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8803 Rüschlikon, Switzerland

Abstract—Several redundancy and recovery schemes have been
developed to enhance the reliability of storage systems. The
effectiveness of these schemes has predominately been evaluated
based on the mean time to data loss (MTTDL) metric, which
has been proven useful for assessing tradeoffs, for comparing
schemes, and for estimating the effect of the various parameters
on system reliability. In the context of distributed and cloud
storage systems, for economical reasons, it is of great importance
to also consider the magnitude along with the frequency of
data loss. We focus on the following reliability metric: the
expected annual fraction of data loss (EAFDL), that is, the
fraction of stored data that is expected to be lost by the system
annually. We present a general methodology to obtain the EAFDL
metric analytically, in conjunction with the MTTDL metric, for
various redundancy schemes and for a large class of failure time
distributions that also includes real-world distributions, such as
Weibull and gamma. As a demonstration, we subsequently apply
this methodology to derive these metrics analytically and to
assess the reliability of a replication-based storage system under
clustered, declustered, and symmetric data placement schemes.
We show that the declustered placement scheme offers superior
reliability in terms of both metrics. Previous work has used
simulation to evaluate the magnitude of data loss, but this is
the first work to analytically assess it, and the first to present a
general theoretical framework for this context.

I. INTRODUCTION

Storage systems suffer from data losses due to component

failures, including disk and node failures, as well as media

failures, including unrecoverable and latent media errors. Over

the years, a large variety of redundancy and recovery schemes

have been developed to enhance the reliability of storage

systems. The effectiveness of these schemes has predominately

been assessed based on the mean time to data loss (MTTDL)

metric, which is typically obtained analytically by using

Markov models [1]. The results obtained are often approximate

because it is often assumed that the times to component fail-

ures are independent and exponentially distributed, which does

not hold in practice [2]. Recently, a methodology for obtaining

MTTDL was presented under general non-exponential failure

and rebuild time distributions, which therefore does not involve

any Markov analysis [3]. The MTTDL metric has been proven

useful for assessing tradeoffs, for comparing schemes, and

for estimating the effect of various parameters on system

reliability [4], [5], [6], [7].

Data losses are also encountered in the context of distributed

and cloud storage systems. Therefore replication and recovery

protocols are employed to cope with this issue. However,

in this context, it is of great importance to consider the

annual amount of data lost along with the time until data loss

occurs. For example, the Reduced Redundancy Storage (RRS)

option within Amazon S3 enables customers to store data at

a desired level of redundancy. The RRS option stores objects

on multiple devices across multiple facilities, providing 400

times the durability of a typical disk. The RRS is designed to

provide 99.999999999% (eleven nines) durability and 99.99%

availability of data over a given year. This durability level

corresponds to an average annual expected loss of a fraction

of 10−11 of the data stored in the system [8]. Such data loss

events have also been documented in practice by Yahoo! [9],

LinkedIn [10] and Facebook [11]. In our quest to reduce the

amount of data lost, it is imperative to assess the implications

of system design choices not only on the frequency of data

loss events, which is captured by the MTTDL metric, but also

on the amount of data lost in each loss event. Such metrics are

also of importance in the context of peer-to-peer (P2P) storage

systems [12].

In this work, we consider the following reliability metric:

the expected annual fraction of data loss (EAFDL), that

is, the fraction of stored data that is expected to be lost

by the system annually. We subsequently demonstrate that

this metric can be evaluated in parallel with the MTTDL.

Furthermore, the EAFDL, just as the MTTDL metric, tends

to be insensitive to the failure time distributions within the

large class defined in [3], which also includes real-world

distributions, such as Weibull and gamma. As a demonstration,

we subsequently apply the methodology developed to obtain

these metrics and assess the reliability of a replication-based

storage system under clustered, declustered, and symmetric

data placement schemes. The MTTDL and EAFDL metrics

are derived analytically. The results obtained reveal that the

declustered placement scheme offers superior reliability in

terms of both metrics.

Note that the EAFDL metric is meant to complement, not

to replace the traditional MTTDL, which yields an estimation

of the frequency of data losses. These two metrics provide

a useful profile of the size and frequency of data losses.

Depending on the application and underlying service, some

providers may prefer frequent, small losses, whereas others

may prefer fewer loss events even if the loss penalty is larger

[13]. For example, in the case of Facebook, each data loss

event reportedly incurs an additional high fixed cost that is

not proportional to the amount of data lost. It is therefore

preferable to have fewer incidents of data loss with more data

each than more incidents with less data [13]. Consequently,

for storage systems with similar EAFDL, the most preferable



system would be the one with the maximum MTTDL.

The remainder of the paper is organized as follows. Section

II provides a survey of the relevant literature on reliability

metrics. Section III describes the storage system model and the

corresponding parameters considered. Section IV presents the

general framework and methodology for deriving the EAFDL

metric. Subsequently, this metric is evaluated analytically in

Section V for the case of replication-based storage systems.

Closed-form expressions for the clustered, declustered, and

symmetric placement schemes are derived. Section VI shows

the reliability of the clustered and declustered placement

schemes for r = 2, 3, 4. Section VII provides a discussion
on the use and interpretation of the EAFDL metric. Finally,

we conclude in Section VIII.

II. RELATED WORK

The Normalized Magnitude of Data Loss (NOMDL) metric

was proposed in [6]. It measures the expected amount of data

lost per usable terabyte within a mission interval. It is stated

that this metric could be evaluated analytically using Markov

chain models, but it is argued that this approach should not

be further pursued because Markov models do not accurately

capture the performance of storage systems. Subsequently, it

is suggested to use Monte Carlo simulation to calculate the

NOMDL. In this paper, we present (and validate by means

of simulation) an analytical approach that does not involve

any Markov analysis, and therefore avoids the deficiencies of

Markov models.

The Fraction of Data Loss Per Year (FDLPY) metric, which

is equivalent to the EAFDL metric, was considered in [12].

The impact of various placement schemes on the FDLPY

and MTTDL metrics was assessed by means of simulation.

Furthermore, the MTTDL was estimated analytically, although

the “buddy” and “global” placement schemes correspond to

the clustered and declustered schemes that were evaluated

analytically in [14], [15]. The present work is the first to

theoretically analyze the expected annual fraction of data loss

and obtain closed-form expressions that allow its dependence

on the various system parameters to be assessed.

III. STORAGE SYSTEM MODEL

The storage system considered comprises n storage devices
(nodes or disks), with each device storing an amount c of data,
such that the total storage capacity of the system is n c. Modern
data storage systems use various forms of data redundancy

to protect data from device failures. When devices fail, the

redundancy of the data affected is reduced and eventually lost.

To avoid irrecoverable data loss, the system performs rebuild

operations that use the data stored in the surviving devices

to reconstruct the temporarily lost data, thus maintaining the

initial data redundancy. In the remainder of the paper we

present the methodology for obtaining the EAFDL for systems

using data replication. Note, however, that this methodology

is quite general in that it can also be directly applied to obtain

the EAFDL for systems employing other redundancy schemes,

such as the erasure coded system considered in [15].

TABLE I
NOTATION OF SYSTEM PARAMETERS

Parameter Definition

n number of storage devices
c amount of data stored on each device
r replication factor
k spread factor of the data placement scheme
b reserved rebuild bandwidth per device
1/λ mean time to failure of a storage device

U amount of user data stored in the system (U = n c/r)
1/µ time to read an amount c of data at a rate b from a device

(1/µ = c/b)

In a replication-based storage system, user data is replicated

r times with the r replicas, also referred to as copies, stored
in the system in such a way that no two related replicas are

in the same device. The amount of user data U stored in the
system is then given by

U =
n c

r
. (1)

The notation used is summarized in Table I. The parameters

are divided according to whether they are independent or

derived and listed in the upper and the lower part of the table,

respectively.

Upon a device failure, its data have r−1 replicas left, which
are stored in some or all of the remaining n − 1 devices.
The system subsequently rebuilds the lost copies (replicas)

of this data by recovering them from the surviving devices.

When the rebuild operation completes, the redundancy of this

data is restored to the initial factor of r replicas. A certain
proportion of the device bandwidth is reserved for recovery

with b denoting the actual reserved rebuild bandwidth per
device.

To illustrate the usefulness of the proposed EAFDL metric,

we assume that the lifetimes of devices are independent and

identically distributed with a mean of 1/λ. An extension of
the analysis to address also correlated failures is part of future

work. We further consider storage devices with failure time

distributions that belong to the large class defined in [3], which

includes real-world distributions, such as Weibull and gamma

as well as exponential distributions. The storage devices are

highly reliable when the ratio of the fixed time 1/µ to read
all data from a device at a rebuild bandwidth of b, given by

1

µ
=

c

b
, (2)

to the mean time to failure of a device 1/λ is small, that is,
when

λ

µ
=

λ c

b
≪ 1 . (3)

An interesting property of this class of failure time distribu-

tions is that the MTTDL reliability metric of a replication-

based storage system tends to be insensitive to the distribution,

that is, the MTTDL depends only on the mean value of the

distribution. We will show that this also holds for the EAFDL

metric.
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In this work, we consider only intelligent rebuild schemes,

that is, schemes that prioritize the rebuild of the data with the

least amount of redundancy left [3], [14], [15], [16], [17], [18].

IV. DERIVATION OF MTTDL AND EAFDL

Here we present the general methodology for deriving the

EAFDL metric. It builds on the general framework for deriving

the MTTDL developed in [14], [3], which we briefly review

next.

At any point of time, the system can be thought to be in

one of two modes: normal mode and rebuild mode. During the

normal mode, all data in the system has the original amount

of redundancy and there is no active rebuild process. During

the rebuild mode, some data in the system has less than the

original amount of redundancy and there is an active rebuild

process that is trying to restore the lost redundancy. A transi-

tion from normal mode to rebuild mode occurs when a device

fails; we refer to the device failure that causes this transition

as a first-device failure. Following a first-device failure, a

complex sequence of rebuild operations and subsequent device

failures may occur, which eventually leads the system either to

an irrecoverable data loss (DL) with probability PDL or back
to the original normal mode by restoring all replicas, which

occurs with probability 1 − PDL. Typically, the rebuild times
are much shorter than the times to failure. Consequently, the

time required for this complex sequence of events to complete

is negligible compared with the time between successive first-

device failures, and therefore can be ignored.

Let Ti be the ith interval of a fully operational period,
that is, the time interval from the time t that the system is
brought to its original state until a subsequent first-device

failure occurs. As the system becomes stationary, the length

of Ti converges to T . In particular, for a system comprising n
devices with a mean time to failure of a device equal to 1/λ,
the expected length of T , is given by [3]

E(T ) := lim
i→∞

E(Ti) = 1/(nλ) . (4)

Note that the methodology presented here does not involve

any Markov analysis and holds for general failure time distri-

butions, which can be exponential or non-exponential, such as

the Weibull and gamma distributions.

As each first-device failure could result in data loss with

probability PDL, the expected number of first-device failures
until data loss occurs is 1/PDL. Thus, by neglecting the
effect of the relatively short transient rebuild periods of the

system, the MTTDL is essentially the product of the expected

time between two first-device-failure events, E(T ), and the
expected number of first-device-failure events, 1/PDL:

MTTDL ≈
E(T )

PDL
. (5)

Let H denote the corresponding amount of data lost con-
ditioned on the fact that a data loss occurred. The metric

of interest, that is, the expected annual fraction of data

loss (EAFDL), is subsequently obtained as the ratio of the

expected amount of data lost to the expected time to data loss

normalized to the amount of user data:

EAFDL =
E(H)

MTTDL · U
, (6)

with the MTTDL expressed in years.

Let us also denote by Q the unconditional amount of data
lost upon a first-device failure. Note that Q is unconditional
on the event of a data loss occurring in that it is equal either

to H if the system suffers a data loss prior to returning to the
normal operation or to 0 otherwise, that is,

Q =

{

H , if DL

0 , if no DL .
(7)

Therefore, the expected amount of data lost, E(Q), upon a
first-device failure is given by

E(Q) = PDLE(H) . (8)

The EAFDL can alternatively be obtained as follows

EAFDL =
E(Q)

E(T ) · U
, (9)

with the E(T ) expressed in years.

A. Reliability Analysis

Here we demonstrate how to obtain the EAFDL analyti-

cally by extending the methodology presented in [3] for the

derivation of the PDL and MTTDL. The EAFDL is obtained
using (9), which also requires the evaluation of E(Q). More
specifically, E(Q) is derived by considering the direct path
approximation, which under condition (3) accurately assesses

the reliability metrics of interest. Next we present the general

outline of the methodology in more detail.

1) Exposure Levels: At time t, let Dl(t) be the amount of
data that has lost l replicas, with 0 ≤ l ≤ r. The system is in
exposure level e at time t, 0 ≤ e ≤ r, if

e = max
Dl(t)>0

l. (10)

In other words, the system is in exposure level e if there exists
data with r − e copies, but there is no data with fewer than
r − e copies in the system, that is, De(t) > 0, and Dl(t) = 0
for all l > e. At t = 0, Dl(0) = 0 for all l > 0 and D0(0) is
the total amount of data stored in the system. Device failures

and rebuild processes cause the values of D1(t), · · · ,Dr(t) to
change over time, and when a data loss occurs, Dr(t) > 0.
2) Direct Path to Data Loss: Consider the direct path of

successive transitions from exposure level 1 to r. In [14] it was
shown that PDL can be approximated by the probability of the
direct path to data loss, PDL,direct, when devices are generally
reliable, that is,

PDL ≈ PDL,direct =

r−1
∏

e=1

Pe→e+1, (11)

where Pe→e+1 denotes the transition probability from expo-

sure level e to e + 1. In fact, the above approximation holds
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for arbitrary device failure time distributions and the relative

error tends to zero as λ/µ tends to zero [3].
As the direct path to data loss dominates the effect of all

other possible paths to data loss considered together, it follows

that the amount of data loss H can be approximated by that
corresponding to the direct path:

H ≈ Hdirect . (12)

Also, from (7) and (12) it follows that

Q ≈

{

Hdirect , if DL follows the direct path

0 , otherwise .
(13)

Consequently, to derive the amount of data lost, it suffices to

proceed by considering the H and Q metrics corresponding
to the direct path to data loss.

3) Amount of Data to Rebuild and Rebuild Times at Each

Exposure Level: Consider the direct path to data loss and let

the amount of most-exposed data when entering exposure level

e be denoted by Ae, e = 1, · · · , r. For e < r, Ae represents

the amount of data that needs to be rebuilt in that exposure

level. In particular, upon the first-device failure, it holds that

A1 = c. Note that the amount of data lost, H , is the amount
of most-exposed data when entering exposure level r, which
can no longer be recovered and therefore is irrecoverably lost,

that is,

H = Ar . (14)

Let us also denote the rebuild times of the most-exposed data

at each exposure level in this path by Re with means E(Re),
e = 1, · · · , r − 1. Next, we will derive the conditional values
for the Ae and Re random variables given that the system

goes through this direct path to data loss, and then we will

compute the probabilities Pe→e+1. Let αe be the fraction

of the rebuild time Re still left when another device fails

causing the exposure level transition e → e + 1. In [3], it
was shown that, under conditions (3), αe is approximately

uniformly distributed between zero and one, that is,

αe ∼ U(0, 1), e = 1, · · · , r − 1 . (15)

Let ~α denote the vector (α1, . . . , αr−1). Note that for the
assessment of MTTDL only the first r−2 elements are needed,
whereas for the assessment of EAFDL also the last element

αr−1 is required.

4) Estimation of PDL and Q: Consider a realization of the
direct path to data loss with fractions αe, e = 1, . . . , r − 1
of the rebuild times Re, e = 1, . . . , r − 1. Denote the vectors
(α1, · · · , αr−1) by ~α and (R1, · · · , Rr−1) by ~R. Let also ~A be
the vector (A1, · · · , Ar) of the most-exposed data when enter-
ing exposure levels 1, . . . , r. Clearly, Ae depends on the values

(α1, · · · , αe−1). The length of the corresponding rebuild time
Re depends on the amount of data to be recovered Ae, and the

rebuild speed which is determined based on the data placement

scheme and the rebuild bandwidth. Subsequently, a transition

probability Pe→e+1 from exposure level e to e + 1 depends
on the length of the corresponding rebuild time Re and the

aggregate failure rate of all devices that can potentially cause

such a transition. Thus,

Ae = Ae(α1, · · · , αe−1) = f(α1, · · · , αe−1) , (16)

Re = Re(α1, · · · , αe−1) = g(α1, · · · , αe−1) , (17)

Pe→e+1 = Pe→e+1(α1, · · · , αe−1) = h(α1, · · · , αe−1) ,
(18)

for some functions f(.), g(.), and h(.).
From (14) and (16), it follows that the amount of data lost

conditioned on ~α is then given by

H(~α) = Ar(~α) . (19)

Also, the unconditional amount of data lost Q upon a first-
device failure is given by

Q ≈

{

H(~α) , if DL under ~α

0 , otherwise .
(20)

From (11) and (18), it follows that

PDL(~α) ≈

r−1
∏

e=1

Pe→e+1(α1, · · · , αe−1) . (21)

By taking the expectation of PDL(~α), (21) yields

PDL = E[PDL(~α)] . (22)

By taking the expectation of Q, (20) yields

E(Q) = E[PDL(~α)H(~α)] = E[Q(~α)] , (23)

where

Q(~α) , PDL(~α)H(~α) , (24)

and by using (19)

Q(~α) = PDL(~α)Ar(~α) , (25)

The MTTDL and EAFDL are subsequently obtained based

on the quantities of interest, PDL and E(Q), via Eqs. (5) and
(9), respectively.

From the preceding, it follows that the methodology de-

veloped for obtaining the MTTDL can be extended in a

straightforward manner to also obtain the EAFDL metric.

Next, as an application, we will show in detail the derivation

of EAFDL in the context of replication-based storage systems

that use clustered, declustered, and symmetric data placement

schemes to protect data from node failures [3], [14], [17], [18].

V. REPLICATION-BASED SYSTEMS

Here we consider a storage system that uses replication to

protect data from device failures, in particular node failures as

presented in [14]. The exact way in which the r replicas of
each data are stored depends on the placement scheme used.

First, we consider the clustered and declustered placement

schemes, as shown in Fig. 1.

Clustered Placement (CP): In this placement scheme, the n
nodes are divided into disjoint sets of r nodes and all nodes
in each set are mirrors of each other, that is, they store replicas

of the same data.
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Fig. 1. In a replication-based system with n devices and a replication factor
of r, the clustered placement scheme spreads the replicas of data on each
device across r−1 other devices, whereas declustered placement spreads the
replicas of data on each device across n− 1 other devices. An example with
n = 6 and r = 2, 3 is shown above.

Declustered Placement (DP): In this placement scheme, all
(

n

r

)

possible ways of placing r replicas across n nodes are
equally used to store the data in the system. In this way, the

r − 1 replicas of the data stored on each node are equally
spread across the remaining n − 1 nodes.
These two placement schemes represent the two extremes

in which the copies of the data on the failing node are spread

across the remaining nodes and hence the extremes of the

degree of parallelism that can be exploited when rebuilding

this data. For declustered placement, the copies are spread

equally across all remaining nodes, whereas for clustered

placement, the copies are spread across the smallest possible

number of nodes.

A. Rebuild Model

As mentioned in Section III, we consider an intelligent

rebuild scheme. This means, that in the case of two or more

failures, the system always attempts to first recover the copies

(replicas) of the data that has the least number of replicas left.

In declustered placement, the surviving replicas that the

system has to read to recover the lost replicas are spread across

all surviving nodes. Therefore, in this context, we consider a

distributed rebuild method, in that the data to be rebuilt is

read from all the nodes in which it is present, and copied to

(reserved) spare space in all surviving nodes first and then

to a new node. This enables a fast parallel rebuild process

which reduces rebuild time and improves reliability [14], [19].

As mentioned above, during the rebuild process, a read-write

bandwidth of b is reserved at each node exclusively for the
rebuild. In particular, as data is being read from and written

to each surviving node, the total read-write rebuild bandwidth

b of each node is split equally between the reads and the writes,
such that the effective rate of rebuild is equal to b/2.
For the clustered placement, when a node fails, data is read

from any one of the surviving nodes of the cluster to which

the failed node belonged and written to a spare node. Data

is being read from one node and written to another using a

rebuild bandwidth of b.

B. Amount of Data to Rebuild at Each Exposure Level

The amount Ae of the most-exposed data when entering

exposure level e can be derived from [14, Eqs.(7),(8)]. For the
two placement schemes considered, this gives

Ae =























c
e−1
∏

j=1

αj , for Clustered Placement (CP)

c

e−1
∏

j=1

αj

(r − j)

(n − j)
, for Declustered Placement (DP)

for e = 1, . . . , r . (26)

C. Rebuild Times at Each Exposure Level

The rebuild time Re at exposure level e depends on the
amount of most-exposed data and the scheme used for recov-

ering this data. In clustered placement, the amount of exposed

data Ae is recovered by reading this data from one node and

writing it to a new spare node, such that the total rebuild

bandwidth is b. In declustered placement, the data is read from
and written to all surviving n − e nodes in parallel such that
the total rebuild bandwidth is (n − e)b/2. Consequently,

Re =











Ae

b
, for CP

2Ae

(n − e) b
, for DP

for e = 1, . . . , r − 1 . (27)

Substituting (26) into (27) yields

Re =























c

b

e−1
∏

j=1

αj , for CP

2 c

(n − e) b

e−1
∏

j=1

αj

(r − j)

(n − j)
, for DP

for e = 1, . . . , r − 1 .
(28)

D. Exposure Level Transition Probability

The transition probability Pe→e+1 from exposure level e to
e + 1 depends on the duration of the corresponding rebuild
time Re, the number ñ(e) of nodes whose failure can cause
such a transition and the mean time to failure of a node 1/λ.
In [3, Eq.(33)] it was shown that for highly reliable storage

devices, it holds that

Pe→e+1 ≈ ñ(e)λRe , (29)

where the relative error in the approximation goes to zero as

λ/µ goes to zero. For clustered and declustered placement,
ñ(e) is equal to r − e and n − e, respectively. Thus,

Pe→e+1 ≈

{

(r − e)λRe , for CP

(n − e)λRe , for DP

for e = 1, . . . , r − 1 . (30)
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Substituting (28) into (30) yields

Pe→e+1 ≈























(r − e)λ c

b

e−1
∏

j=1

αj , for CP

2λ c

b

e−1
∏

j=1

αj

(r − j)

(n − j)
, for DP

for e = 1, . . . , r − 1 . (31)

1) Estimation of PDL and Q: Substituting (31) into (21)
yields

PDL(~α) ≈























(

λc

b

)r−1

(r − 1)!

r−2
∏

e=1

αr−e−1
e , for CP

(

2λc

b

)r−1 r−2
∏

e=1

(

αe

r − e

n − e

)r−e−1

, for DP

(32)

Substituting (32) and (26) into (25) yields

Q(~α) ≈























(

λ c

b

)r−1

c (r − 1)!

r−1
∏

e=1

αr−e
e , for CP

(

2λ c

b

)r−1

c

r−1
∏

e=1

(

αe

r − e

n − e

)r−e

, for DP

(33)

Unconditioning (32) and (33) on ~a using (22) and (23), re-
spectively, and given that its elements are independent random

variables approximately distributed according to (15) such that

E(αk
e) ≈ 1/(k + 1), yields

PDL ≈



















(

λc

b

)r−1

, for CP

(

2λc

b

)r−1
1

(r − 1)!

r−2
∏

e=1

(

r − e

n − e

)r−e−1

, for DP

(34)

and

E(Q) ≈



















(

λ c

b

)r−1
c

r
, for CP

(

2λ c

b

)r−1
c

r!

r−1
∏

e=1

(

r − e

n − e

)r−e

, for DP

(35)

Substituting (34) and (35) into (5) and (9), respectively, and

making use of (1) and (4) yields

MTTDL ≈



















(

b

λ c

)r−1
1

nλ
, for CP

(

b

2λ c

)r−1
(r − 1)!

nλ

r−2
∏

e=1

(

n − e

r − e

)r−e−1

, for DP

(36)

and

EAFDL ≈



















(

λ c

b

)r−1

λ , for CP

(

2λ c

b

)r−1
λ

(r − 1)!

r−1
∏

e=1

(

r − e

n − e

)r−e

, for DP

(37)

Note that the MTTDL derived in Eq. (36) for the two place-

ment schemes is in agreement with Eqs. (17) and (20) of [14].

Remark 1: As λ/µ tends to zero, the relative errors in the
approximations of MTTDL in (36) and EAFDL in (37) also

tend to zero.

E. The Amount of Data Lost Paradox

The metric of interest EAFDL can alternatively also be

obtained via (6), which requires the derivation of E(H), the
expected amount of data lost. As we will demonstrate in this

section, this derivation is not straightforward; on the contrary,

it may easily lead to an erroneous result if it is not properly

performed.

From (6) it follows that the expected amount of data lost is

given by

E(H) = MTTDL · EAFDL · U . (38)

Substituting (36) and (37) into (38), and recalling (1), yields

E(H) ≈











c

r
, for CP

c

r

1
(

n−1
r−1

) , for DP .
(39)

Alternatively, let us now consider the direct derivation of

E(H). From (19) and (26) it follows that

H(~α) =























c

r−1
∏

j=1

αj , for CP

c

r−1
∏

j=1

αj

(r − j)

(n − j)
, for DP .

(40)

The expected amount E(H) of data lost is obtained by
unconditioning (40) on ~a, that is E(H) = E[H(~α)].
Considering that the elements of ~a are independent random
variables approximately distributed according to (15) such that

E(αe) ≈ 1/2, e = 1, . . . , r − 1, yields for the E(H)

E(Herr) ≈











c

2r−1
, for CP

c

2r−1

1
(

n−1
r−1

) , for DP .
(41)

Comparing (39) and (41) reveals that E(Herr) is approxi-
mately equal to E(H) only when r = 2; in all other cases
E(Herr) is smaller than E(H) by a factor of 2r−1/r. The
explanation for this paradox is the following. For a rebuild

time Re, the uniform distribution of αe in the interval (0, 1),
given by (15), holds under the assumption that there is a failure

during this rebuild period. Note that no other assumptions are

required to establish the uniform distribution of ae, i.e., for

example no assumptions on subsequent failures that may lead

to data loss. However, the estimation of E(H) is conditioned
on the fact that data loss does occur, which presupposes that

r−1 failures do occur during r−1 successive rebuilds. Under
this conditioning, ae is no longer uniformly distributed. To

further illustrate this issue, let us consider the time at which

the second failure occurred during the first rebuild time R1.

If no assumptions are made on subsequent failures that may

6



lead to data loss, according to (15), α1 is uniformly distributed

between zero and one. Moreover, for r > 2 and according to
(26) and (27), the duration of the second rebuild period R2

is proportional to α1, that is, R2 ∼ α1, which implies that

R2 is also uniformly distributed in the interval (0, R2(max)).
However, conditioning on the fact that an additional third

failure occurs during the rebuild time R2, it is more likely

that the R2 period is long rather than short. This implies

that, under this conditioning, neither R2 nor α1 is uniformly

distributed. In this context, only the distribution of αr−1 is

uniform in the interval (0, 1); all other distributions of αe,

e = 1, . . . , r−2, are not. Therefore, the derivation of E(Herr)
in (41) is incorrect; it underestimates the actual value because

it incorrectly considers the short rebuild periods to be equally

likely as the long ones.

F. Symmetric Schemes

Here we consider the symmetric placement schemes that

lie between the clustered and declustered schemes. For each

node in the system, let its redundancy spread factor k denote
the number of nodes over which the data on that node and its

corresponding redundant data are spread [17]. In a symmetric

placement scheme, the r−1 replicas of the data on each node
are equally spread across k−1 other nodes, the r−2 replicas
of the data shared by any two nodes are equally spread across

k − 2 other nodes, and so on. According to this scheme, the
system is effectively divided into n/k disjoint groups of k
nodes. Each group contains an amount of U/k user data along
with all of the corresponding replicas that are placed in its

k nodes in a declustered manner. Clearly, the clustered and
declustered placement schemes are special cases of symmetric

placement schemes in which k is equal to r and n, respectively.
Let us denote by MTTDLk and EAFDLk the metrics

corresponding to a group. Clearly, MTTDLk is obtained from

(36) by replacing n with k. The MTTDL(k) of the system,
which comprises n/k groups, is given by MTTDL(k) =
MTTDLk/(n/k). Thus,

MTTDL(k) ≈


















(

b

λ c

)r−1
1

nλ
, for k = r

(

b

2λ c

)r−1
(r − 1)!

nλ

r−2
∏

e=1

(

k − e

r − e

)r−e−1

, for r < k ≤ n .

(42)

Similarly, EAFDLk is obtained from (37) by replacing n with
k. The EAFDL(k) of the system is equal to that of a group,
that is, EAFDL(k) = EAFDLk). Thus,

EAFDL(k) ≈


















(

λ c

b

)r−1

λ , for k = r

(

2λ c

b

)r−1
λ

(r − 1)!

r−1
∏

e=1

(

r − e

k − e

)r−e

, for r < k ≤ n .

(43)

TABLE II
RANGE OF VALUES OF DIFFERENT SIMULATION PARAMETERS

Parameter Definition Range

n number of storage nodes 4 to 64
c amount of data stored on each node 12 TB
r replication factor 2, 3, 4
b reserved rebuild bandwidth per node 96 MB/s
1/λ mean time to failure of a node 350 to 104 h

U amount of user data stored in the system 24 to 192 TB
1/µ time to read an amount c of data at a rate

b from a node
34.7 h

Remark 2: From (42) and (43) it follows that, for r > 2
and n > 4, MTTDL(k) is increasing in k, and EAFDL(k) is
decreasing in k. Consequently, within the class of symmetric
placement schemes considered, the MTTDL(k) is maximized
and the EAFDL(k) minimized when k = n. Therefore, the
maximum MTTDL and the minimum EAFDL are achieved

by the declustered placement scheme.

VI. NUMERICAL RESULTS

Here we assess the reliability of the clustered and declus-

tered schemes in terms of the MTTDL and EAFDL met-

rics. We accomplish this using both theoretical predictions

and event-driven simulations. From (36) and (37), we obtain

closed-form expressions for the MTTDL and EAFDL metrics

for r = 2, 3, 4. The MTTDL expressions were initially derived
in [3] for the large class of failure time distributions considered

and are included in this paper for completeness.

Typical parameter values were assumed for the simulations,

the same as in [3], which are listed in Table II. The parameter

1/λ was chosen to be in the range of 350 h to 10, 000 h,
which yields a λ/µ ratio in the range of 0.1 to 0.0034. The
value of 10, 000 h is of the same order as that found in
Google storage clusters where nodes were observed to become

unavailable with an MTBF of 4.3 months, with roughly 10%

of these events requiring a rebuild as they last more than

15 minutes [16]. As discussed in Section III, the theoretical

analysis holds for λ/µ ratios satisfying Eq. (3). Accordingly,
we observed that the simulation results match well with

the theoretical predictions for lower λ/µ values. Here we
show the results for λ/µ = 0.0034 for replication factors
2 and 3, and for λ/µ = 0.1 for replication factor 4. As
expected, the simulation results for the former case match with

the theoretical predictions, whereas for the latter case they

deviate. Despite the deviation in the latter case, the theoretical

estimates still lie within the same order of magnitude as the

simulation results, and accurately capture the effect of the

system size on the reliability metrics considered. According

to Remark 1, and as noted in [3], if for a given value of λ/µ
the simulation results match well with the theoretical results,

they should also match well for all lower values of λ/µ. In
conjunction with the observations made for λ/µ = 0.0034, this
implies that the theoretical predictions will also be accurate for

all values λ/µ < 0.0034.
To demonstrate the validity of the theoretical model for

non-exponential failure time distributions, the simulations use

Weibull distributions with shape parameters greater than one.
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Fig. 2. MTTDL vs. number of nodes for a replication factor of two.

In contrast to an exponential distribution, which implies a

constant failure rate over time, a Weibull distribution with a

shape parameter greater than one indicates increasing failure

rates over time. This is a reasonable model for lifetimes of

realistic nodes. However, as predicted by theory, the choice

of shape parameter, and hence the choice of failure time

distribution does not significantly affect the results. Therefore,

as an example we show the results only for a shape parameter

equal to 1.5. For each set of parameters, the simulation is
run at least 100 times and the MTTDL and EAFDL values,

along with their 95% confidence intervals are estimated. The
confidence intervals are not clearly visible because their length

is about the height of the symbols that are used to show the

mean values.

Replication Factor 2:

MTTDL ≈

{

b/(n c λ2) , for CP

b/(2n c λ2) , for DP ,
(44)

and

EAFDL ≈

{

λ2 c/b , for CP

2λ2 c/[(n − 1) b] , for DP .
(45)

Figs. 2 and 3 illustrate that the theoretical results closely

match the simulation ones for a small number of nodes. For

a large number of nodes, for example n = 64, simulation
results slightly deviate from the theoretical ones. This is due

to the fact that λ/µ = 0.0034 is no longer small enough
for the approximations to hold. However, we observed that

if the failure time distribution were exponential, then there

would be no deviation in this range. Both the clustered and

the declustered placement schemes have an MTTDL that

is inversely proportional to the number of nodes, with the

declustered placement having a slightly worse MTTDL (by

a factor of two) than the clustered placement. In contrast, the

EAFDL for the clustered placement scheme is proportional to

the number of nodes, whereas the EAFDL for the declustered
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distribution with shape
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Fig. 3. EAFDL vs. number of nodes for a replication factor of two.

placement scheme is essentially independent of the number of

nodes. Consequently, the declustered placement scheme offers

a higher reliability than the clustered one.

Replication Factor 3:

MTTDL ≈

{

b2/(n c2 λ3) , for CP

(n − 1) b2/(4n c2 λ3) , for DP ,
(46)

and

EAFDL ≈

{

λ3 c2/b2 , for CP

8λ3 c2/[(n − 1)2 (n − 2) b2] , for DP .
(47)

Figs. 4 and 5 illustrate that the theoretical results closely

match the simulation ones. As seen from the above equations,

the MTTDL of clustered placement is inversely proportional

to the number of nodes, whereas the MTTDL of declustered

placement is essentially independent of the number of nodes.

The EAFDL of clustered placement scheme is proportional

to the number of nodes, whereas the EAFDL of declustered

placement is essentially inversely proportional to the square of

the number of nodes. Consequently, the declustered placement

scheme offers greatly superior reliability.

Replication Factor 4:

MTTDL ≈

{

b3/(n c3 λ4) , for CP

(n − 1)2 (n − 2) b3/(24n c3 λ4) , for DP ,

(48)

EAFDL ≈

{

λ4 c3/b3 , for CP

48λ4 c3/[(n − 1)3 (n − 2)2 (n − 1) b3] , for DP .

(49)

To ensure that the simulation running times are not pro-

hibitively high, the mean time to failure of a node is chosen to

be equal to 350 h. In this case, it holds that λ/µ = 34.7/350 ≈

0.1, which may not be small enough for the approximations
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of the theoretical analysis to hold. As expected, Figs. 6 and 7

show that the simulation-based MTTDL and EAFDL results

are slightly different than the corresponding theoretical ones.

Nevertheless, for both metrics of interest, the slopes of the

lines in the figures predicted by theory match well with those

reflected from the simulation results. As seen from the above

equations, the MTTDL of clustered placement is inversely

proportional to the number of nodes, whereas the MTTDL

of declustered placement increases essentially proportionally

to the square of the number of nodes. The EAFDL of clustered

placement scheme is proportional to the number of nodes,

whereas the EAFDL of declustered placement is essentially

inversely proportional to the fifth power of the number of

nodes. Consequently, the declustered placement scheme again

offers vastly superior reliability.

VII. DISCUSSION

The expected annual fraction of data loss (EAFDL) metric

was introduced to provide an assessment of the amount of data
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Fig. 6. MTTDL vs. number of nodes for a replication factor of four.
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Fig. 7. EAFDL vs. number of nodes for a replication factor of four.

lost and has to be used cautiously. Suppose, for example, that

EAFDL is equal to 10−3. This does not necessarily imply that

0.1% of the user data is lost each year. To see why, consider
two different storage systems with the same EAFDL, equal

to 10−3, but different MTTDLs, namely 10 years and 100

years. The system with an MTTDL of 10 years is expected

to have more frequent data loss events than the other one.

However, according to (6), upon a data loss event, the former

system is expected to lose only 1% (= E(H)/U) of the data,
whereas the latter is expected to lose 10% of the data. Note
that both MTTDL and EAFDL are expectations of stochastic

random variables, and therefore the actual time to data loss

and the amount of data lost may be very different from their

respective expectations.

The desired reliability profile of a system, that is, the desired

values of MTTDL and EAFDL, depends on the application and

underlying service. If, for example, losing an order of 10% of
the data in a loss event is unacceptable, then only the former

storage system satisfies this requirement. In general, consider
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a requirement that the fraction of stored data that is expected

to be lost by the system in a loss event should not exceed a

value of f . Noting that this fraction is given by E(H)/U , and
according to (6), the following relation should be satisfied

EAFDL ·MTTDL ≤ f . (50)

In another scenario, consider a system comprised of N in-
dependent and identical storage subsystems storing an amount

U of user data each, with reliability characteristics specified
by MTTDL and EAFDL, and operating in parallel. The total

amount of user data Usys stored in the system is then given by

Usys = N U . (51)

The MTTDL of the system, denoted by MTTDLsys, is approx-

imately given by

MTTDLsys ≈
MTTDL

N
. (52)

When a data loss occurs in the system, the expected amount

of data lost, E(Hsys), is equal to the expected amount of data
lost in the corresponding subsystem, that is,

E(Hsys) = E(H) . (53)

According to (6), the EAFDL of the system, denoted by

EAFDLsys, is then given by

EAFDLsys =
E(Hsys)

MTTDLsys · Usys
. (54)

Substituting (51), (52), and (53) into (54), and making use

of (6), yields

EAFDLsys ≈
E(H)

MTTDL · U
= EAFDL . (55)

Consequently, the EAFDL value of the system is approxi-

mately equal to that of the subsystems. Furthermore, if N is
large, the MTTDL is small, and therefore user data may be

lost every year, with the EAFDL expressing the fraction of

stored data that is expected to be lost by the system annually.

VIII. CONCLUSIONS

We considered the expected annual fraction of data loss

(EAFDL) metric, which assesses the reliability level achieved

in the context of distributed and cloud storage systems. This

metric, together with the traditional MTTDL metric, provide

a useful profile of the size and frequency of data losses.

Our work is the first to assess the magnitude of data loss

analytically and demonstrate that the EAFDL and MTTDL

metrics can be evaluated in parallel in a common general

theoretical framework. We derived the EAFDL by extending

the general methodology developed to obtain the MTTDL

of systems using various redundancy schemes and for a

large class of failure time distributions that also includes

the real-world distributions, such as Weibull and gamma. We

subsequently applied this methodology to derive the amount

of data lost in the case of replication-based storage systems

that use clustered and declustered data placement schemes.

The MTTDL and EAFDL metrics were obtained analytically

in closed-form expressions. The results obtained show that

the declustered placement scheme offers superior reliability in

terms of both metrics.

Application of the methodology developed to derive the

EAFDL for systems using other redundancy schemes, such

as erasure codes, is a subject of future work.
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