
RZ 3859 (# ZUR1308-055) 12/20/2013
Computer Science 15 pages

Research Report

Modeling and Analysis of Dynamic Infrastructure Clouds

Sören Bleikertz

IBM Research – Zurich, 8803 Rüschlikon, Switzerland
Email: sbl@zurich.ibm.com

Thomas Groß

University of Newcastle Upon Tyne
Email: thomas.gross@newcastle.ac.uk

Sebastian Mödersheim

DTU Informatics
Email: samu@imm.dtu.dk

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some re-
ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich

mailto:sbl@zurich.ibm.com
mailto:thomas.gross@newcastle.ac.uk
mailto:samu@imm.dtu.dk

Modeling and Analysis of Dynamic Infrastructure Clouds

Sören Bleikertz
IBM Research - Zurich
sbl@zurich.ibm.com

Thomas Groß
University of Newcastle upon Tyne
thomas.gross@newcastle.ac.uk

Sebastian Mödersheim
DTU Informatics
samo@imm.dtu.dk

Abstract—Misconfigurations and insider attacks
contribute to one of the major technical risk in
multi-tenant cloud computing: the lack of resource
isolation. Breaches in tenant isolation put both the
cloud provider as well as the consumers at risk. The
dynamic nature of infrastructure clouds increases the
risk for misconfigurations due to their self-service
administration and rapid provisioning.
We tackle this challenge by establishing a practical

security system that proactively analyzes changes
induced by cloud management operations with regard
to a security policy. We achieve this by contributing
the first formal model of cloud management opera-
tions and their impact on a virtualized infrastructure.
Our approach combines such a model of operations
with a security policy verification as well as an infor-
mation flow analysis suited for isolation policies. Our
system finds practical applications in change planning
as well as in auditing of changes at run-time. We
evaluate our system for virtualized infrastructures in
laboratory and production settings, and it yields a
performance suitable for applications in practice.

I. Introduction
Multi-tenant infrastructure clouds offer cloud con-

sumers self-service access to a shared physical infras-
tructure, be it in computing, storage or networking.
While administrators of the cloud provider govern the
infrastructure as a whole and the tenant administra-
tors operate in partitioned logical resource pools, both
groups change the configuration of the infrastructure.
For example, they create new machines, modify or delete
existing ones, causing large numbers of machines to
appear and disappear, which leads to the phenomenon of
server sprawl [11]. Therefore, self-service administration,
dynamic provisioning and elastic scaling lead to a great
number of configuration changes and a dynamic system.
The complexity of the system as a whole emerges from
these configuration changes and dynamic behavior.

Misconfigurations and insider attacks are the adverse
results of such dynamic and complex systems. Indeed,
even if committed unintentionally, misconfigurations are
among the most prominent causes for security failures
in IT infrastructure [15]. Notably, the ENISA report
on cloud security risks [10] names isolation failure as
major technical risk, with misconfiguration as the notable
root vulnerability. Consider an administrator of a cloud
provider, who unintentionally commits a configuration
change that breaks the isolation among tenants in the
infrastructure. This puts both the cloud provider as well

as the consumers at great risk due to potential loss
of reputation and the breach of confidential data. The
CSA threat report [7] and the ENISA report agree upon
insider attacks as a TOP 10 cloud security risk as well
as malicious insiders as a “very high impact” risk [10].

In combating misconfigurations and insider attacks,
the assessment of configuration changes and rigorous
enforcement of security policies is a crucial requirement.
We tackle this challenge with a model-based approach
for assessing configuration changes and their impact on
the security compliance of a virtualized infrastructure.
Our model is based on a graph representation of the
topology and configuration of a virtualized infrastructure,
and we contribute the first formal model of management
operations, the operations transition model, that captures
how such operations change the infrastructure’s topology
and configuration. We express the operations as transfor-
mations of a graph model of the infrastructure, which is
based upon the formalism of graph transformation [17].
Furthermore, we integrate the specification of security
policies as well as an information flow analysis suited
for isolation policies. Based on our model, we design
and implement a practical security system, called our
system, to assess and eventually proactively mitigate
misconfigurations. Concretely, we make the following
contributions:

1) We are the first to propose an operations model, a
model of configuration and topological changes in virtual-
ized infrastructures. Overall, we propose a unified model
that combines topological and configuration changes,
information flow analysis, as well as security policies,
in order to enable the security assessment of dynamically
changing virtualized infrastructures. 2) We implemented
a prototype that targets VMware virtualized infrastruc-
tures and leverages GROOVE as a graph transforma-
tion system. We evaluate the system in a laboratory
and production environments and obtain reasonable
performance. 3) We explore two practical application
scenarios for our system: i) change management, where
the desired changes are specified by an administrator and
submitted for assessment; and ii) run-time auditing of
configuration changes, in which changes are assessed and
security violations accounted for while being performed
by an administrator. We prepare the ground for a run-
time mitigation of misconfigurations and enforcement of
security policies.

Provider Admin

Tenant Admin
Se

rvi
ce

 In
ter

fac
e

M
an

ag
em

en
t

O
pe

ra
tio

ns

High-Security Zone

Test Zone

Infrastructure Cloud

VMs

Portgroups

VMs

Host

Portgroups

Network

VLAN 1 VLAN 2

M
an

ag
em

en
t H

os
t

vSwitch vSwitch

Storage

Host

vSwitch

vNIC

Host

Figure 1: Overview of the System Model.

II. System and Security Model

A. System Model

An infrastructure cloud, also named Infrastructure as
a Service (IaaS), is a cloud model offering for comput-
ing, networking, and storage resources. Typically, such
resources are provided in a virtualized form, e.g., as a
virtual machine (VM) computing. The main ingredients
for an infrastructure cloud are the virtualized infras-
tructure, which provides the virtual resources, and a
management host, which exposes a management interface
to an administrator to control the infrastructure. The
infrastructure is only managed through the well-defined
management interface. Management operations allow the
administrators to re-configure parameters of components
as well as to change the topology, e.g., by creating or
migrating a VM.
In Fig. 1 we illustrate our model of an infrastructure

cloud. We differentiate between provider and tenant
administrators, where the provider administrators govern
the entire virtualized infrastructure, and tenant adminis-
trators manage an assigned logical resource pool. Provider
administrators are much more privileged and we focus
our analysis on their operations and changes, as they
may cause significant isolation failures. Furthermore,
we differentiate between a high-level interface, which
is usually exposed to cloud consumers by public clouds
such as Amazon EC2, and a low-level interface, which is
exposed by virtualization systems in private clouds such
as VMware. Whereas the high-level interface provides
operations such as creating a virtual machine, the low-
level interface allows the administrator to change all
parts of the virtualized infrastructure. The latter service
interface bears much more complexity and is prone to
induce misconfigurations, and therefore is the focus of
our analysis.
In our system model, we consider security zones as

a logical grouping of virtual resources, which should be
isolated from each other. For example, in our illustration
we have a test security zone as well as high-security zone,
but one could also think about one zone per tenant. A
close-up of one of these zones shows the topology of
the virtualized infrastructure. In there, hosts provide

networking to VMs by virtual switches that connects the
VMs to the network. A virtual switch contains virtual
ports, to which the VMs are connected via a virtual
network card (vNIC). Virtual ports are aggregated into
port groups, which apply a common configuration to a
group of virtual ports. Virtual LANs (VLANs) allow
a logical separation of network traffic between VMs of
different security zones by assigning distinct VLAN IDs
to the associated port groups. Storage resources are also
connected to the hosts and exposed to the VMs, but they
are not part of our focus in this paper.

B. Graph Representation of the System
We represent the topology and configuration of the

virtualized infrastructure in a graph representation, for
which the notion of a Realization model has been
proposed by Bleikertz et al. [4]. The vertices of such
a graph represents the components of the virtualized
infrastructure, e.g., physical servers or virtual machines,
and the edges model the relationship among the elements,
thereby capturing the topology of the system. Further-
more, nodes are typed, e.g., vmachine, and attributed to
capture further properties and configuration aspects of
each element. We consider the model as a directed, node
and edge typed, and attributed graph. We distinguish
different edge types, where the edges of the foundational
Realization model are labeled with type real in accordance
to the name of the model.

In order to build the model we require sufficient infor-
mation on the topology and configuration of a virtualized
infrastructure. An existing method for constructing a
model [4] consists of two steps: Discovery and Trans-
lation. The discovery extracts the configuration from
the hypervisors or management system of heterogeneous
virtualized infrastructures, and translates the extracted
configuration data into the model.

C. Threat Model
We draw upon the dependability taxonomy [1] to

establish a well-defined threat model. We consider that
even if administrators are honest, they can still make
mistakes that lead to a security breach. Therefore, as
core threat, we model non-malicious human-made faults,

which may be deliberate and non-deliberate, accidental
or due to incompetence. This covers the classes intent,
where deliberate faults are a result of a harmful deci-
sion and non-deliberate faults are introduced without
awareness, as well as capability, where accidental faults
are introduced inadvertently and incompetence faults
result from a lack of professional competence. Consider
the following examples of possible attack scenarios.
• An administrator produces a typo when entering
a new port group’s VLAN ID (non-malicious, non-
deliberate, accidental). If the ID collides with one
that is already used in another security zone, we
have an isolation breach between zones.

• An administrator intentionally sets the VLAN IDs
of port groups of two different zones to the same
value, to save precious VLAN IDs, believing that the
networks are separated by means of physical isolation
or higher level network isolation, e.g., based on
firewalls (non-malicious, deliberate, incompetence).

The administrator behavior comes with some fairness con-
straints: Provider and tenant administrators will attempt
to issue commands in a well-defined way through the
service interface. Administrators will take into account
feedback from a security analysis or an audit. As part of
the system foundations, we require that the extraction
of the infrastructure configuration provides an authentic
view of the configuration.

III. A Model of Dynamic Virtualized
Infrastructures

The model is the foundation for the proactive analysis
of changes in virtualized infrastructures. We capture
multiple aspects relevant for the analysis and integrate
them into a unified model. For that, we need to repre-
sent the topology and configuration of the virtualized
infrastructure, establish how the infrastructure can be
changed by cloud management operations, and verify the
security policy. As we are focusing on isolation properties,
we further need to determine information flows in the
system. All aspects in this model need to cope with the
dynamic behavior of virtualized infrastructures.

Fig. 2 illustrates how the different parts of the model
are intertwined and indicates how the model will be
employed in the analysis. The model builds on a graph
representation as well as transformations of graphs to
capture the dynamic behavior. The graph representation
of the cloud topology and configuration (cf. §II-B) forms
the Start Graph, which will be the starting point of the
subsequent analysis. The information flow analysis as well
as the model of cloud management operations perform
Graph Transformations on the start graph: They are
changing parts of a given graph and output a modified
one. Finally, we match the security policy against each
transformed graph to find violations (Graph Matching).

Figure 2: Overview of Model Composition.

Cloud
Topology

Info
Flow

Change
Ops

Info
Flow

Security
Policy

Start Graph Graph Transformations Graph Matching

Graph Transformations: Graph transformations are es-
sential for our model. In order to better understand them,
we will briefly introduce their foundational concepts (For
details on the theory we refer to Rozenberg [17]): We have
a graph transformation rule p, also called a production, in
the form of p : L

r−→ R, where graphs L and R are denoted
the left hand side (LHS) and right hand side (RHS),
respectively. The production morphism r establishes a
partial correspondence between elements in the LHS and
the RHS of a production, which determines the nodes
and edges that have to be preserved, deleted, or created.
A match m finds an occurrence of L in a given graph
G, then G

p,m==⇒ H is an application of a production p,
where H is a derived graph. H is obtained by replacing
the occurrence of L in G with R.

Many graph transformation tools have been developed
in the past, among them are: GROOVE , AGG, GRGen,
and PROGRES. For this work, we decided to use
GROOVE [12] as our graph transformation environment.
It is a general-purpose graph transformation tool that
enables an expressive specification of production rules,
e.g., by providing quantifications and path constructions
using regular expressions. Furthermore, its imperative
control language allows us to control the application
of rules as well as to use parametrized rules, in which
parameters are passed from a control program to a
production rule.

A. Modeling of Infrastructure Changes
The Operations Transition Model captures how man-

agement operations change topology and configuration of
a virtualized infrastructure. Our As we aim to create
a practical security system for virtualized infrastruc-
tures, we focus our modeling efforts on VMware and
its operations. We model each operation as a graph
production rule, which takes the graph representation of
the virtualized infrastructure as input and transforms it
into a modified one.
1) Subset of Operations: Whereas VMware API (v5.0)

consists of 545 methods [19], only a subset of them
is relevant for our operations transition model. Many
operations do not affect the topology or configuration of
the virtualized infrastructure. However, they deal with
VMware-specific management and operations aspects
such as licensing and patch management, handling of
administrative sessions, or diagnostics and alarms. For
now, we model a security-relevant subset of VMware
management operations. We consider changes to the

host

vswitch

vswitch
!4

string
?2

int
?3

string
?1

string
?0

vlanId

name

name

real name

real

(a) AddPortGroup

int

∀

int

string
?1

string
?0

vswitch

vswitch

host

string
?3

vport

int
?2

vlanId
name

real

real

name

vlanId

real

vlanId

@

vlanId

name

@

(b) UpdatePortGroup

∀

vport

host

vswitch

vswitch

string
?1

string
?0

@
real

real

name

name

real

(c) RemovePortGroup

Figure 3: PortGroup Operations in GROOVE .

network configuration, in particular the configuration
of port groups, virtual switches, and virtual network
interfaces. We model methods that create, modify, and
delete such network elements. Whereas a port group’s
network policy contains interesting properties, such as
whether a NIC is in promiscious mode, we omit it in favor
of a clear focus on the isolation properties of the topology.
Furthermore, we consider the creation of virtual machines.
We leave extending this subset of modeled operations, e.g.,
including storage, to future work: IT is a time-consuming
but otherwise neither challenging nor enlightening task.
However, this subset already enables the analysis of
interesting topology and configuration changes in the
areas of virtual networking and compute resources, and,
thereby, the verification of isolation breaches.
2) Modeling Approach: For any existing real-world

virtualized infrastructure like VMware, the API doc-
umentation does not offer a precise formal definition
and model, but rather a semi-formal description of the
operations, parameters as well as the preconditions and
effects that the operations have. A contribution of this
paper is to create a formal model that allows for precise
statements to be made and proved or refuted. It is of
course not possible to formally prove the correctness of
such a model itself, however there is a methodology to
obtain a “good” model by combining two directions.

The first direction is to follow the documentation and
translate the documented effects into our graph model.
The second is to experiment with the real implementation,
to evaluate empirically whether the actual operations
indeed affect the infrastructure as our model predicts.
To study these experiments we need to translate the
infrastructure topology into a graph before and after the
operation has been performed, and check whether the
resulting graph transformation matches our model of the
operation.
3) Modeling Examples: Fig. 3 shows examples of the

creation, updating, and deletion of the virtual networking
of VMware. The so called port groups have a direct
impact on the network isolation of tenants as they

determine the VLAN configuration. We adopted the
visual notation of production rules from GROOVE to
specify the rules of this paper. This notation makes the
key points of our paper easy to grasp, while it has a
well-defined formal semantics. Each graph production
rule is itself described by a graph where nodes and edges
can have one of the following colors/styles:

• Readers (black): nodes and edges that need to be
matched in the graph for the rule to be applica-
ble; they are preserved in the transformation. For
example, the host node in Fig. 3a.

• Creators (bold green): newly added nodes and
edges. The lower vswitch and corresponding edges
in Fig. 3a are creators.

• Erasers (thin dashed blue): like the readers, but
will be deleted by the transformation. For instance,
the lower vswitch in Fig. 3c.

• Embargoes (bold dashed red): negative application
conditions (NAC); the rule cannot be applied if any
matching nodes and edges are present.

By combining Embargoes and Creators, we can express
a conditional new, where nodes and/or edges are only
created if they do not exist yet. For example, we make use
of conditional news in the information flow rules (Fig. 4,
§III-B1). The bold label of nodes represent their type,
e.g., a host.
Our example operations and their models are a

representation for three common classes of operations
that i) create new infrastructure elements and therefore
new nodes and edges in the graph model, ii) change
infrastructure elements’ attributes and the topology,
which translates to the addition and removal of edges to
graph nodes and to data nodes that hold the attributes’
values, iii) delete infrastructure elements and thereby also
nodes and edges in the model. Parametrized production
rules are essential as management operations operate on
a specific part of the virtualized infrastructure, e.g., on
a specific host given by a hostname parameter, and set
or change attributes based on given parameters.

Table I: VMware PortGroup Operations [19]

AddPortGroup:
_this host network system reference
portgrp HostPortGroupSpec specified below:

UpdatePortGroup:
_this host network system reference
pgName port group name
portgrp HostPortGroupSpec

HostPortGroupSpec:
name name of the port group
policy network policy on the port group
vlanId vlan ID
vswitchName vSwitch where portgroup is located

RemovePortGroup:
_this host network system reference
pgName port group name

The VMware documentation of the operations dealing
with port groups are listed in Table I. In our model of
the operations (Fig. 3), we use the hostname instead of
the VMware internal host network system reference to
identify a physical machine.

AddPortGroup:
AddPortGroup (s t r i n g hostname , s t r i n g vswitchName ,

s t r i n g pgName , i n t pgVlanId , out node pgNode)

This operation adds a new portgroup to a given virtual
switch residing on a given host. The production rule
tries to match the subgraph consisting of the host and
virtual switch, where the names match the parameter
values of the rule, e.g. the host’s name is matched against
parameter 0, denoted as ?0 in Fig. 3a. To this subgraph, a
new vswitch node is added that represents the portgroup,
to model that the portgroup is an extension of the vswitch.
Attributes of the portgroup are set by creating and
connecting data nodes to the portgroup node based on
the input parameters. The node identifier of the newly
created portgroup is returned and passed through an out
parameters as shown below and depicted as !4 in the
model (Fig. 3a).

UpdatePortGroup:
UpdatePortGroup (s t r i n g hostname , s t r i n g pgName ,

s t r i n g newPGName , i n t newPGVlanId)

Using this operation, an administrator can change the
configuration on an existing portgroup. The portgroup is
identified by its name, as well as the host where it resides
on, and the operation allows to change the portgroup’s
name and VLAN ID. Changing attributes is modeled as
changing the edges to different data nodes based on the
input parameters. In order to maintain compatibility with
the existing graph model, not only does the portgroup
node contain the VLAN ID, but also the associated vport
nodes, i.e., virtual switch ports. Therefore, changing the
VLAN ID of the portgroup also requires to change the
VLAN ID of all virtual ports associated to that portgroup.
For this we use the universal quantifier ∀ that applies a

sub-rule, given by nodes connected to the quantifier with
@ labeled edges, to all its matches. In this case, it updates
the vlanId attributes of all matching vport nodes [16] (cf.
Fig. 3b).

RemovePortGroup:
RemovePortGroup (s t r i n g hostname , s t r i n g pgName)

In the model of this operation as depicted in Fig. 3c, we
delete the vswitch node representing the portgroup given
by a name and the host where it resides. Using universal
quantification, all vport nodes belonging to the portgroup,
i.e., connected through a real edge, are deleted.

B. Dynamic Information Flow Analysis
Bleikertz et al. [4] propose an approach for an in-

formation flow analysis on a graph representation of
a virtualized infrastructure, in order to detect isolation
failures. The approach consists of a set of traversal rules
that capture how elements in the infrastructure provide
isolation, e.g., how VLANs provide network isolation,
as well as a graph coloring algorithm to determine
information flow. A graph traversal is guided by a set
of traversal rules, computes the transitive closure and
determines the information flow in the system.
This information flow analysis is limited to a static

snapshot of the infrastructure and, thus, unable to deal
with its dynamic nature and frequent changes. We show
how we can integrate and extend this information flow
analysis into our dynamic graph model and, thereby,
obtain a dynamic information flow analysis. We express
the information flow rules as graph production rules and
give an algorithm in GROOVE ’s control language to
derive the information flow analysis from these rules.
The graph-based information flow analysis has three

areas, which we describe in the following sections:
1) We compute the new information flows of the start

graph as initial state of the analysis or when new
elements as added.

2) We adjust existing information flows for relevant
changes in the model, such as when nodes or real
edges are removed.

3) We control the rule application with control pro-
grams to expand the new and adjust rules to a full
and terminating information flow analysis, executed
after each graph modification.

1) Computing New Information Flows: Computing
new information flows is required for an initial flow
analysis of a graph or when new elements are added to a
graph, e.g., due to the operations transition model. We
differentiate between two types of information flow rules:
simple and fast-edge rules. Simple rules are stateless,
i.e., they do not perform any modification of graph
coloring attribute; stateful rules depend on the color

attribute used in graph coloring and are inefficient in
graph rewriting. We, therefore, transform stateful rules
into fast-edge rules to avoid the stateful rules altogether.

Simple Information Flow Rules: Simple rules can be
expressed as graph production rules that match a pair
of adjacent nodes with particular types and potentially
with conditions on the their attributes. Thus, for each
adjacent pair of nodes with a real edge between them, the
rules create either a flow or noflow edge. Fig. 4 shows
a simple information flow rule that stops information
flow between a host and a virtual machine (vmachine)
by creating a noflow edge between them, if not already
present. This captures the (arguable) trust assumption
that no side-channel information leakage exists between
virtual machines on the same host.

vmachinehost

∀>0

@

real

noflow

@

Figure 4: RuleStopVMM: Simple noflow Information Flow
Rule.

Information flow edges are conditionally created with
a condition new rule (cf. §III-A3), i.e., they are only
created if they are not already present. This ensures that
the information flow analysis will reach a fixed-point
when all pairs are connected by either a flow or noflow
edge. Furthermore, we use the universal quantifier ∀>0 to
apply this production rule to all possible matches within
one state, in order to reduce the number of states in the
state space exploration. It is important that we use the
∀>0 operator as it requires at least one match (rather
than the ∀ operator1).

Fast-Edge Information Flow Rules: Formalizing the
stateful information flow traversal rules, that is, rules
which depend on the attributes of graph elements, are
expensive to model in graph transformations as each
traversal creates a new graph state. The concept of
stateful rules is introduced by Bleikertz et al. [4] to
model the information flow between VLAN endpoints,
where the information is tagged with a corresponding
VLAN identifier at one endpoint, and untagged at the
corresponding endpoint. This establishes the information
flow such endpoints. We model this behavior using
so-called fast-edges: They are information flow edges
between pairs of nodes that are not necessarily adjacent
by a real edge but which are connected through a path.

Fig. 5 shows the production rule for the creation of a
fast-edge between two VLAN endpoints in VMware, i.e.,

1The ∀ operator indicates that a rule is applicable even if no
matches are found: This would interfere with the termination of
our information flow analysis.

the VMware portgroups which are modeled as vswitches
with a VLAN identifier and hosted on another vswitch.
We conditionally create a flow fast-edge between two
distinct portgroups pg1 and pg2 (pg1 != pg2) if the
following conditions hold:

1) VLAN identifiers equality (vlanId == pg2.vlanId).
2) Connectivity of the underlying vswitches, i.e., there

exists a flow path between them, expressed as flow+.
We again use the universal quantifier ∀>0 to apply this
rule to all non-empty matches within one state. A similar
production rule exists when two portgroups are connected
two the same vswitch.

vswitch

∀>0 pg2 : vswitchpg1 : vswitch
vlanId == pg2.vlanId

vswitch

!=

real@

flow+

flow

real

@ @

@

Figure 5: New information flow between two portgroups
with the same VLAN ID.

2) Adjust Existing Information Flows: The core of the
dynamic information flow analysis lies in the adjustment
of existing information flows once the graph changes. We
have to handle the following three cases how the graph
model may change and we will describe how we adjust
the existing information flows due to these changes.
• Removal of nodes: The removal of information flow

edges that are connected to removed nodes is covered
by the underlying graph transformation formalism
(Single Push-Out [6]) as dangling edges are removed.

• Removal of real edges: For each pair of nodes that are
no longer connected by a real edge, but still feature
an information flow edge, we need to remove the
flow edge. This is accomplished by two production
rules similar to the simple information flow rules,
but with two untyped nodes, an embargo real edge,
and the removal of either a flow or noflow edge.

• Change of nodes’ attributes: The information flow
edges that are based on attributes are recomputed if
their predicates do not hold anymore. That means,
for each information flow rule that introduces an
information flow edge based on an attribute con-
dition, we have an adjusting production rule that
verifies that the attribute condition still holds; if not,
it revokes the information flow edge.

Let us consider the example of the previous VLAN
fast-edge production rule, and how the change cases
affect the fast-edge and requires adjustment. The VLAN
information flow rule depends on two conditions: VLAN
equality and vswitches connectivity. The former condition
may no longer hold if the VLAN identifier of one

portgroup is changed, e.g., due to an UpdatePortGroup
operation. The production rule shown in Fig. 6a deletes
the flow fast-edge if the VLAN identifier are not equal
anymore (vlanId != pg2.vlanId). The second condition may
be violated when elements in the graph are deleted and
the connectivity of the vswitches is interrupted. Fig. 6b
shows a production rule that deletes the fast-edge if
the underlying connectivity of the virtual switches is
not given anymore, i.e., !flow+, even though the VLAN
identifiers are still equal.

pg1 : vswitch
vlanId != pg2.vlanId

pg2 : vswitch∀>0

flow

@@

!=

(a) Inequality of VLAN IDs.

vswitchvswitch

∀>0 pg2 : vswitchpg1 : vswitch
vlanId == pg2.vlanId

@

@@

flow

real

!flow+

@ real

!=

(b) Connectivity of vswitches is lost.

Figure 6: Adjusting information flows for port groups.

3) Controlling the Rule Application: To complete the
information flow analysis for the entire graph, we need
to control the application of the rules: GROOVE allows
for a controlled execution of graph production rules by
a control program written in an imperative language.
The statements in this language are the rule names, or
functions composed of multiple rules, and we have the
usual constructs to build sequences, conditions, and loops.
We now express the process of information flow analysis as
an algorithm in this control language using the previous
graph production rules as basic building blocks.
For this task, we differentiate between explicit infor-

mation flow rules, i.e., the simple rules that match a
particular pair of vertices such as the rule in Fig. 4, and
a default rule that matches any pair of vertices. The
analysis algorithm tries to apply any explicit rules until
none is applicable anymore. Then, the default rule is
applied until all pairs of vertices have been evaluated.
Typically, the explicit rules represent trust assumptions
on isolation properties of elements in the infrastructure
and therefore introduce noflow edges. In contrary, the
default rule introduces flow, which means we may perform
an over-approximation on the information flows, but also
reduce the possibilities of false negatives. The explicit
rules we use in this work are designed to be confluent,
i.e., whenever more than one explicit rule is applicable,
it does not matter for the result which one we take first.
However, the default rule needs to be applied after all

explicit rules. After the first information flow analysis,
which is based on the simple rules and a default rule, has
been completed, we apply the fast-edge rules.
This behavior is captured in the control program of

Listing 1. The function info_flow_new introduces infor-
mation flow edges for an initial graph or for new elements
in a graph. The choice operator lets GROOVE pick any of
the applicable explicit rules, such as RuleStopVMM shown
in Fig. 4. As we said before, for the final result is does not
matter which one is picked if more than one is applicable.
The try . . . else Default ensures that whenever none of
the explicit rules is applicable anymore, then the Default
rule is applied. The alap finally ensures that this process
is repeated as long as possible, i.e., we finish if neither
explicit rules nor the default rule is applicable anymore.
This whole process must eventually terminate, because
each application of a rule for a pair of connected nodes
reduces the number of unevaluated pairs of nodes. This is
because information flow edges are added as conditionally
new ensuring that a rule can only be applied once to
every connected pair. Afterward, the fast-edge rules are
applied, where RuleFlowNewVlanFastEdge1 is the rule
shown in Fig. 5 and RuleFlowNewVlanFastEdge2 is the
similar rule when two portgroups are connected to the
same vswitch.

f u n c t i o n info_f low_new () {
a lap t r y { cho i ce RuleStopVMM ;

. . .
or RuleN ;

}
e l s e Ru l eF l owDe fau l t ;

t r y RuleFlowNewVlanFastEdge1 ;
t r y RuleFlowNewVlanFastEdge2 ;

}

Listing 1: Control Function for New Information Flows.

In order to cope with the dynamic behavior, the infor-
mation flow analysis needs to perform the information
flow adjustments based on the previously introduced
production rules. For adjusting existing information flow
upon changes in the graph, the function info_flow_adjust
of Listing 2 applies the production rules to remove dan-
gling information flow edges, followed by the production
rules that verify that the conditions for the VLAN fast-
edges still hold, and if not remove the fast-edges.

f u n c t i o n i n f o_ f l ow_ad j u s t () {
RemoveDangl ingFlowEdge ;
RemoveDanglingNoFlowEdge ;
t r y RuleF lowAdjus tV lanFas tEdge1 ;
t r y RuleF lowAdjus tV lanFas tEdge2 ;

}

Listing 2: Control Function for Adjusting Flows.

C. Security Policies
The final part of our unified model deals with the

formalization of security policies. We follow the approach
of the policy language VALID [2], which allows to specify
security properties on the topology and configuration
of an infrastructure cloud. We express the security
policies as attack states, i.e., a state of the topology
or configuration of the infrastructure cloud that violates
the desired security property. Instead of verifying that a
security property holds for the entire infrastructure, we
try to find a violation.

Whereas VALID policies try to match a set of facts, we
can also express such policies as graph production rules
in GROOVE . Such production rules only try to match a
particular subgraph, which constitutes an attack state,
and may have additional constraints on the subgraph.

As an example, we consider the security policy of zone
isolation [2], or its corresponding attack state of zone
isolation breach. This policy introduces the concept of
security zones that the virtual machines belong to, and
defines an isolation breach to be any information flow
between virtual machines that belong to different zones.
The concept of zones is part of the definition of the
security policy. We can model them by introducing new
nodes for each zone with an attribute zone.name and
edges from zones to virtual machines machines to model
that a zone contains a virtual machine. Typically, every
virtual machine belongs to exactly one zone, except for
machines that act as gateways between two zones, such
as virtual firewalls.

zb : zoneza : zone
za.name != zb.name

vmachine vmachineflow+

contains contains

Figure 7: Zone Isolation Breach Rule in GROOVE .

A breach of zone isolation is defined by the graph
production rule in Fig. 7. Here, we try to match a pair
of vmachines that are connected by an information flow
path and that belong to different zones, i.e., given by
different zone name attributes. Verifying the compliance
of an infrastructure against a security policy by trying
to match a graph production rule that expresses a policy
violation will be described in §IV-A3.

D. Lessons Learned
Modeling a complex system such as a virtualized

infrastructure and its management operation using graph
transformations provided us the following insights.

Operations that change the configuration and topology
of virtualized infrastructures are intuitively modeled as

graph transformations. Universal quantifications are a
useful method to update many infrastructure elements
within one operation atomically. Otherwise, the same
behavior has to be modeled using multiple separated
production rules, which is inefficient due to an increased
number of states, and it increases the complexity of
the model. Parametrized production rules are essential
to capture the also parametrized cloud management
operations.

In order to keep the model simple and therefore suitable
for automated analysis, it is essential to focus on a
subset of operations, i.e., which modify the topology
and configuration. Furthermore, many operations use
parameters that do not impact our security analysis and
model, therefore can be omitted in the operations model.
Complex operations such as the creation of a VM

modify many different aspects of the infrastructure, e.g.,
besides creating a VM it also creates and attaches virtual
storage and network devices. Ideally, such operations are
divided into sub-operations and are modeled in a modular
way, in order to reduce the overall complexity. However,
current limitations in GROOVE when combining mod-
ularization with parametrization inhibits this modular
modeling. This is not a fundamental problem of the
graph transformation system, rather a limitation in its
implementation.
A key insight for the modeling techniques employed

for the production rules was to keep the number of states
in the graph transformation system as low as possible
through the means of using universal quantifiers. Instead
of applying a production rule every time for a match,
which would result in a new state for each match, we
apply the rule for all matches at the same time using
the universal quantifier, which only results in one new
state. This is particularly important for the information
flow analysis, where rules will have many matches, and
therefore could produce many new states.

IV. Automated Analysis and Applications
Our system aims at an automated analysis of configura-

tion and topology changes in virtualized infrastructures.
Its architecture obtains all the necessary inputs for the
analysis and invokes GROOVE as the graph transfor-
mation and analysis tier. We introduce the architecture
and integration first and subsequently establish two ap-
plication scenarios for change management (§IV-B) and
auditing of configuration changes at run-time (§IV-C).
As future work, we propose the run-time enforcement of
security policies and the mitigation of misconfigurations.
This is achievable with our system, and we outline
challenges for that (§IV-D).
A. Architecture and Integration
We depict the system architecture in Fig. 8. The

main components are i) the Configuration Discovery &

Dynamic Analysis

configuration & topology

Heterogenous Clouds
Actual State

Goals
Desired State

Orchestrator

Reports

Groove

realization
graph

security policy graph grammar

Graph Transformation

Dynamic Behavior
Operations

Transition Model

operations model

Configuration
Discovery & Translation

Trust Assumptions
Information Flow

Rules

information flow rules

4.3.

1. 2.2.

1.

3. 4.

control program

Figure 8: System Architecture

Translation on the left, which extracts the configuration
of the virtualized infrastructure and constructs the
graph model; ii) the Orchestrator in the middle, which
integrates all required inputs and prepares the graph
grammar for analysis; iii) and the Graph Transformation
on the right, which employs GROOVE for the analysis
given the prepared graph grammar of the orchestrator.
1) Preparing the Graph Grammar: The Orchestrator

obtains the inputs for the analysis and prepares the graph
grammar for GROOVE . The graph grammar needs to be
encoded in GXL [20], a XML-based graph format. The
following inputs are required:
Start Graph: The orchestrator creates a graph model

of the virtualized infrastructure, using the approach
outlined in §II-B. We employ a graph simplification
algorithm in order to reduce the size of the graph and
improve the performance of the analysis (cf. §IV-A2).
GROOVE expects a certain graph structure, i.e., directed
edges and nodes’ attributes encoded as self edges with
the attributes as edge labels. Our case study on zone
isolation requires to annotate which virtual machines
belong to which security zones. We realize this annotation
by introducing zone nodes and establishing edges between
zones and virtual machines (cf. §III-C) based on a security
policy specification given by the user.
Security Policy: Policies, and their attack states, are

modeled within GROOVE as graph production rules.
A user either selects an existing policy, e.g., the zone
isolation policy, or creates new policies using the graphical
modeling environment of GROOVE .
Information Flow Rules: The rules represent the trust

assumptions on isolation capability of components of
the virtualized infrastructure. They are also modeled
as production rules. Typically, a set of best-practice
information flow rules is used, but a user can also
modify or extend the rules using the graphical modeling
environment.
Operations Transition Model: We model manage-

ment operations specific to a virtualization platform
in GROOVE . In general, we do not expect that users
need to modify the operations transition model, once
all relevant operations have been incorporated. Finally,
the orchestrator obtains from the user the desired
changes to be analyzed and outputs a Control Program
for GROOVE . A sample control program is shown in
Listing 3 that contains an UpdatePortGroup operation
besides the information flow analysis.

i n f o_ f l ow () ;

UpdatePortGroup (" hos t1 . domain . t l d " , " por tg roup −23" , ←↩
123 , " por tg roup −23") ;

i n f o_ f l ow () ;
i n f o_ f l ow_ad j u s t () ;

Listing 3: Produced Control Program Produced.
2) Simplification of the Start Graph: Similar to star-

mesh transformations employed for the simplification of
electrical networks, we perform a simplification algorithm
to reduce the size of the GROOVE start graph. Our graph
simplification algorithm preserves nodes, which are used
in the analysis, and their inter-connectivity.
We extract a list of node types that need to be

preserved from the information flow rules, operations
model, and security policies in the graph grammar. The
simplification algorithm needs to preserve nodes of these
types, in order to not change the analysis results. We
define a candidate as a node in the graph that has a type
not occurring in the preserved types list. A candidate
can be removed from the graph while preserving the
connectivity of the graph in the following three ways.
• Removal of a leaf node (Fig. 9a): Candidates that
are leaf nodes can be simply removed as they do
not contribute to the connectivity between preserved
type nodes.

• Removal of an intermediate node (Fig. 9b): Candi-
dates that are intermediate nodes can be removed,
but their neighbors have to be connected by an edge,
in order to preserve connectivity.

• Star-Triangle (Y-∆) transformation (Fig. 9c): The
transformation from a star to a triangle topology
does not reduce the number of edges, but decrements
the number of nodes by removing the star node.

For candidates with a degree higher than 3 the star-mesh
transformation does not reduce the number of edges or
nodes anymore. We apply the simplification rules until
no candidates with a degree lower or equal than 3 are
available. The simplification does not tamper the analysis
results because it removes only nodes that are not relevant
for the analysis, i.e., they do not occur in information flow
rules, the operation model, nor in the security policies.
Furthermore, connectivity is preserved while removing
nodes during the graph simplification.

Leaf Node
real

Node

Simplify

(a) Leaf Node

Node Inter Node
real real

Node Node
realSimplify

(b) Intermediate Node

Star

Node Node

Node

real real

real

Node Node

Node

real

realrealSimplify

(c) Star Node

Figure 9: Graph Simplifications for Nodes of Different Degrees.

3) Graph Transformation Tier: We employ GROOVE
for the graph transformation and analysis once the
orchestrator prepared the graph grammar and control
program. Of particular interest is the violation of a given
security policy, or, if an attack state will be reached
for the desired changes to the infrastructure. GROOVE
provides the concept of acceptors that indicate when
the graph exploration has found a result state. One
can limit the number of result states that the graph
exploration should find, in order to trigger a termination
once an acceptor fires. In our case, the acceptor will be
set to the invariant acceptor with the security policy
rule, which fires when the given rule is applicable, and
we limit the number of result states to one. In this
case, the graph exploration can be stopped once an
attack state for the policy of zone isolation is reached,
which is indicated with the following acceptor parameter
inv:PolicyIsolationBreach (cf. Fig. 7).
Furthermore, each result state is an instance of the

infrastructure where the policy is violated. The match of
the policy rule in each result state provides an instance of
the policy violation, e.g., a pair of virtual machines that
violate the isolation policy. As the GROOVE command
line do not export such matches, we realized a wrapper
around GROOVE to obtain them.
GROOVE supports multiple different graph explo-

ration strategies. In our case, we employ a linear ex-
ploration strategy, because i) our simple and explicit
information flow rules (which are used with the choice
operator) are confluent and ii) our rule application is
strictly guided by the control program. Analyzing the
interleaving of all the desired changes through a full state
space exploration could be interesting, but at the cost
of a large state space and therefore negatively impacted
performance of the analysis.

B. Change Plan Analysis
Change plans can help to improve the quality of

IT infrastructures as changes are properly documented
and can be evaluated by another party, e.g., another
administrator or in our case by an automated tool.
Change management is often employed as part of IT
infrastructure operation workflows and processes. In
our case, an administrator drafts a sequence of desired

changes in the form of cloud management operations,
which will eventually be provisioned to the virtualized
infrastructure. The crucial question is: Will a proposed
change render the infrastructure insecure?

To answer this question, the administrator submits the
change plan to our system, which constructs a control
program for GROOVE containing the desired changes.
GROOVE performs a graph exploration, i.e., it applies
the changes to the graph model of the infrastructure
and verifies the resulting infrastructure state against the
desired security policies. By that, the tool can establish
a what-if analysis and determine what security impact
the intended changes will have on the infrastructure.

If the new graph model obtained from the application
of the changes violates the security goals, the tool notifies
the administrator to reject the proposed change plan
and provides the analysis output of the matched policy
violation as diagnosis. Otherwise, the tool returns that
the intended changes are compliant with the security
goals, after which the administrator can provision the
changes to the infrastructure.

The example of a change plan in Listing 4 specifies the
addition and updating of virtual network elements in the
infrastructure model and allows us to check whether this
additional or modified network connectivity will violate
a security policy, e.g., the zone isolation. It could be that
the final UpdatePortGroup causes a violation. Regarding
the languages syntax, return values in GROOVE ’s control
language are denoted as out parameters.

AddV i r tua lSw i t ch (" hos t1 " , " v sw i t ch2 ") ;
node PG;
AddPortGroup (" hos t1 " , " v sw i t ch2 " , " po r tg roup4 " , 23 , ←↩

out PG) ;
s t r i n g Dev ;
AddV i r t ua lN i c (" hos t1 " , " po r tg roup4 " , " 1 2 7 . 0 . 0 . 1 " , ←↩

"00 : FF : 0 0 : FF : 0 0 : FF" , out Dev) ;

Upda t eV i r t u a lN i c (" hos t1 " , Dev , " 1 2 7 . 0 . 0 . 2 " , ←↩
"00 : FF : 0 0 : FF : 0 0 :AA") ;

UpdatePortGroup (" hos t1 " , " po r tg roup4 " , 24 , ←↩
" po r tg roup4 ") ;

Listing 4: Change Plan for Adding and Updating Virtual
Network Components.

C. Run-time Audit of Configuration Changes
Run-time audit of configuration changes expands on

the principles of the change plan analysis in §IV-B.
Whereas change planning requires the administrator to
devise the changes in advance and have them checked
by our system statically, the run-time audit intercepts
change requests dynamically at a proxy and checks
them as they occur. The idea of the run-time auditing
is to establish accountability for administrator actions:
The administrator’s configuration changes are validated
against the security policy and the results of these checks
entered into the audit logs along with the administrator’s
username and the committed commands.
We introduce an authorization proxy as wrapper of

the cloud administration API, which acts as auditor of
configuration changes, and employ our system as part of
the policy decision mechanism.

The authorization proxy is a reverse HTTPS proxy in
front of the otherwise shielded infrastructure manager. It
intercepts management operations and inspects them for
the auditing. The communication in front of the manager
is usually standardized: VMware and Amazon EC2 man-
agement operations are SOAP-based, whereas OpenStack
is REST-based. These formats are easily inspected. In
addition, the proxy tracks session states derived from
the the user-login and the infrastructure manager session
cookie, to distinguish sessions of multiple administrators
interacting with the infrastructure manager concurrently.

The Policy Decision Point (PDP) of the authorization
proxy translates intercepted management operations into
a change plan in the GROOVE control language. We
have translation modules for all covered operations. For
instance, from an UpdatePortGroup operation the proxy
extracts the host, identifying portgroup name, new VLAN
identifier, as well as new portgroup name, and generates
a control program line such as the following one similar
to Listing 4:
UpdatePortGroup (" hos t1 " , " po r tg roup4 " , 24 , ←↩

" po r tg roup4 ") ;

The Policy Decision Point delegates the change plan
analysis to our system. The system notifies the ad-
ministrator of the result of the security analysis and
produces an audit trail for accountability. Furthermore,
a feedback mechanism directs administrators’ behavior
towards considering configuration changes carefully.

D. Run-time Mitigation and Enforcement
As future work, we pursue the following research

hypothesis: Run-time analysis can be used for automated
mitigation of misconfigurations and enforcement of a
security policy. With proper enforcement mechanisms in
place, it allows to protect virtualized infrastructures from
malicious adversaries. We establish the invariant that all

configurations changes are only accepted if the security
analysis returns that no security policy is violated.
Observe that there need to be additional security

mechanisms in place to defeat malicious adversaries, even
if the analysis functionality is unaffected by that. To
protect against those, the infrastructure needs to be
modified to enforce sole access through the management
interface, and need to prevent circumvention approaches,
such as a direct SSH log-in to the physical hosts. Also,
the security validation needs to be mandatory for all
management operations.
Again, the authorization proxy intercepts operations

and delegates the security analysis to our system. This
time it acts as Policy Enforcement Point (PEP): The
intercepted operations are accepted, if the operations
fulfill the policy; otherwise, they are rejected. The autho-
rization proxy refrains from forwarding the management
operation in the reject case, i.e., they are not deployed
in the actual infrastructure. It signals an error back to
the administrator client, including the policy violation as
data for diagnosis. We have pursued this direction and
extended the authorization proxy with this capability,
but it requires future work on virtualized infrastructures
and provisioning systems to be viable:

First, operations of multiple administrators interleave
concurrently. These operations are not atomic: Whereas
operation such as UpdatePortGroup seem instant to
administrators, they are not guaranteed to be atomic.
Tasks are asynchronous by design and take time to
complete. Thus, operations can interfere with each other.
Second, the runtime mitigation might block manage-

ment operations. Soft blocking occurs because of the delay
the analysis adds and may be precarious if the expected
time between management operations is smaller than
the expected analysis time. Hard blocking occurs if the
authoriztion proxy rejects a management operation to
enforce the security policy: The administrator might need
to override the security policy in an emergency to prevent
a catastrophic failure.
Still, run-time mitigation is an important topic of

future work poised to increase the security assurance of
virtualized infrastructures in face of malicious adversaries.

V. Evaluation and Discussion

We are evaluating our system with regard to perfor-
mance, e.g., how does it cope with large virtualized
infrastructures, and its effectiveness in analyzing changes
for misconfigurations, i.e., can it detect faulty configura-
tion changes and differentiate them from safe ones. We
consider two VMware-based virtualized infrastructures
for this matter: one is a small laboratory infrastructure,
and the other is a mid-sized production one with around
1400 VMs.

For each infrastructure, we evaluate two change plans,
where one specifies a configuration change that violates
a security policy, and the other specifies a safe change.
The combination of infrastructures and change plans
establishes four scenarios, for which we measure the
overall analysis time as well as the time for each analysis
step, and the effectiveness of detecting the change plans
with the faulty changes. We focus the evaluation on the
change plan analysis, as the run-time audit boils down
to generating and analyzing a change plan.

A. Lab and Production Cloud Scenarios
We evaluate our system for four scenarios, based on

two different virtualized infrastructures – a laboratory
and production one – and for each a safe and faulty
change plan. The lab infrastructure consists of 4 hosts,
16 VMs, of which 2 are in a production security zone,
3 in a test zone, and 11 are currently unassigned. The
graph model consists of 210 nodes and 548 edges, and
in its simplified form 101 nodes and 310 edges. The
production infrastructure contains 60 hosts, around 1400
VMs, and overall five security zones. The corresponding
graph model contains 23579 nodes and 61564 edges, and
the simplified graph 9576 nodes and 32902 edges. In our
time measurements we use the simplified graph models
if not otherwise stated. We consider the security policy
of zone isolation (cf. §III-C), although in the production
cloud case not all zones are strictly isolated from each
other, and we modify the policy to ensure isolation for
two specific zones.

The desired change that is specified in the change plans
is an UpdatePortGroup operation that changes the VLAN
configuration. In a faulty change plan, the new VLAN
ID of a portgroup that hosts VMs of a zone A is already
used by a portgroup that hosts VMs of a zone B. This
leads to an undesired information flow between the two
zones and entails a potential zone isolation breach, if the
two zones need to be isolated from each other. A safe
change plan would change the VLAN ID to an unused
one or one that is already used by portgroups hosting
VMs of the same zone.

B. Methodology
In order to determine the effectiveness of our system,

we compare its analysis results with our knowledge of the
change plans, i.e., our system needs to report a policy
violation for a faulty change plan and should not report
a violation for a safe one.

Regarding the performance of our system, we measure
the overall time required to complete the change plan
analysis for our scenarios. Furthermore, we measure the
time for the individual analysis steps, such as performing
the information flow analysis, applying the changes, and
the policy matching. We run our measurements in a VM

(on VMware ESXi 5.1) with 12GB of memory, 12 CPU
cores @ 2.4GHz, Linux 3.8 64bit with IBM JVM 1.7,
and GROOVE version 4.8.7. However, GROOVE mostly
utilizes 1-2 cores and memory usage is below 4GB. For
each measurement, GROOVE is run 2 times for warming
up any caches and followed by 10 runs for the actual
time measurement, for which we calculate the mean and
standard deviation.
In the case of measuring the complete analysis time,

we execute GROOVE with the policy breach rule as
the invariant acceptor, i.e., the graph exploration will
terminate once the policy breach rule is applicable.
Thereby one instance of a policy violation is identified,
although it can be configured to identify all instances.
Measuring the individual analysis steps is more chal-

lenging, as GROOVE does not provide any methods
for profiling or timing their control programs, and we
refrained from modifying the code. Therefore, we pursue
an incremental approach, where we gradually enable more
steps in the analysis, measure the time and calculate the
difference to the previous measurement, where the current
step was not enabled. This provides us with a relative
time measurement for each analysis step and we measure
the following steps:
• Start: Loading of JVM, loading of grammar.
• Init Info Flow: Initial information flow analysis.
• Change Op: The operation that induces a change.
• Adjust Info Flow: Updating information flows.
• Policy Match: Matching the policy rule.

In this case, we execute GROOVE with the final acceptor,
i.e., GROOVE terminates when no more rules are
applicable. By this we ensure that all steps are fully
executed and prohibit an early termination as it is in the
case for the policy invariant acceptor.

C. Results and Discussion
In our experiments for the different scenarios, our

system successfully found a policy violation for the faulty
change plans, and reported the policy compliance for
the safe scenarios. Regarding its performance, Table II
contains the time measurements for the four scenarios
in absolute, as well as in relative form based on our
incremental measurements. Observe that negative relative
times for the incremental approach are slight inaccuracies
due to the imprecision of the measurement method for
short analysis steps.
Comparing the time measurements for the Complete

analysis between a safe and faulty change plan shows
that the time for a faulty change plan analysis can be
significantly shorter, as it is shown for the production
infrastructure. This effect is caused by the policy invariant
acceptor of GROOVE with a limitation to one result
state, which allows an early termination of the analysis
once a policy violation is found. In the faulty change plan

Scenario Complete Incremental
(with cumulative absolutes)

Start Init Info Flow Change Op Adjust Info Flow Policy Match

Lab, Safe 5.61± 0.25 5.41± 0.22 5.6± 0.2 5.57± 0.22 5.6± 0.2 5.6± 0.16
relative 0.19± 0.29 −0.04± 0.29 0.03± 0.29 0.0± 0.26

Lab, Fault 5.74± 0.14 5.26± 0.29 5.66± 0.08 5.6± 0.09 5.7± 0.09 5.64± 0.29
relative 0.39± 0.3 −0.06± 0.12 0.1± 0.13 −0.05± 0.3

Production, Safe 154.71± 6.91 19.6± 1.13 48.58± 1.19 50.26± 1.26 154.32± 7.88 152.15± 5.54
relative 28.98± 1.64 1.68± 1.73 104.06± 7.98 −2.17± 9.63

Production, Fault 69.53± 1.71 19.7± 0.67 50.04± 1.92 48.85± 1.54 153.35± 4.73 164.78± 5.49
relative 30.33± 2.04 −1.18± 2.47 104.5± 4.98 11.43± 7.25

Table II: Absolute and Relative Time Measurements (in seconds) for Change Plan Analysis with GROOVE .

Scenario Simplified Non-Simplified

Production, Safe 154.71± 6.91 1026.24± 179.86
Production, Fault 69.53± 1.71 181.1± 6.45

Table III: Time Measurements (in seconds) for Change
Plan Analysis with Simplified and Non-Simplified Host
Graphs.

case, GROOVE terminates once one policy violation is
found, whereas for the safe change plan, all possibilities
for a policy violation needs to be checked but none is
found, which of course requires more time. In practice,
the policy invariant acceptor will be used for the change
plan analysis, in order to allow an early termination
once a policy violation is found. However, one could also
run the analysis to find all policy violations, instead of
terminating once one is found.
The incremental measurement for the analysis step

of adjusting the information flows is surprisingly high
compared to the initial flow analysis. Investigation of
this performance issue pointed to the adjust information
flow for vswitches connectivity of Fig. 6b. We suspect
that the root cause is an inefficient implementation in
GROOVE for evaluating the negative path expression
!flow+ compared to the positive one of Fig. 5.
The overhead of starting the JVM and loading the

grammar, up to the point where the control program
is executed, can be relatively large, especially for small
infrastructures. For the Lab scenarios, the other analysis
steps are negligible compared to the start overhead. For
the Production scenarios, the overhead is mainly induced
by loading the start graphs from the grammar, which
entails a XML deserialization. Change operation in all
cases negligible. Operations are well-defined, i.e., they
change a specific part of the graph with a single match
and transformation. This makes them simple and cheap
to apply. In contrary, adjusting the information flow is
the most expensive analysis step as we have to verify
that the conditions for the VLAN fast edges still hold.

The impact of the graph simplification on the analysis
of a change plan for the production infrastructures is
significant, in particular for a safe change plan. Table III

shows the time measurements for the production in-
frastructure scenarios based on a simplified and non-
simplified host graph. In the faulty change plan scenario,
the analysis based on a non-simplified graph is slower
by a factor of 2.6 ± 0.1. In the case of a safe change
plan, the required analysis time increases by a factor of
6.6 ± 1.2 between the analysis of a simplified and non-
simplified graph. The time required for performing the
simplification on the production host graph is 76 seconds.
The costs for the simplification are already amortized
for the first analysis of a change plan in the production
scenarios, and observe that it has to be done only once
per graph. We observed a high memory consumption
of almost all available host memory of 12GB for the
non-simplified graph and safe change plan scenario. For
practical applications, an analysis time in the area of 17
minutes for a safe change plan, which is probably the
majority case, would not be acceptable. Therefore, graph
simplification is a valuable tool to provide reasonable
performance for change plan analysis.

D. Lessons Learned and Further Optimizations
The performance of the analysis is largely impacted by

two factors: the size of the start graph and the modeling
techniques used for the production rules. Our graph
simplification algorithm (see §IV-A2) reduces the size
of the start graph, which has a significant impact (cf.
Table III) on the analysis time. We already discussed
lessons learned from the modeling in §III-D and a key
insight is to reduce the number of produced states by
employing the universal quantifier operator in the rules.

Although the performance of our system is reasonable
for the two current application scenarios of change plan
analysis and run-time audit, for the future run-time
enforcement scenario further optimizations would be
required. Optimizations in the modeling, such as creating
a star topology for the VLAN fast edges, would probably
improve the performance, but at the cost of a more
complicated modeling. Therefore, we favor in this work a
trade-off between clarity in the modeling and reasonable
performance. Furthermore, as our results show, the start
time for the analysis can be relatively large, especially

for small infrastructures. One could address this problem
by running GROOVE in a “daemon”-mode, where it is
running with the graph grammar already loaded and
evaluating different change plans.

E. Security Discussion
The effectiveness of our analysis is impacted by the

different parts of our model. As state in §II-C, we require
an authentic view of the topology and configuration of
the infrastructure as well as a faithful model of it. The
information flow rules represent the trust assumptions
on isolation properties and a wrongly selected set of rules
may alter the effectiveness of the analysis. We adopted
a set of rules which have been discussed and argued for
in [4]. The specification and selection of the security policy
depends on the individual application environment. Our
system only finds attack states for configuration changes,
and does not provide a security proof. Regarding the
operations transition model, it is not possible to prove the
correctness of the model, but we employed a systematic
approach to obtain such a model.

Obtaining detection rates for our system is not possible
at the moment, as reference data sets are not available.
This is a similar situation as for the first intrusion
detection systems, which also lacked reference data sets
at the beginning. We will approach this challenge by
deploying our system for practical deployments as future
work.

One potential attack vector is the complexity of SOAP
that can be exploited to break the proper inspection of
the web service requests within the authorization proxy.
Somorovsky et al. [18] show successful attacks against
the authentication of SOAP-based cloud management
interfaces. However, this potential attack vector is rooted
in a software vulnerability of parsing SOAP messages,
not a potential inherent security flaw in our architecture.

VI. Related Work
We discuss our work with related research in a top-

down approach focusing first on the application scenarios
and overall goals of our system, followed by comparisons
on the modeling approaches and underlying concepts.

Formal Approaches to System Management: A
model-based approach for configuration management
has been proposed in [14] which formalizes network
configurations in first-order logic (FOL) and employs
Alloy [13] for model finding. Both theirs and our approach
tackle configuration error detection and mitigation of
misconfigurations, whereas theirs even support configu-
ration synthesis and error fixing. A difference between
the approaches is that theirs is currently limited to
network configurations, whereas our underlying model
supports the entire virtualized infrastructure, i.e., com-
pute, network, and storage. A further difference lies in the

specification of requirements and configuration changes.
In their approach, they are formalized in FOL, whereas in
our approach policies and changes are modeled as graph
transformations, which are applied from an imperative
control program. We believe that change plans specified
in an imperative language with statements resembling
the cloud management operations may be more intuitive
to administrators than FOL due to their background
in scripting languages, rather than logic. Furthermore,
our application scenario of run-time audit automatically
creates change plans based on the interactions.

Policy-based System Administration: Policy-based
system administration tools, such as the popular
CFEngine [5], allow the specification of a desired state
for server configurations. Further, such tools enable the
monitoring and implementation of the configuration to
reach and maintain such a desired state. However, these
tools mostly focus on operating system’ and applications’
configurations, and less on the network and storage
infrastructure. Our system provides a complementary
approach as we do not focus on the configuration of
virtual machines, i.e., servers, but the configuration
and topology of the underlying virtualized infrastruc-
ture, which spans computing, networking, and storage.
PoDIM [8] is a high level language for configuration
management that separates an administrator’s intentions
from low-level changes. However, it mainly focuses on the
configuration of individual systems, although with certain
cross-machines constraints, and importantly it lacks the
analysis of the changes. One could combine PoDIM with
our system, where an administrator specifies high-level
configuration changes in PoDIM, and the translated
low-level changes of the virtualized infrastructure are
analyzed by our system.

Security Policy Verification for Virtualized Infras-
tructures: Existing work in this field covers the areas of
policy specifications [2] and the analysis of virtualized
infrastructures [3], [4] as well as discuss its implications
in detail. However, these efforts lack the ability to handle
dynamic behavior. With our system we close this gap by
introducing the first formal model of changes induced by
management operations in virtualized infrastructures.

Graph Transformations for Security Applications:
Graph transformations and in particular GROOVE have
found applications in other security-related scenarios. A
security case study has been presented in [12] that deals
with the graph-based modeling of physical and digital
environments based on the Portunes [9] framework. Their
overall approach is similar to ours, where the environment
is given as a graph that contains elements of spatial,
physical, and digital kinds. Graph transformations are
used to formalize actions of entities in the environment
graph, e.g., to express mobility of entities. A security
policy is specified as an attack state and the graph

exploration of GROOVE tries to find an environment
graph where the attack state is satisfied by performing
available actions for entities in the environment.

VII. Conclusion and Future Work
In this work, we tackle the problem of misconfigura-

tions in virtualized infrastructures. Our solution consists
of a practical security system that employs a formal model
of cloud management operations in order to proactively
assess their security impact. Building our modeling efforts
upon graph transformation, we offer a unified approach
in an intuitive and expressive form. We propose two
application scenarios for our system – change planning
and run-time auditing – and evaluate our system for
virtualized infrastructures in laboratory and production
environments, which yields performance appropriate for
practical scenarios.
As future work, we will pursue the run-time enforce-

ment direction already outlined in § IV-D. Besides the
challenges already mentioned there, we intend to further
improve the performance of the analysis by GROOVE .
Potential optimizations are described in §V-D, yet come
at the cost of a more complicated modeling. Furthermore,
a large part of future work consists of running user studies
and deploying our system in production environments.
This paper offers a first step for and gives direction to
tackling the problem of misconfigurations in virtualized
infrastructures; we demonstrated the feasibility and per-
formance even for production environments. Evaluating
the system with practitioners will provide further insights
with regard to usability and effectiveness in practical real-
life environments.

Acknowledgments
This research has been partially supported by the

TClouds project2 and TREsPASS project3 funded by
the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement number ICT-
257243 and ICT-318003.

References
[1] Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr,

C. Basic concepts and taxonomy of dependable and secure
computing. Dependable and Secure Computing, IEEE Trans-
actions on 1, 1 (jan.-march 2004), 11 – 33.

[2] Bleikertz, S., and Groß, T. A Virtualization Assurance
Language for Isolation and Deployment. In IEEE Interna-
tional Symposium on Policies for Distributed Systems and
Networks (POLICY’11) (Jun 2011), IEEE.

[3] Bleikertz, S., Groß, T., and Mödersheim, S. Automated
Verification of Virtualized Infrastructures. In ACM Cloud
Computing Security Workshop (CCSW’11) (Oct 2011), ACM.

[4] Bleikertz, S., Groß, T., Schunter, M., and Eriksson,
K. Automated Information Flow Analysis of Virtualized
Infrastructures. In 16th European Symposium on Research in
Computer Security (ESORICS’11) (Sep 2011), Springer.

2http://www.tclouds-project.eu
3http://www.trespass-project.eu

[5] Burgess, M. A Site Configuration Engine. Computing
Systems 8, 2 (1995), 309–337.

[6] Corradini, A., Ehrig, H., Heckel, R., Korff, M., Löwe,
M., Ribeiro, L., and Wagner, A. Handbook of Graph
Grammars and Computing by Graph Transformation: Volume
I. Foundations. Vol. 1 of Rozenberg [17], 1997, ch. Algebraic
Approaches to Graph Transformation - Part II: Single Pushout
Approach and Comparison with Double Pushout Approach,
pp. 247–312.

[7] CSA. Top threats to cloud computing v1.0. Tech. rep., Cloud
Security Alliance (CSA), mar 2010.

[8] Delaet, T., and Joosen, W. PoDIM: A Language for
Gigh-Level Configuration Management. In Proceedings of the
21st conference on Large Installation System Administration
Conference (Berkeley, CA, USA, 2007), LISA’07, USENIX
Association, pp. 21:1–21:13.

[9] Dimkov, T., Pieters, W., and Hartel, P. Portunes:
Representing Attack Scenarios Spanning through the Physical,
Digital and Social Domain. In Proceedings of the 2010
joint conference on Automated reasoning for security protocol
analysis and issues in the theory of security (Berlin, Heidelberg,
2010), ARSPA-WITS’10, Springer-Verlag, pp. 112–129.

[10] ENISA. Cloud computing: Benefits, risks and recommenda-
tions for information security. Tech. rep., European Network
and Information Security Agency (ENISA), nov 2009.

[11] Garfinkel, T., and Rosenblum, M. When Virtual is Harder
than Real: Security Challenges in Virtual Machine Based
Computing Environments. In HOTOS’05: Proceedings of the
10th conference on Hot Topics in Operating Systems (Berkeley,
CA, USA, 2005), USENIX Association, pp. 20–20.

[12] Ghamarian, A. H., de, M. M., Rensink, A., Zambon, E.,
and Zimakova, M. Modelling and analysis using GROOVE.
International Journal on Software Tools for Technology Trans-
fer (STTT) (March 2011).

[13] Jackson, D. Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol. 11 (April 2002), 256–290.

[14] Narain, S. Network Configuration Management via Model
Finding. In Proceedings of the 19th conference on Large
Installation System Administration Conference - Volume 19
(Berkeley, CA, USA, 2005), LISA ’05, USENIX Association,
pp. 15–15.

[15] Oppenheimer, D., Ganapathi, A., and Patterson, D. A.
Why do internet services fail, and what can be done about it?
In Proceedings of the 4th conference on USENIX Symposium
on Internet Technologies and Systems - Volume 4 (Berkeley,
CA, USA, 2003), USITS’03, USENIX Association.

[16] Rensink, A., and Kuperus, J.-H. Repotting the gera-
niums: on nested graph transformation rules. In Graph
transformation and visual modelling techniques, York, U.K.
(2009), A. Boronat and R. Heckel, Eds., vol. 18 of Electronic
Communications of the EASST, EASST.

[17] Rozenberg, G., Ed. Handbook of Graph Grammars and
Computing by Graph Transformation: Volume I. Foundations,
vol. 1. World Scientific Publishing Co., Inc., River Edge, NJ,
USA, 1997.

[18] Somorovsky, J., Heiderich, M., Jensen, M., Schwenk,
J., Gruschka, N., and Lo Iacono, L. All Your Clouds
are Belong to us – Security Analysis of Cloud Management
Interfaces. In Proceedings of the 3rd ACM workshop on Cloud
computing security workshop (New York, NY, USA, 2011),
CCSW ’11, ACM.

[19] VMware. vSphere 5.0 API Reference, Aug 2011.
http://pubs.vmware.com/vsphere-50/topic/com.vmware.
wssdk.apiref.doc_50/right-pane.html.

[20] Winter, A., Kullbach, B., and Riediger, V. An Overview
of the GXL Graph Exchange Language. In Revised Lectures
on Software Visualization, International Seminar (London,
UK, UK, 2002), Springer-Verlag, pp. 324–336.

Notes
1IBM is a trademark of International Business Machines Cor-

poration, registered in many jurisdictions worldwide. Linux is a
registered trademark of Linus Torvalds in the United States, other
countries, or both. Java is a registered trademark of Oracle and/or
its affiliates. Other product and service names might be trademarks
of IBM or other companies.

