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Abstract—Ethernet is the predominant Layer-2 network-
ing technology in the datacenter, and evolving into a
economical alternative for high-performance computing
clusters. Ethernet would traditionally drop packets in the
event of congestion, but IEEE is striving to introduce
lossless class services to enable the convergence of storage,
cluster, and IP networks. Losslessness is a simple, well-
known concept that may offer substantial benefits, but
its application in datacenters is hampered by the fear of
ensuing saturation-trees. In this work, we aim to acceler-
ate the deployment of Quantized Congestion Notification
(QCN), which IEEE has standardized, by making it com-
patible with emerging server-rack fabrics. In particular,
we first eliminate the intrinsic unfairness of QCN under
typical fan-in scenarios by installing the congestion points
at inputs instead of at outputs as standard QCN does.
We then demonstrate that QCN at input buffers cannot
always discriminate between culprit and victim flows, and
propose a novel QCN-compatible marking scheme, namely
occupancy sampling. Finally, we also study the interactions
between QCN and PAUSE. We have implemented our
methods in a next-generation, server-rack fabric with 640
100G ports. Our experiments on both 10G and 100G links
show that the combined approach rectifies QCN’s fairness
and reduces the PAUSE period. Effectively, the proposed
enhancements are a significant step forward in scaling
converged datacenter networks.

I. INTRODUCTION

Ethernet, which is the prevailing networking technol-
ogy in datacenters, faces a challenge. If an Ethernet
network prevents packet drops (i.e., if it is lossless), it
can easily choke under bursty workloads, thus producing
less and frequently delayed useful work. However, if it
drops packets (lossy), it has to disengage from encom-
passing Fibre Channel over Ethernet (FCoE) and RDMA
over Converged Ethernet (RoCE), which port storage and
cluster traffic in converged, lossless LAN networks.

For computer architects and the general parallel com-
puting community, lossless networks are not that new.
Examples are PCI, Infiniband, and many proprietary,
on-chip and off-chip computer interconnects. However,

most of today’s datacenter networks are lossy. Lossy
datacenter networks are known to have several serious
performance issues with distributed applications.

In TCP incast, for example, storage flows that fan-
in into a server experience a throughput collapse in
synchrony due to repetitive packet drops. Numerous
proposals have been made to mitigate this effect, but the
most effective and intuitive one is to enable link-level
flow control in the network [1].

The benefits of lossless networks accrue when con-
sidering scale-out workloads, such as real-time, delay-
sensitive applications that are typical for commercial
datacenters or BigData analytics. As suggested in [2],
a service that distributes work to 100 nodes may ex-
perience unacceptable delay on 63% of the times it
is deployed even if only one percent of the (network)
flows is delayed; recovering from packets drops in
software (e.g., using TCP retransmission timers) can
increase flow completion times (FCTs) by more than an
order of magnitude. Lossless networks were shown to
reduce query completion times for Partition/Aggregate
workloads [3], [4]. Furthermore, lossless operation is
equally important for virtual, software-based networks;
enabling flow control in both the physical network and
the virtual switch was shown to reduce FCTs by up to
7x for Partition/Aggregate queries [5].

A. Lossless Ethernet
To enable lossless services, IEEE first introduced

(802.3x) PAUSE, a link-level flow control similar to
Stop&Go. Recently, IEEE also standardized Priority
Flow Control (PFC) for Converged Enhanced Ether-
net (CEE) networks. The different priority levels are
assigned private buffers in front of links. Within each
priority, PFC acts as 802.3x PAUSE, but a PAUSEd
priority does not affect the others, similarly to virtual
channel flow control in multiprocessor networks [6].

Nevertheless, the industry is still reluctant to enable
link-level flow control, mainly because it can induce



2

saturation trees. These are formed when a number of
congested flows fill up the link buffers in front of a
link. Because of the flow control, the backlogs from
such congested flows can backpropagate—similar to the
flits of two colliding packets in wormhole routing— thus
forming a saturation tree. The bad news is that such
congestion spreading can block any packet, regardless
of whether it belongs to a congestive flow (culprit) or to
an innocent flow (victim).

To counteract saturation trees, IEEE (802.1Qau) has
standardized a congestion control scheme for Ether-
net networks, called Quantized Congestion Notification
(QCN) [7]. QCN installs Congestion Points (CPs) at
switch output queues. Each CP samples the arriving
frames (i.e., Ethernet packets) according to a sampling
interval, and characterizes the queue congestion by two
state variables: position (offset), defined with respect to
an equilibrium setpoint Qeq as Qoff(t) , Q(t) − Qeq,
and velocity, Qδ(t) , Q(t) − Qold. When the CP
detects congestion, in the sense that the feedback value
Fb , Qoff + w · Qδ is positive, it sends a Congestion
Notification Message (CNM) to the source of the most
recent frame (or flow), which is considered the culprit.

Converged Network Adapters (CNAs) at the sources
react to CNMs by instantiating set-aside queues and rate
limiters for the congested flows. In response to CNMs, a
QCN rate limiter multiplicatively decreases its injection
rate as a function of the feedback value; in the absence
of CNMs, it autonomously increases the injection rate.

QCN is an elegant solution for eliminating saturation
trees, but its implementation in real-world switching
environments is challenging. In this paper, we address
a number of QCN implementation issues, including
fairness.

B. Contributions

Our main contributions are the following.

1) We achieve fair throughputs with QCN in fan-in
scenarios by re-placing the congestion points from
the switch outputs to the switch inputs.

2) We propose a new flow marking scheme that is
able to identify the culprit flows for non-FIFO
frame departures,

3) We report the implementation of our mechanisms
in a server-rack spine-leaf fabric that comprises
640 100G Ethernet ports.

II. FAIR QCN FOR LARGE SWITCHING FABRICS

A packet switch may correspond to a single-stage
crossbar or shared memory chip, or it may be constructed
from smaller switching elements forming a multi-stage
interconnection network, referred to as a switching fabric
below.

In practice, scalable switching fabrics must apply
some form of per-input buffer allocation. In such
combined-input-output-queued (CIOQ) architectures [8],
incoming data frames are stored in Virtual Output
Queues (VOQs) in front of the internal interconnect,
and a scheduler is responsible for transferring them to
their targeted outputs. Although VOQ-based architec-
tures avoid head-of-line (HOL) blocking, they cannot
prevent buffer hogging. In practice, the many VOQs at
each input share a buffer memory (DAMQ) [9]. There-
fore, a VOQ that makes slow progress can monopolize
its input buffer. An input backlogged in this way will
assert PAUSE to its upstream CNA, stopping all flows in
the same priority level, irrespective of their destination.
Ethernet congestion control, QCN, is designed to throttle
the congested VOQ (flow) and protect the innocent ones,
thus is complementary to PAUSE flow control and a
prerequisite for converged networks.

A. Emerging distributed server-rack (CIOQ) fabrics

In this paper, we describe the QCN architecture that
we have implemented in a server-rack fabric.

The fabric, shown in Fig. 1, has dedicated input and
output buffers per port and per priority level, and extends
to the backplane of a cluster of server racks. It is thus
a distributed, multi-stage realization of a CIOQ switch,
built around a flattened, spine-leaf (fat-tree) topology.
The leaf switches are integrated into the backplane of the
racks, and each one constitutes the (Ethernet) network-
edge switch for five (5) servers, providing 100 Gb/s of
bandwidth to each server on a single link. Our fabric
currently supports four racks, with 32 edge switches
each, thus a total of 640 100G ports.

The leaf switches collectively act as a distributed Eth-
ernet bridge, and are responsible for MAC learning and
frame forwarding. At its ingress interface, a leaf switch
stores the incoming frames into VOQs (input buffers),
segments them into variable-size fabric-internal packets
(or cells), which are then injected into the interconnect.
Each packet can use any of the available leaf-to-spine
links, as enforced by a packet-level spraying mechanism
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Figure 1. A distributed server-rack fabric with an exploded view of
two leaf switches. The ingress leaf switch is shown with its input buffer
hosting the VOQs. An adapter (CNA) connecting to one port of the
ingress leaf switch is also shown. When the input buffer occupancy
reaches Qhigh, the input port sends a STOP to the CNA, which does
not forward new data until it receives a GO.

that overcomes the limitations of ECMP-style routing
alternatives [10], [11]. The original Ethernet frames are
reassembled at their egress leaf switch (output buffers),
and forwarded to their destination server.

The spines themselves are cell-based CIOQ switching
elements, agnostic of the higher-level protocols. They
reside in separate chassis, and each one provides 136 25
Gb/s ports, enabling high-density indirect connections
among the leaf switches. We use 32 spines in our
four-rack system. They feature small input and output
buffers, which are flow controlled using hop-by-hop
backpressure. There are 32 25 Gb/s links per leaf switch
connecting to the spines. Thus, the fabric features an
over-provisioning ratio of 8:5, which accommodates any
internal overhead and also leaves some headroom to
compensate for scheduling inefficiencies.

An edge-to-edge request-grant credit scheme is used to
schedule the VOQ injections towards the egress buffers
at the destination leaf switches: Before injecting a frame
into the fabric, a VOQ must issue a request to the
target output credit arbiter. The latter grants credits to
the requesting VOQs using a round-robin-like discipline
[12].

Although this switching fabric looks far more com-
plicated than a standalone switch module, its edge-to-

Table I
SIMULATION PARAMETERS

Parameter Value

Switch Input buffer 150 KB
Switch Output buffer 150 KB
PAUSE Qhigh (STOP threshold) 110 KB
PAUSE Qlow (GO threshold) 44 KB
QCN Qeq (equilibrium) 60
QCN w (weight for Qδ) 2
QCN RL reaction time 2.4 µs
QCN Is (base sampling interval) 150 KB

edge, scheduled flow control, together with the multi-
path routing and the internal over-provisioning make it
a large, fair CIOQ switch. The details of this fabric are
the subject of a future publication; here we mainly focus
on its QCN architecture.
Implementation and tests that follow: We have imple-
mented the leaf and spine nodes using 32nm technology
in 19.7×19.7 mm2 and 18.4×18.4 mm2 respectively.
They both operate at 454 MHz, and their power con-
sumptions are approximately 105 W and 155 W. For
spine switches, most of the power (130W) is consumed
by moving data across the chip I/O interfaces, despite us-
ing state-of-the-art low-power High-Speed Serial (HSS)
technology. Preliminary tests on the real hardware have
verified the proper functioning of the QCN units. In this
paper, we report performance results from simulations
using a detailed C++ computer model.

Table I reports the main QCN parameters. We use
1522B frames for data traffic and 64B frames for PAUSE
and QCN messages. We measure the raw throughputs of
flows, which include the 20B per-frame overhead for the
inter-frame gap, preamble and start frame delimiter. The
fall-through frame latency is approx. 1µs.

To simplify the comparisons with recent literature and
the IEEE 802 archives, we first consider servers with
10G interfaces and standard QCN parameter settings [7].
Later, in Sec. V, we will experiment on 100G links.

B. Resolving QCN unfairness: Charge them at the door

Standard QCN is based on an idealized output-queued
switch and allocates one CP at each output [13][7, Sec.
30.2.1]. This switch architecture was selected by IEEE
as the most generic one—almost all switch architectures
have output queues.
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Figure 2. Per-flow throughputs under a fan-in traffic scenario, where flows f1-f5 target the same destination. Flow f5 is active between 100
and 200ms. All configurations use PAUSE to sustain lossless operation. Experiments on the network of Fig. 1 with 10G servers.

The trend towards switching fabrics with input buffers
suggests the possibility of installing QCN CPs at switch
inputs, as shown in Fig. 1, instead of at switch out-
puts. As we demonstrate below, this has a number of
advantages. Most importantly, it corrects QCN unfairness
under typical fan-in scenarios.

QCN at an input buffer should detect overload, mark
and throttle the culprit flow(s), and, using an appropriate
Qeq, keep the input buffer backlog below the Qhigh
threshold, thus avoiding the exertion of PAUSE. Note
that the CNMs generated at inputs do not have to
traverse the switch (from one port to another). Hence
they neither consume fabric-internal bandwidth nor incur
any additional delays.

The two alternative placements of congestion points
are depicted in Fig. 3. Assuming that flows in the
figure start from the same rates, they should receive a
comparable amount of CNMs within every time window
to achieve equal bandwidths. The standard QCN acts
as a centralized serializer in a global feedback loop:
It will stochastically sample an arbitrary interleaving
of packets received from different flows/inputs. This
process leads to transient unfairness episodes, whereby
the same source may be notified not only earlier than
its competitors at the bottleneck, but also repeatedly
(two or more times in row). Hence such sources may
be rate-limited earlier and stronger. As our results show,
these flows do not practically recover, leading to massive
disruptions of fairness, longer delay tails and unbalance.

In our proposal, shown in Fig. 3(b), every congested
flow is associated with a separate CP. These (N ) CPs
generate CNMs in parallel, each in proportion to the
arrival rate of the corresponding flow: Our system can

sample the flows N times faster than the standard
QCN. Working on the individual flows, before their
arbitrary interleaving at the output, our solution avoids
the stochastic serialization of the standard one.

QCN
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fabric

switching
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f3
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f1 f2 f2 f2 f2f3
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CNA
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(a) QCN at outputs (industry-
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Figure 3. A fan-in scenario comprising three flows: (a) With QCN
at outputs, the output CP serializes the CNMs based on the stochastic
frame arrivals at the output; effectively, an unlucky flow may receive
a burst of CNMs. (b) With QCN at inputs, there is a separate CP for
each flow; thus, the flows receive CNMs in parallel, each in proportion
to its arrival rate.

In our first experiment, we simulate a fan-in scenario
on top of the rack fabric in Fig.1. Four full-bandwidth
flows (f1-f4) that source from different input ports (and
different spines) target a common destination. The sys-
tem first stabilizes, and then, during 100-200ms, a new
congestive flow (f5), from a separate input port, joins
the fan-in.

We evaluate three different configurations. The first
configuration uses PAUSE flow control; the second con-
figuration additionally places QCN congestion points at
switch outputs, and the third configuration places the
congestion points at switch inputs.
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Figure 2 depicts the per-flow throughputs (arrivals at
switch input buffers). With QCN disabled, see Fig. 2(a),
flows fluctuate wildly around their (dynamic) fair shares,
as PAUSE flow control modulates their arrivals into
a series of variable-width on/off pulses. With QCN at
switch outputs, in Fig. 2(b), the allocation is grossly
unfair: within 10-100ms, flow f2 gets 1.5× the rate of f3,
while f4 and f1 lie in the middle. Just after it arrives at
100ms, flow f5 plummets from 10 to approximately 2.5
Gb/s. However, f5 ends up with about three times the rate
of f3. Finally, when f5 stops, at 200ms, the rates of flows
f1-f4 increase and stabilize at a new unfair allocation.

The unfairness of QCN is to be attributed to the afore-
mentioned statistical errors: the flows that are sampled
first are treated badly. Typically, such over-throttled flows
will try to consume any unused bandwidth. However,
during the additive increase phase of QCN’s autonomous
recovery, rate limiters that start at a higher value typically
make both faster and greater steps up.

In contrast, QCN at inputs, shown in Fig. 2(c),
achieves strikingly precise fair rates. Interestingly, the
system finds the new fair shares even when flow f5
becomes active at 100ms, despite the fact that f5 starts
from a much higher rate than what other flows have
at that time. As noted above, moving the CPs to the
inputs eliminates the stochastic unfairness introduced by
sampling an aggregation of flows at an output. This,
in combination with the fair service of flow VOQs,
enforced by the output credit arbiter, results in nearly
perfect bandwidths.

Lastly, in Fig. 2(d), we examine the possibility of in-
stalling QCN congestion points at both switch inputs and
outputs. As can be seen, the results are not qualitatively
different from those in Fig. 2(b), where congestion points
are installed only at switch outputs.

III. SELECTING A FLOW TO THROTTLE

We showed that QCN at switch inputs improves
fairness by canceling the statistical errors of a single
congestion point. But beyond these statistical errors,
there is a fundamental limitation in the flow sampling
method of QCN. As outlined in Fig. 4 and further
described below, QCN may work correctly with FIFO-
scheduled buffers, but it does not do so with arbitrarily
scheduled buffers.

µ1

shared buffer

λ1
f1

λ6 = µ6 > λ1 > µ1

λ6
f6

µ6

Figure 4. Two flows, f1 and f2, arrive at the same input buffer, but
depart in non-FIFO order. Flow f2 has greater arrival rate than f1,
but does not build a backlog because its departure rate is just as big.
However, flow f1 backlogs because its departure rate is small. QCN
arrival sampling will direct most CNMs to f2, because its frames arrive
more frequently. In contrast, occupancy sampling sends most CNMs
to the flow with the higher backlog, namely, f1.

A. QCN arrival sampling: Policing flow speed

Consider the fan-in scenario of the previous section
but now with one of the inputs hosting two flows instead
of one: flow f1, which targets the congested output as
before, at a rate of 3 Gb/s, and a new flow f6, which
targets an unrelated, uncongested output at 7 Gb/s.

Thanks to the VOQs that are implemented at their
input buffers, the two flows may depart in non-FIFO
order. Ideally, flow f1 should achieve between 2 and
2.5 Gb/s, depending on whether flow f5 is also active
(true for 100-200ms), and flow f6 should stay at 7 Gb/s
throughout the experiment.

Surprisingly, as shown in Fig. 5(a), when we enabled
QCN at the inputs, the two flows had equal rates.
Deciding to send the congestion notification to the source
of the most recently arrived frame, QCN penalizes a
flow, fn, based on its contribution λn(t) to the overall
arrival rate λ(t) =

∑N
i=1 λi(t), ignoring its departure

rate µn(t). (For a complete analysis, please refer to
[14, Sec. 2].) Therefore, standard QCN sends congestion
notifications to flows in proportion to their arrival rates.

Applying this to our current example suggests that if
flow f6 has a higher rate than f1 it will also have a
higher probability to receive a congestion notification.
But the input buffer occupancy cannot stabilize before
f1 has converged at its output fair rate. As a result, f6 is
also pulled towards f1’s fair share.

Note that in this scenario the PAUSE-only solution
performs better than standard-QCN at the inputs, as
shown in Fig. 5(b). Without rate limiters, the rates of
the flows are indiscriminately modulated by PAUSE.
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Figure 5. Same scenario as in Fig.2, but with one input hosting one additional flow, which targets a uncongested output. Experiments on the
network of Fig. 1 with 10G servers.

Effectively, because flow f6 has an arrival rate 7
3× higher

than that of f1, also its departure rate is 7
3× higher.

Multicast traffic: An additional advantage of the pro-
posed architecture is seen under multicast traffic. Using
the standard QCN architecture (Fig. 3(a)), a multicast
frame heading to two destinations can be sampled twice,
and thus generate two (or more depending on to its fan-
out degree) CNMs. As shown in [15], this multiplication
of CNMs can result in unfair treatment of multicast
flows. In contrast, with QCN at inputs (Fig. 3(b)), every
multicast frame is sampled on par with unicast frames.

B. QCN occupancy sampling: Policing flow backlog

In this section, we modify QCN marking to make it
compatible with our notion of congestion points at the
inputs of switching fabrics. The key idea is to use the rate
mismatch λn(t)−µn(t) as a discriminator when selecting
which flow to throttle. In addition, our solution exploits
the fact that a buffer acts as a rate mismatch integrator.
In a lossless system, the contribution of flow fn to
the congestion point buffer occupancy with given initial
condition is qn(t) = qn(0) +

´ t
0
(λn(τ)− µn(τ)) dτ .

The methods that we describe below use the input
buffer occupancy of a flow as a cost function. As done
in standard QCN, we generate a congestion notification
message in response to the arrival of Is bytes of payload
[7], if the buffer is found congested, i.e. if the feedback
value is positive (Fb(t) > 0). But instead of sending
the congestion notification to the source of the frame
that just arrived, we send it to the flow with the highest
occupancy in the buffer monitored.

This method, deterministic occupancy sampling, as-
suredly identifies the flow with the largest (average) rate

mismatch. A graphical representation of how it resolves
the problems of arrival sampling is provided in Fig. 4.
In principle, there can be as many flows active in the
congestion point as there are buffer slots.

Therefore, maintaining a priority queue to sort flows
may not scale well with increasing port speeds and buffer
sizes. Our second method, random occupancy sampling
eliminates the priority queue, and selects a culprit by
randomly picking one occupied buffer slot and locating
the corresponding frame header. The random selection
will pick a particular flow with a probability given by the
fraction of the overall congestion point buffer occupancy
q(t) =

∑N
i=1 qi(t) taken by this flow. Hence, random

QCN occupancy sampling has an (instantaneous) flow
sampling probability P (s)

n (t) = qn(t)/q(t). Observe that
random occupancy is stateless in the sense that it does
not keep track of the flow buffer occupancies.

Figure 5(c) shows the throughput of the innocent flow,
f6, in the fan-in scenario, in which arrival sampling
failed. As can be seen, with occupancy sampling, be it
deterministic or random, flow f6 achieved its 7 Gb/s fair
share. This is a huge improvement over standard QCN
(arrival) sampling, which bounds f6 to the rate of f1.

Although the deterministic and random variants of oc-
cupancy sampling yielded equal throughputs in this ex-
periments, they did not perform identically. Figure 5(d),
depicting the rate limits of the two flows, shows that the
random variant issued some (but only few) congestion
notifications to the victim flow f6, whereas the determin-
istic one did not issue any. (The absence of points for
flow f6 indicates that the corresponding rate limiter was
not allocated.) Deterministic occupancy sampling spots
the most congested flow and keeps throttling it until
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Figure 6. Single flow experiment. The capacity of the targeted output suddenly drops to 1 Gb/s. Comparison of the convergence time of QCN
at inputs, with and without keep-alive, with that of QCN at outputs. Experiments on the network of Fig. 1 with 10G servers.

either some other flow takes over in buffer occupancy or
congestion ceases. In contrast, with random occupancy
sampling, the CNM rates are governed by the occupan-
cies ratios qn(t)/q(t).

IV. INTERACTIONS BETWEEN QCN AND PAUSE

In practice, at the onset of a congestive episode, QCN
coexists with PAUSE. As PAUSE modulates the arrivals
at switch inputs, it can modify the backlog of the buffer
that QCN monitors.

To expose the complex interactions between QCN and
PAUSE, we launched a single uncongested flow and
suddenly reduced the capacity at its destination to 1
Gb/s. Note that, in this example, QCN arrival sampling
performs identically with occupancy sampling because
only one flow is present.

Figure 6(a) plots the flow rate limit. As can be seen,
QCN at the switch outputs throttles the flow within
15ms, whereas, QCN at the switch inputs needs 4× as
long. This delayed reaction is undesirable as it prolongs
the PAUSE activity.

In this scenario, the input and output congestion points
deal with a single flow, therefore its natural to ask why
QCN at the inputs delays so much longer. The answer
lies in the PAUSE activity, which is present at the input
but not at the output buffer. Looking at Fig. 6(b), we see
that initially the input backlog swings rapidly between
the Qhigh and Qlow PAUSE thresholds. Effectively, the
input congestion point may sometimes sample a negative
Qδ , which can refrain it from issuing a congestion
notification. Oblivious of the real situation, the reaction
point interprets the absence of a congestion notification

(after having sent Is bytes) as an opportunity to increase
its rate limit, therefore delaying the convergence.

However, as shown in Figure 6(c), while the flow
has not yet been throttled adequately, the output buffer,
which is flow-controlled using switch-internal credits,
stays perpetually full. Such a consistent state allows the
output to exert a stream of congestion notifications that
stabilize the rate limiter in a much shorter time.

To reduce the PAUSE activity in systems with QCN
at inputs, we can enable QCN keep-alive. Normally,
while the input has exerted PAUSE, the congestion point
does not receive any new frames and therefore does not
generate any CNM. But as occupancy sampling does not
rely on frame arrivals, a clock source can be used during
PAUSE to keep generating congestion notifications as
long as the buffer stays congested.

In our baseline configuration, during PAUSE, the
keep-alive clock triggers a sampling of the buffer with
a period of Is bytes. As can be seen in Fig 6(a),
this shortens the convergence delay, bringing it in par
with that of QCN at switch outputs. It is interesting to
note here that the keep-alive mechanism also averts the
unwanted timer-induced recovery of rate-limiters while
a CNA is PAUSEd.

We repeated these experiments enabling edge-to-edge
reliable delivery inside the fabric. In this configuration,
each input keeps a copy of the frames that it injects
until acknowledgments signal that the frames have been
properly received by their output and forwarded on
the outgoing link. As shown in Fig 6(a), with reliable
delivery (RD) enabled, standard QCN at the outputs
delayed much longer to converge. The reason is that,
as shown in Fig 6(c), the occupancy of the output buffer
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Figure 7. Per-flow throughputs and buffer occupancies in input-generated hotspot test. Flows f1 and f6 start from the same input port at 5 Gb/s
each. Then at 10ms, flows f2-f5, each coming from a separate input, target the destination of flow f1. Experiments on the network of Fig. 1
with 100G servers.

fluctuates wildly, mirroring the fluctuations at the input
buffer, which are caused by PAUSE: the number of
packets at the input buffer upper bounds the number of
packets at the output because all packets present at the
output must also be present at the input.

V. EVALUATION OF QCN AT 100G LINKS

In this section we further evaluate our methods on the
server-rack CIOQ fabric of Fig. 1 with 100G links. For
the transition from 10G to 100G links, we have changed
the following parameters of QCN: T (timer-reset cycle)
from 10 to 2ms, RAI from 5 to 15 Mb/s, and RHAI
from 50 to 250 Mb/s [13].

We consider an input-generated hotspot scenario with
flows f1 and f7 sharing a switch input, and arriving
at 50 Gb/s each. Then, at 10ms, flows f2-f6 are also
activated, and target the destination of flow f1. As shown
in Fig. 7, the PAUSE-only alternative performs really
bad, assigning a rate of 16.6 (≈ 100/6) Gb/s to victim
flow f7. QCN-OS (random) at switch inputs results in
much higher throughput (50 Gb/s) than both the PAUSE-
only solution and arrival-sampling QCN at inputs.

Figures 7(c,d) plots the total buffer occupancies at the
congested output and at the input of flows f1 and f7: with
QCN at the outputs, the input buffer is almost empty,
whereas with QCN-OS at the inputs, it stays around Qeq.
In contrast, with QCN-OS at switch inputs, the output
buffer is almost full, whereas it is at around Qeq for QCN
at switch outputs.

VI. COMPLEXITY OF OCCUPANCY SAMPLING

QCN always has a fixed cost, whether one positions
the CPs at the inputs or at the outputs of a switch. In

our implementation of random occupancy sampling, we
have independent CP instances per server-side port and
priority level. Every such port also has a CulpritArray
with as many words as there are buffer units for the port,
12K in our fabric. These words keep the priority level
of their corresponding (stored) frame and a pointer to
the buffer unit that stores its header, where the Ethernet
source address can be found. When Is new bytes have
been received on that priority level, the CP instance
computes the corresponding feedback value: If it is
positive, the CP instance generates random addresses to
sample the CulpritArray until it hits a valid word. This
search is repeated until a frame of the targeted priority
level is found. Having identified a proper culprit frame,
the CP instance uses its source address to generate the
CNM.

The word size in our implementation is 20 bits (head
buffer, priority level, valid-bit, ECC/parity), thus the
overhead is less than 1% of other data stored per buffer
(256B payload plus VOQ structures.) The width of the
CulpritArray SRAM is 320 bits, thus a single read gives
information on 16 buffer units that can be processed
in parallel. Finally if random addresses fail to find a
culprit after a number of searches, then the engine
sequentially searches the CulpritArray word by word. As
the congested priority levels are also backlogged, this
procedure finds a culprit in reasonable time—our rate
limiters have a response latency of 2.4 µs anyhow, hence
generating the CNM promptly was not very critical.

VII. RELATED WORK

AF-QCN, another proposal that improves on the stan-
dard QCN, is presented in [16]. AF-QCN augments
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QCN congestion points with per-flow rate measurements,
enabling weighted fairness of link bandwidth. However,
AF-QCN does not address the sampling limitations of
QCN, which we identified and tackled in the present
paper via a stateless solution.

Related in concept with occupancy sampling, albeit in
the lossy context, are derivatives of the push-out method
[17].

Infiniband congestion control ignores the velocity of
the queue buildup when determining congestion, but
marks every packet once a queue has become congested;
thus, it overcomes the unfairness introduced by the
random sampling of QCN. Infiniband switches cannot
generate packets, and they instead set a flag in con-
gested packets, causing the endpoint receivers to send
the congestion notifications back to the culprit sources.
However, in doing so, the feedback control loop is
stretched, making it difficult to keep it stable [18]. Both
QCN and Infiniband use automatic rate recovery; in
QCN this is implemented in a fashion similar to TCP
CUBIC [19].

RECN is another interesting congestion control
method for interconnection networks [20]. However,
RECN dynamically allocates per-flow queues inside
the switching nodes, which complicates switch design.
RECN also assumes proprietary flow control messages
being exchanged among nodes; therefore, it is not clear
how RECN can work in Ethernet networks that use
PAUSE flow control.

VIII. DISCUSSIONS & CONCLUSIONS

Our work builds on the newly standardized QCN [7].
We have introduced an alternative congestion manage-
ment architecture that positions the QCN congestion
points at switch inputs rather than switch outputs. The
decisive advantage of our proposal is its deterministic
fairness under fan-in traffic scenarios, which are typical
in datacenters. Furthermore, our proposal adapts well to
multicast traffic, whereas standard QCN may needlessly
penalize multicast flows.

In addition, we have (i) described a new QCN-
compatible congestion marking scheme, suitable for the
scheduled departures out of the switch input buffers, and
(ii) a practical stateless implementation that randomly
picks an occupied unit within the buffer to identify a flow
as a congestive culprit. Finally, we have investigated the
interactions between QCN and PAUSE activity, propos-

ing the QCN keep-alive function to reduce the PAUSE
activity.

We presented an exemplary embodiment of our results
in server-rack, flattened, fat-tree networks, which are free
of internal blocking. Nevertheless, our results are appli-
cable to any single- or multi-stage switch or network
supporting converged Ethernet and QCN. QCN occu-
pancy sampling at the inputs can identify and throttle
bottlenecked internal flows, as the VOQs of these flows
will backlog because of flow control. In contrast, QCN at
the outputs remains oblivious to such internal backlogs.
Preliminary results in blocking, Dragonfly-like networks
show that better discrimination is achieved when we
enable edge-to-edge reliable delivery. A focus of our
research will be to examine how the benefits of our
architecture can be propagated to alternative networks.
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