e.g. for a software resource. Figure 14 shows an increased utilization of an 
external disk interface at the OpenStack image repository for many compute 
nodes. This indicates that in the case of distributing image deployment requests to 
many compute nodes, the bottleneck moves from a software to a hardware 
resource. 

                                                 
14We think of the size of a cloud in terms of its infrastructure and the concurrent number of requests in 
flight. 
15 At the current level of detail, a single compute node with 96 GB main memory is sufficient to simulate 
various image deployment scenarios on cloud data centers with approximately 1000 compute nodes and 
associated storage and network devices. Larger clouds would require either a higher level of abstraction or 
parallel simulations on a cluster. 
16 This is because discrete-event simulations need to update data structures representing system state with 
high frequency resulting in a high rate of IO operations. 
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Fig. 11. Image deployment throughputs for various level of concurrency for a cloud architecture with a single compute node only and  

with many compute nodes.  
 
 

 
 
  
  
  
  
  
  
  
  
 

Fig. 12. Image deployment response times for various level of concurrency for a cloud architecture with a single compute node only 
and  with many compute nodes. 

 
 

  
  
  
  
  
  
  
  
 

  
  
  
  
  
  
 

Fig. 13. Queue length for image deployment for various level of concurrency for the single node cloud architecture. No significant 
queueing occurs here in the node architecture with many compute nodes. 
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Fig. 14. Utilization of the external interface at the OpenStack image repository indicating an icreased contention for bandwidth here. 

In the single node case the utilization here is negligible. Comparing this with the results in figure 13 shows, how the bottleneck moves 
from software to hardware in case of multiple compute nodes. 

 

CONCLUSION 
 
Cloud modeling and simulations can be of great value to support the design of workload 
optimized clouds, especially because of the prohibitive costs and time associated with the 
creation of large-scale test clouds. The challenges here are to address cloud agility and 
scalability, treat all hardware and software components of a cloud as first class citizens 
and make cloud modeling and simulation technologies easily accessible for non-experts. 
This requires quite a different modeling approach than in traditional simulation domains 
like microprocessor design or networking. Progress has been made, but more research 
and innovations are required to enable a more wide-spread use of these highly valuable 
technologies. 
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