

RZ 3858 (# ZUR1311-058) 12/04/2013
Computer Science 16 pages

Research Report

Cloud Modeling and Simulations

Peter Altevogt‡, Wolfgang Denzel*, Tibor Kiss#

‡IBM Germany Research & Development GmbH
Germany

*IBM Research – Zurich
8803 Rüschlikon
Switzerland

#Gamax Kft
Budapest

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some re-
ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich

1

Peter Altevogt*, IBM Germany Research & Development GmbH, Germany,
peter.altevogt@de.ibm.com

 Wolfgang Denzel, IBM Research GmbH, Zurich Research Laboratory, Switzerland,
wde@zurich.ibm.com

Tibor Kiss, Gamax Kft, Budapest, tibor.kiss@hu.ibm.com

Keywords— cloud; performance simulation; performance modeling; queuing modeling,
discrete-event simulations; scalability

SUMMARY

This chapter provides an introduction to cloud modeling and simulation technologies
with focus on performance and scalability. We will emphasize the value of modeling and
simulation technologies in the context of cloud computing and provide a short general
introduction to these technologies to make the chapter more self-contained. Specific
requirements against modeling and simulations applied to cloud computing are discussed
motivating our simulation-based approach. We will outline in some detail how various
hardware and software objects of clouds can be modeled as individual entities and then
glued together to form a simulation model of a complete cloud. Besides addressing key
concepts like modeling of contention and data segmentation, we will describe workload
generation and also address some general challenges associated with cloud modeling and
simulations. Finally, we will describe the various stages of a cloud modeling project
using the simulation of OpenStack image deployment on clouds as an example.

INTRODUCTION

Cloud computing is perceived as a game changing technology to provide respectively to
consume data center resources [1]. Various non-functional attributes like performance
and scalability, cost and energy efficiency as well as resiliency, high-availability and
security are considered vital to enable further growth of cloud computing [2].

To ensure a cloud design addressing these attributes, an engineering approach limited
only to measurements, tuning and fixing defects is not sufficient. In general these
activities happen late in the development respectively deployment cycle. Therefore they

Cloud Modeling and Simulations

2

can not sufficiently address cloud design issues. Furthermore, only a very limited set of
scenarios can be handled this way due to time and resource limitations1.

Modeling and simulation technologies can help to alleviate these issues. They can be
applied to model various cloud attributes like energy dissipation or to evaluate different
pricing models. For definiteness, this chapter will focus on performance and scalability.
The discrete-event simulation approach described here could be generalized to also
address non-functional cloud features like energy efficiency or costs, but it needs to be
augmented with other simulation techniques like thermal simulations for the sake of
completeness. Such multi-domain simulations are beyond the scope of this chapter.

Performance modeling and simulation techniques enable a performance analysis of cloud
designs and capacity planning early in the development cycle at large scale with
moderate costs and respecting the strict time constraints of an industrial development
project. Although being widely used and well established in various branches of
information and telecommunication industries, the application of these techniques to
cloud computing provides some new challenges due to complexity, diversity, agility and
scale.

In the next sections we will first provide a short introduction to performance modeling
and simulation technologies and provide some rationale to choose simulation
technologies in the industrial context.

Then we will discuss specific requirements against modeling2 clouds, followed by a
survey of publications and tools currently available here.

The next section addresses the question, where in the development and deployment life-
cycle of a cloud performance modeling and simulation methods can be applied.

We will then identify the various objects of a cloud that need to be modeled. This
includes hardware and software components as well as workloads consisting of various
types of requests. We will also propose appropriate levels of modeling abstractions for
the various cloud objects. Furthermore, we will discuss the modeling of some key
performance related concepts like contention and segmentation in the cloud.

Some challenges associated with a cloud simulation project are described next, especially
the specification of objectives, parameterization, calibration, execution and result
analysis.

Finally, a real-life cloud simulation project will be described including all project phases,
execution characteristics and some typical results.

We will end this chapter with a conclusion.

1 Although most development projects face these limitations, their impact on cloud computing is especially
severe due to the huge resources and costs required to create and manage large-scale clouds.
2 We will frequently use the terms „modeling“ and „simulating“ as synonyms throughout the chapter.

3

MODELING AND SIMULATION OVERVIEW

To make this chapter more self-contained, we provide a short survey of the two major
approaches used to model performance and scalability of hardware and software
components, namely analytic queuing modeling and discrete-event simulation
technologies.

Analytic queuing modeling uses mathematical models to describe the performance of
systems consisting of hardware and software components as well as workload requests
interacting with them [3][4][5][6]3. As a simple example here we may think of requests
(SQL queries) posted by clients and arriving at a database server. Both the arrival of
requests and their handling at the server can be modeled as stochastic processes using
probability distributions for their inter-arrival times respectively the service times. In
some especially simple cases, these stochastic processes can then be solved analytically4
to obtain explicit expressions for observables like average response times and queue
lengths, see Fig. 1.

Fig. 1. Typical results of simple analytic queuing modeling: the average response time R and the average number of requests as a
function of the service time S and the utilization ρ.

Unfortunately, in the majority of real-life cases such explicit solutions are not available
so that significant idealizations are required for the system components and workloads
under consideration. In fact there are quite a few well-known and highly important
performance relevant features in the context of clouds where analytic methods are
difficult to apply [6], e.g.:

• Blocking:
All hardware (active) resources like processor cycles and network bandwidth as
well as all software (passive) resources like database connection pool sizes or
number of operating system threads in a cloud are finite. When a request has to
wait for such a resource due to contention, its execution blocks. This may impact
the execution rate at other resources. E.g. a request waiting for a database
connection currently in use by other requests cannot proceed using available
network bandwidth5 to access the database server.

3 In fact analytic modeling can be considered as a branch of applied mathematics, namely probability and
stochastic processes. It has a long tradition and was first applied by A. Erlang to model performance of
telephone systems at the beginning of the last century [7].
4 I.e. using a „paper-and-pencil“ approach and not relying on approximations or numerical methods.
5 Therefore sizes of connection pools are always good candidates for performance tuning in clouds.

4

• Bulk arrivals:
A single “launch instances” IaaS6 request may contain many instances to be
provisioned at the same instance of time in clouds.

• Forking / rejoining of requests:
Basically all data transfer in clouds is done in form of blocks of packets requiring
a segmentation (forking) of one large request into smaller ones; this request is
completed when all of its child requests have completed (rejoined).

• Load balancing:
Adaptive load balancing is heavily used within clouds to ensure an optimal
utilization of resources.

• Mutual exclusion:
Frequently data structures in clouds require an atomic access of requests for
updating to ensure their consistency (e.g. network configuration data at
hypervisors). This is frequently implemented by so-called “critical sections” of
code protected by a lock which can only be owned by one request at each
instance of time.

• Non-exponential service times:
The usage of (negative) exponential probability distributions to model service
times is key in analytic modeling, but in clouds service times will in general
violate this assumption.

• Simultaneous resource possession:
One of the key methods to enhance IO performance in clouds is the use of
asynchronous IO resulting in requests owning several resources at the same
instant of time, namely processor cycles and resources of the IO subsystem.

• Transient states:
Significant workload fluctuations (e.g. depending on the time of the day) result in
cloud states far away from equilibrium.

On the other hand, various approximation schemes are available here and analytical
modeling is highly efficient in terms of resource consumption and execution time [3].

A simulation is an imitation of the operation of a real-world process or system over time
implemented on a computer system [8][9]. In science and engineering simulation
technologies have a long tradition and are extensively applied [10] for processes or
systems that change their state continuously over time (see Fig. 2) and can be described
by (systems of) differential equations. However, these methods are of limited value when
applied to cloud computing, because of the inherently discrete, non-continuous behavior

6 IaaS stands for Infrastructure as a Service; for more details see [1].

5

of cloud components and workloads7. This motivates the application of another
simulation technology, namely discrete-event simulations (also known as event-driven
simulations) which only model state changes at discrete times (see Fig. 2).

Fig. 2. The left figure shows a ystem with state changing continuously as a function of time. Such systems frequently occur in
physics and engineering and are modeled by (systems of) differential equations. The right figure shows a system with state changing

only at discrete times. Basically all systems used in information technology including clouds fall into this category. Differential
equations are not well suited to model such systems because of their discrete nature.

Although a detailed discussion of discrete-event simulations [8][9] is beyond the scope of
this chapter, we provide here a brief description. The key idea of discrete-event
simulations is to model the system operation only by the sequence of events that cause
changes in system state at discrete points in time. Typical events are, e.g., arrivals or
departures of requests occurring at system components. Future events that are already
scheduled at a particular point in time are kept in a future event list. As illustrated in the
core discrete-event algorithm in Fig. 3, the simulator repeatedly picks from this event list
the earliest next event, hands it over to the particular event handler that is associated with
the event, and sets the simulation clock to the event's occurrence time. A particular event
handler, e.g., might be responsible for performing the necessary state update for a
specific system component at arrival of a specific request. Typically, a handler also
schedules new upcoming events into the future event list which may be events modeling
the next arrival of the same kind or a departing request targeted to another system
component. This core process is repeated until the simulation ending condition is
reached. This way, the dynamic system behavior is correctly modeled by immediate time
jumps across the non-relevant time periods between subsequent events. These time jumps
make discrete-event simulation superior in efficiency to the also known activity-based
simulation method (also known as time-driven simulations) where time is incremented in
sufficiently small equidistant steps thereby wasting computing time during non-relevant
time periods.

In cloud simulations, the time between two events is typically several seconds, while the
average time to handle one event is approximately a millisecond on contemporary
computer systems. Leveraging parallel simulation technologies to handle many events
concurrently, this enables the accurate simulation of large clouds for long time intervals.

Furthermore, the remarkable simplicity of the core discrete-event algorithm results in a
high flexibility and enables a straightforward simulation of the results of analytic queuing
modeling and especially also of the items mentioned in the previous section. Applying

7 E.g. on processor level request execution is driven by the discrete processor clock and on cloud level by
events like arrival and departure of launch instances IaaS requests at compute nodes.

6

discrete-event simulations to cloud computing, it seems feasible to simulate almost all
performance relevant features of clouds with accuracies beyond what can be measured
with the currently available cloud measurement tools.

Still, significant efforts are required to implement meaningful cloud simulation models
and their execution may require significant resources and execution time.

To sum up, for cloud modeling discrete-event simulations seem to be superior in terms of
accuracy and flexibility. This is essential in an industrial context. The greater efficiency
of analytic methods can be offset (at least partially) by leveraging parallel simulation
technologies on appropriate contemporary computer systems. Therefore we have selected
discrete-event simulations as our primary tool to model clouds with the option to use
simulation models as a basis for analytic queuing modeling efforts.

CLOUD MODELING AND SIMULATION REQUIREMENTS

Although performance modeling and simulation technologies as introduced in the
previous section are widely used and well established in various branches of information
and telecommunication industries [11][12], their application to clouds provides some new
challenges due to complexity, diversity, agility and scale [13].

• The hardware infrastructure of clouds consists of servers, networking switches
and storage subsystems and all of these components need to be taken into account
on an equal footing. This is in contrast to most of the performance simulation
work focusing on (parts of) just one of these components.

• A cloud being a complex system with intricate interactions between hardware and
software modules, we need to treat both software workflows and hardware
infrastructure as first class citizens when simulating end-to-end performance.

• In general the software heuristics for managing and using a cloud change at a
much higher rate than the available cloud hardware infrastructures; therefore it is
important to introduce separate modules for simulating software heuristics and the
hardware infrastructure to support a rapid implementation of new cloud software
heuristics for an unchanged hardware infrastructure and vice versa.

• The market for cloud solutions being highly dynamic, simulations of new clouds
must be provided in a timely manner, i.e. we need to support a rapid prototyping.

• We need to allow for selectively and rapidly adding details to the simulation of
specific hardware or software components to increase the credibility of the
simulation effort if required by the stakeholders of a simulation effort.

7

Fig. 3. The core algorithm of a discrete-event simulation engine.

• Last but not least the enormous size of contemporary cloud data centers requires
highly scalable simulation technologies.

Besides addressing these challenges, a key point is to find a useful abstraction level for
modeling the system and workload under investigation. This is largely determined by the
goals of the modeling effort, but must ensure modeling of typical cloud level objects like
compute nodes, switches, routers, hypervisors, virtual machines, load balancers, firewalls
with an appropriate level of detail8.

In fact there are quite a few simulation frameworks for clouds available, see [13] - [26].
For definiteness, we will describe the approach used in [13] and [14] to address the
challenges mentioned above in more detail, but most of this chapter is independent of the
concrete simulation framework under consideration.

8 I.e. cloud simulations can not simply reuse the simulation approaches applied to model processor cores or
crossbar switches to support hardware design.

yes

no

simulationCompleted == true? Generate statistical report

initialize system state and request attributes

execute event handler:
update system state and request attributes

schedule future events into event list
update statistics

simulationCompleted = false

initialize simulation clock

schedule initial event into event list

get next event from event list

remove event from event list

set clock to next event time

simulationCompleted =

checkTerminationCondition()

Start

End

yes

no

simulationCompleted == true? Generate statistical report

initialize system state and request attributes

execute event handler:
update system state and request attributes

schedule future events into event list
update statistics

simulationCompleted = false

initialize simulation clock

schedule initial event into event list

get next event from event list

remove event from event list

set clock to next event time

simulationCompleted =

checkTerminationCondition()

Start

End

8

MODELING AND SIMULATION OF CLOUDS

Although clouds are in general highly complex systems, they consist of a rather small set
of fundamentally different hardware and software building blocks, see Fig. 4. The key
modeling challenges here are to

• identify the appropriate building blocks
• model these building blocks on an appropriate abstraction level
• enable their modular and scalable combination to build complex clouds
• support implementation of request workflows on various levels of detail

Fig. 4. Samples of modeled cloud hardware and software components

We distinguish between active resources representing hardware resources like processor
cores, disks and switches where requests spend time for execution and passive resources
representing software artifacts like database connections or thread pools. Requests do not
spend time for execution at these passive resources, but frequently need to own one or
many of them to access an active resource.

As a typical example for a model of an active (hardware) resource, we take a closer look
at the model of a network device, see Fig. 5. It consists of basic building blocks (“Lego
bricks”) providing bandwidth to model the ports and a crossbar switch, another “Lego
brick” providing processor cycles and a module implementing the software workflow
details including the creation of routing tables at initialization of the simulation. Using
different parameterizations of the components, this simulation module can be used to
model a wide variety of network devices like switches, router and firewalls. A request
enters the network device at a port, traverses the crossbar, spends some time at a
processor core, looks up the appropriate port connected to the next target in the routing
table of the workflow module and finally leaves the device via this port9.

9 This low-level request workflow within a network device is in general initiated be a high-level workflow
request implementing e.g. a cloud level software application.

Compute nodes

FirewallsVirtual Machines

(Workflows) Workloads

Router

Switches

Disks

Disk Arrays HBAs/NICs

CPUs

Memory

Compute nodes

FirewallsVirtual Machines

(Workflows) Workloads

Router

Switches

Disks

Disk Arrays HBAs/NICs

CPUs

Memory

Compute nodes

FirewallsVirtual Machines

(Workflows) Workloads

Router

Switches

Disks

Disk Arrays HBAs/NICs

CPUs

Memory

9

Fig. 5. A general network device The red line indicates the flow of a request.

A typical scenario for the application of passive resources is the simulation of so called
critical regions, see Fig. 6. Such regions allow only one concurrent request to proceed
and are used e.g. to ensure consistency of data updates. In this case a request has to queue
for a token provided by a token pool to access the critical region and spend some time for
execution within it. After leaving the critical region, the request releases the token again
and other requests waiting may try to obtain it according to a specified arbitration policy.

Fig. 6. Modeling a critical region allowing only one request (thread) concurrently in flight

Models of large-scale clouds are created by combining more basic modules, e.g.
processor cores, switches and disks to create a compute node, compute nodes and
switches to create a rack and several interconnected racks and storage units to create a
data center10. Finally, these can be combined to build a cloud consisting of a number of
world-wide distributed data centers, see Fig. 7. The key design concepts of a simulation
framework supporting this approach are modularity and the ability to replicate (“copy-
and-paste”) objects at any level of complexity.

10 It is important to note, that modules may be replaced by more fine-grain of coarse-grain models at any
level of this building-block approach.

bidirectional ports

crossbar switch
processor core(s)

routing

bidirectional ports

crossbar switch
processor core(s)

routing

time

pool of
tokens

blocking
queue

aquire resource
release

resource
critical region

phase 1 phase 2 phase 3

time

pool of
tokens

blocking
queue

aquire resource
release

resource
critical region

phase 1 phase 2 phase 3

10

InternetInternetInternetInternet

Fig. 7. Complex compound modules can be created by combining more basic modules, e.g. a server rack by combining compute
nodes with various VMs, disk arrays and network components. Using these racks, a data center can then be created by a copy-and-
paste approach. Finally, a cloud consisting of a number of world-wide distributed data centers can also be created by applying the

copy-and-paste approach, this time applied on data center level.

For a simple taxonomy of cloud requests, see Fig. 8. Furthermore, we can associate
various levels with requests. Requests at a higher level are then initiating request
workflows at a lower level. The highest level request workflows are in general associated
with applications at cloud level and implemented in the context of virtual machines
(VMs), the lowest level request workflows with accessing hardware components like disk
media. This allows the implementation of new cloud level application workflows without
the need to take details of low-level device related workflows into account and vice-
versa.

Fig. 8. Request taxonomy with the request of type “Request” at its root

In the workload generator module (the internet in the context of clouds, see Fig. 7), all
functionality related to generating, initializing and posting requests of various types
against the cloud is implemented. Furthermore, it may also be used to collect all request
related statistics11.

11 Device related statistics like utilization and queue lengths are in general collected at the device
simulation modules.

InternetInternet

„ Lego++ approach“ :

create new objects by copying existing objects

„ Lego approach“ :

create compound objects by combining existing bricks

InternetInternet

„ Lego++ approach“ :

create new objects by copying existing objects

„ Lego approach“ :

create compound objects by combining existing bricks

Request

CloudManagement Application

DeployImage Logon AddUser ... OneTierRequest TwoTierRequest ...

Request

CloudManagement Application

DeployImage Logon AddUser ... OneTierRequest TwoTierRequest ...

11

We will now focus on some key cloud modeling aspects that are quite independent of the
concrete resources and requests under consideration. Because all cloud resources are
limited and demand may well be bigger than resources available in the cloud, arbitration
(respectively scheduling) of resources to requests is essential. A simple FCFS arbitration
is frequently used in [14], but it is straightforward to implement more complex schemes.
Another key feature when modeling clouds is segmentation and reassembly of requests,
especially of requests modeling the transfer of data over the network. Such segmentation
allows a request to be in flight concurrently at several devices resulting in an increased
throughput. Therefore it is essential to model segmentation even if some compromises
concerning granularity have to be made12 given the finite time and resources provided to
execute simulations.

CLOUD MODELING AND SIMULATION CHALLENGES

Modeling and simulation of cloud performance is associated with some specific
challenges caused by their highly volatile nature and scale.

• Architectural and workload details of clouds are changing rapidly. This is caused
e.g. by new processes of delivering software like continuous delivery [27].
Besides requiring fast updates of the simulation models themselves, this makes
their precise parameterization difficult. The problem can be alleviated by
focusing on the prediction of relative values of performance metrics against a
known baseline, e.g. modeling the increase of request throughput when updating
the cloud.

• For calibrating models, high quality measurement data with a detailed
specification of workloads and cloud infrastructure components are of great
value. Unfortunately, such data is rare13 and this is significantly impacting model
accuracy.

• Due to constraints in time and available resources, measurement data is in

general available only for small or medium sized clouds. Using this data for
parameterization and calibration, there is a considerable risk to overlook
resources of importance for clouds at large scale. Not taking these resources into
account will most likely result in significant modeling errors.

• To enable non-expert users to execute cloud simulations, a limited set of

modeling scenarios should be made available as a service accessible via a web
user interface. The challenge here is to identify the most useful scenarios and a
small set of associated key parameters to be exposed to a non-expert user.

12 E.g. it is not feasible to model a MTU size of 1500 bytes in large cloud networks due to the excessive
amount of events associated with processing such fine granular data segmentation.
13 This is especially the case for end-to-end measurements on large scale clouds due to constraints in time
and resources.

12

SIMULATION PROJECT CASE STUDY: OPENSTACK IMAGE DEPLOYMENT

We will use the simulation of image deployment in OpenStack [28] managed clouds as
an example of a concrete cloud simulation project and describe its phases below.

1. Specification of objectives
In the ideal case, the objectives of a simulation project are specified and agreed on
with the stakeholders at the beginning of a simulation project. In our case,
objective is to study the impact of concurrency on throughput and response time
of image deployment requests for various cloud architectures. Furthermore, we
want to learn about various device utilizations and identify bottlenecks.

2. Design and Specification

In this phase, the appropriate cloud architectures to be simulated are specified as
well as key workload characteristics. In our case e.g. network topologies, levels of
concurrency, images to be deployed and overall cloud sizes.

3. Implementation

The specified OpenStack image deployment workflow [29] is implemented for
various cloud architectures, e.g. for the one outlined in Fig. 9.

4. Parameterization
Key workload and infrastructure related parameters like service times and
resource consumptions have to be extracted from available measurements and
documentations. When no data is available, reasonable values based on past
experience have to be used. Various tradeoffs have to be made (e.g. concerning
size of data packets) to balance between execution time and simulation accuracy.

5. Calibration
Available measurements for concurrent image deployments are used for
calibration. To factor out various unknown details of this data, we use relative
numbers comparing performance metrics for concurrent image deployments
versus single image deployment numbers for each scenario, see Fig. 10.

Fig. 9. An OpenStack managed cloud with all OpenStack management components on one compute node, but with separate nodes
for the managed-to system

100 managed-to nodes
(nova-compute / hypervisor)

managed-from node
(horizon, nova-api,...)

hierarchy of 48 x 10 Gbps switches

InternetInternet

100 managed-to nodes
(nova-compute / hypervisor)

managed-from node
(horizon, nova-api,...)

hierarchy of 48 x 10 Gbps switches

InternetInternet

13

Fig. 10. A number of scenarios with a bulk arrival of image deployment requests is used for calibration of the simulation. Note that we
use relative response times versus the response time for one request here.

6. Execution
The key performance metric characterizing the execution of discrete-event
simulations is the event throughput. We observe a throughput of approximately
1.2 million events per second on one contemporary compute node using the
OMNEST simulation software. This number as well as the size of the cloud14 that
can be simulated is largely determined by the type and amount of available
memory15 16. The execution time depends critically on the required accuracy: to
ensure a deviation of less than a few percent for most simulation results, the
number of executed requests should be at least two orders of magnitude greater
than the number of concurrent requests in the cloud.

7. Result Analysis and Visualization
Visualization seems to be mandatory to convey simulation results. For some
simple examples here see figures 11 – 15. Figures 11 and 12 show image
deployment throughput respectively response times demonstrating saturation at
approximately 4 (single compute node) respectively 28 (many compute nodes)
concurrent requests. Figure 13 shows the queue length for locks at the hypervisor,
e.g. for a software resource. Figure 14 shows an increased utilization of an
external disk interface at the OpenStack image repository for many compute
nodes. This indicates that in the case of distributing image deployment requests to
many compute nodes, the bottleneck moves from a software to a hardware
resource.

14We think of the size of a cloud in terms of its infrastructure and the concurrent number of requests in
flight.
15 At the current level of detail, a single compute node with 96 GB main memory is sufficient to simulate
various image deployment scenarios on cloud data centers with approximately 1000 compute nodes and
associated storage and network devices. Larger clouds would require either a higher level of abstraction or
parallel simulations on a cluster.
16 This is because discrete-event simulations need to update data structures representing system state with
high frequency resulting in a high rate of IO operations.

Bulk Arrival of Deployment Requests

0

1

2

3

4

5

6

7

8

9

1 5 8 20

Concurrent image deployment requests in bulk arriva l

R
el

at
iv

e
re

sp
on

se
 t

im
es

Measurements
Simulation

14

Fig. 11. Image deployment throughputs for various level of concurrency for a cloud architecture with a single compute node only and

with many compute nodes.

Fig. 12. Image deployment response times for various level of concurrency for a cloud architecture with a single compute node only
and with many compute nodes.

Fig. 13. Queue length for image deployment for various level of concurrency for the single node cloud architecture. No significant
queueing occurs here in the node architecture with many compute nodes.

Mean Queue Lengths for Locks at
Hypervisor

0

5

10

15

20

1 4 8 12 16 20 24 28 32 36 40

Number of concurrent deployment requests

SingleNode

Mean Response Times

0

200

400

600

1 4 8 12 16 20 24 28 32 36 40

Number of concurrent deployment
requests

[s
ec

]

MultiComputeNodes
SingleNode

Throughputs

0

500

1000

1500

2000

2500

1 4 8 12 16 20 24 28 32 36 40
Number of concurrent deployment

requests

[V
M

/h
]

MultiComputeNodes
SingleNode

15

Fig. 14. Utilization of the external interface at the OpenStack image repository indicating an icreased contention for bandwidth here.

In the single node case the utilization here is negligible. Comparing this with the results in figure 13 shows, how the bottleneck moves
from software to hardware in case of multiple compute nodes.

CONCLUSION

Cloud modeling and simulations can be of great value to support the design of workload
optimized clouds, especially because of the prohibitive costs and time associated with the
creation of large-scale test clouds. The challenges here are to address cloud agility and
scalability, treat all hardware and software components of a cloud as first class citizens
and make cloud modeling and simulation technologies easily accessible for non-experts.
This requires quite a different modeling approach than in traditional simulation domains
like microprocessor design or networking. Progress has been made, but more research
and innovations are required to enable a more wide-spread use of these highly valuable
technologies.

REFERENCES

[1] Cloud Computing, http://en.wikipedia.org/wiki/c, http://en.wikipedia.org/wiki/Cloud_computing loud_computing.

[2] Above the Clouds: A Berkeley View of Cloud Computing, http://www.eecs.berkeley.edu/Pubs/TechRpts/ 2009/EECS-2009-
28.pdf .

[3] G. Bloch, S. Greiner, H. de Meer, K.S. Trivedi. Queueing Networks and Markov Chains, Second Edition. Wiley-Interscience,
2006.

[4] L. Kleinrock. Queueing Systems, Volume 1: Theory. John Wiley, 1975.

[5] L. Kleinrock. Queueing Systems, Volume 2: Computer Applications. John Wiley, 1976.

[6] N.J. Gunther. Analyzing Computer System Performance with Perl::PDQ, 2nd edition. Springer Verlag, 2011.

[7] A. Erlang. “Solution of some problems in the theory of probabilities and telephone conversations.” Nyt Tidsskrift for Matematik
B, 20:33-40, 1917.

[8] A.M. Law, W.D. Kelton. Simulation Modeling and Analysis, Third Edition. McGraw-Hill, 2000.

[9] J. Banks, J.S. Carson II, B.L. Nelson, D.M. Nicol. Discrete-Event System Simulation, Fourth Edition. Prentice Hall, 2005.

[10] M.O. Steinhauser. Computer Simulation in Physics and Engineering. Walter de Gruyter 2013.

[11] S. Pasricha, N. Dutt. On-Chip Communication Architectures, Elsevier Inc. (2008).

[12] D. Bertsekas, R. Gallager. Data Networks, Second Edition. Pearson Education (1992).

[13] P. Altevogt, W. Denzel, T. Kiss. Proc. of the 2011 Winter Simulation Conference (WSC'11). S. Jain, R.R. Creasey, J.
Himmelspach, K.P. White, and M. Fu, eds.

[14] P.Altevogt, W.Denzel, T.Kiss. The IBM Performance Simulation Framework for Cloud. IBM Research Technical Paper
 http://domino.research.ibm.com/library/cyberdig.nsf/papers/041264DDC6C63D8485257BC800504EA2

[15] Wei Z., Yong P., Feng X., Zhonghua D., “Modeling and Simulation of Cloud Computing: A Review”, IEEE Asia Pacific Cloud
Computing Congress (APCloudCC), 2012, pp.20-24.

Mean Disk Array External Interface
Utilizations

0

5

10

15

20

1 4 8 12 16 20 24 28 32 36 40
Number of concurrent deployment

requests

U
til

iz
at

io
n

[%
]

MultiComputeNodes

16

[16] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, "CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provisioning algorithms." Software: Practice and Experience,
Vol.41, No.1, pp.23-50, 2011.

[17] Wickremasinghe, B., Calheiros, R.N. , Buyya, R., “CloudAnalyst: A CloudSim-Based Visual Modeller for Analysing Cloud
Computing Environments and Applications”, IEEE 24th International Conference on Advanced Information Networking and
Application, 2010, pp. 446 – 452.

[18] S. K. Garg and R. Buyya, “NetworkCloudSim: modeling parallel applications in cloud simulations,” 4th IEEE International
Conference on Utility and Cloud Computing, pp.105-113, 2011.

[19] R. N. Calheiros, M .A. S. Netto, C. A. F. De Rose, and R. Buyya, “EMUSIM: an integrated emulation and simulation
environment for modeling, evaluation, and validation of performance of cloud computing applications,” Software-Practice and
Experience, 00: 1-18, 2012.

[20] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer, “GroudSim: an event-based simulation framework for
computational grids and clouds,” CoreGRID/ERCIM Workshop on Grids and Clouds. Springer Computer Science Editorial,
Ischia, 2010.

[21] A. Nunez, J. L. Vazquez-Poletti, A. C. Caminero, G. G. Castane et al., “iCanCloud: a flexible and scalable cloud infrastructure
simulator,” Journal of Grid Computing, Vol.10, No.1, pp.185-209, 2012.

[22] M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya, “DCSim: a data centre simulation tool for evaluating dynamic virtualized
resource management,” The 6th International DMTF Academic Alliance Workshop on Systems and Virtualization Management:
Standard and the Cloud, 2012.

[23] D. Kliazovich, P. Bouvry, and S. U. Khan, “GreenCloud: a packet-level simulator of energy-aware cloud computing cata
centers,” Journal of Supercomputing, special issue on Green Networks, 2011.

[24] I. Sriram, “SPECI, a Simulation Tool Exploring Cloud-Scale Data Centers,” CloudCom’09, LNCS 5931, pp.381-392, 2009.

[25] W. Zhang, X. Huang, N. Chen, W. Wang, H. Zhong, “PaaS-Oriented Performance Modeling for Cloud Computing”, IEEE 36th
Annua Computer Software and Applications Conference (COMPSAC), 2012.

[26] H. Khazaei, J. Misic, V. B. Misic, “A Fine-Grained Performance Model of Cloud Computing Centers”, IEEE Transactions on
Parallel and Distributed Systems , Vol. X, No. Y, 201Z.

[27] P. Swartout. Continous Delivery and DevOps: A Quickstart Guide. Packt Publishing 2012.

[28] OpenStack, http://www.openstack.org.

[29] OpenStack Request Flow, Mirantis Inc 2012, http://www.slideshare.net/mirantis/openstack-cloud-request-flow

[30] OMNEST Simulation Software, http://www.omnest.com/

