
RZ 3881 (#ZUR1401-018)  01/17/2014 
Electrical Engineering 5 pages 
 
 
 

Research Report 
 
 
 
 
Enumerative Modulation Codes Based on Sliding-Window 
Substitutions 
 
 
Thomas Mittelholzer and Roy D. Cideciyan 
 
IBM Research – Zurich  
8803 Rüschlikon 
Switzerland 
 
 
 
 

 
 
 
 
 
 
 
 
 

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other 
works. 
 
In: Proc. 2014 IEEE Int’l Symp. on Information Theory (ISIT), pp. 1613-1617, June 29-July 4, 2014 
http://dx.doi.org/10.1109/ISIT.2014.6875106 

LIMITED DISTRIBUTION NOTICE 
 
This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication.  It has 
been issued as a Research Report for early dissemination of its contents.  In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.  After 
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties).  Some re-
ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home. 
 
 
 
 
 Research 

 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich 
 

http://dx.doi.org/10.1109/ISIT.2014.6875106�


Enumerative Modulation Codes Based on

Sliding-Window Substitutions

Thomas Mittelholzer and Roy D. Cideciyan

IBM Research – Zurich

8803 Rüschlikon, Switzerland

Email: {tmi,cid}@zurich.ibm.com

Abstract—We consider high-rate modulation codes satisfy-
ing tight global and interleave (G, I) constraints for magnetic
storage systems. We use a novel sliding-window substitution
coding technique to improve on known long capacity-efficient
(G = 2γ, I = γ) codes. This coding technique maps one-
sided (G = 2γ, I = γ)-constrained sequences into one-sided
sequences satisfying a substantially tighter G constraint and a
slightly relaxed I constraint. Sliding-window substitution encod-
ing in conjunction with enumerative encoding provides high-rate
capacity-efficient codes that are relevant for practical magnetic
storage systems.

I. INTRODUCTION

Magnetic storage systems, such as hard disk drives and tape

drives, employ binary modulation codes to facilitate timing

recovery and data detection during readback [1]. Modulation

codes, which impose constraints on the sequences at the

channel input to rule out undesired sequences, can be studied

in the framework of discrete noiseless channels. In particular,

a global runlength constraint, the G-constraint, facilitates

timing recovery, whereas a run-length constraint on even and

odd interleaves, the I-constraint, allows efficient operation of

the detector and eliminates quasi-catastrophic sequences. The

corresponding class of codes is known as (G, I) or PRML(G,

I) codes.

Based on enumeration techniques, one can construct long

capacity-efficient PRML(G, I) codes with G = 2I . These

codes are obtained by means of an even/odd interleaving

construction using generalized Fibonacci codes [2], [3], [4]

or enumerative maximum transition run codes [5] in even and

odd interleaves. Because of the interleaving construction, the

global G constraint is always twice the interleaved constraint

I , and no efficient high-rate enumerative code with G < 2I is

currently known. However, from an application point of view,

it is often desirable to have a smaller G constraint that is of

the same order as the I constraint. To construct such a code,

the idea is to start with an efficient enumerative PRML(G′,I ′)
code and to modify it by a sliding-window substitution map

that transforms the (G′,I ′) constraint into a (G,I) constraint

with G < G′ and I > I ′.

In Section II, we study the embedding problem of the (G =
2γ, I = γ) constraint into the (G = γ + 1, I = ∞) constraint.

In Section III, we define sliding-window substitution maps. In

Section IV, we construct block codes, which require additional

substitutions at the codeword boundaries.

II. EMBEDDING THE (G = 2γ, I = γ) CONSTRAINT

Let Z be the set of integers and consider the set Wk of

binary bi-infinite sequences w = {wi}i∈Z that satisfy the k-

constraint, i.e., w has no more than k consecutive 0s [6]. For

instance, the k = 2 constraint is characterized by the labeled

directed graph D2 in Fig. 1. Its adjacency matrix is

A =





1 1 0
1 0 1
1 0 0



 .

Fig. 1. Labeled directed graph D2 for the k = 2 constraint.

Recall that a binary sequence satisfies a (G, I) constraint,

if the maximum number of consecutive zeros is limited to G
and the maximum number of consecutive zeros in both the

even and odd interleaves of the sequence is limited to I . By

interleaving two copies of Wk , one can characterize bi-infinite

sequences X = Wk×Wk satisfying the (G = 2k, I = k)

constraint. In particular, there are no more than 2k consecutive

zeroes in any interleaved sequence x = {xi}i∈Z ∈ X with

{x2i}i∈Z ∈ Wk and {x2i+1}i∈Z ∈ Wk.

The simplest case is an embedding of the shift X for the

(G = 4, I = 2) constraint into the shift Y for the (G = 3, I =
∞) constraint.

Proposition 1: (i) There exists an embedding of the second

power X2 of the (G = 4, I = 2) constraint into the second

power Y 2 of the (G = 3, I = ∞) constraint.

(ii) There is no embedding of the (G = 6, I = 3) constraint

into the (G = 4, I = ∞) constraint.

Proof: The proof of (i) is based on verifying the two

conditions of the Embedding Theorem (Theorem 10.1.1 in

[6]). To this end, we characterize the two constraints as edge

shifts of two labeled graphs.

The (G = 4, I = 2) constraint X is a two-way interleave of

the k = 2 constraint W2. The graph product D2×D2, which is

labeled by pairs, generates the second-power shift X2, which

corresponds to the (G = 4, I = 2) constraint when the basic

shift map moves two positions. The adjacency matrix of the

graph product is given by the Kronecker product U = A⊗A.



The k = 3 constraint W3 is characterized by a 4-state graph

similar to that in Fig. 1 with adjacency matrix

A′ =









1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0









The (G = 3, I = ∞) constraint, when moving two bits at

a time, can be characterized by the second power Y 2 with

adjacency matrix Q = (A′)2.

By verifying the necessary and sufficient conditions of

the Embedding Theorem [6], one can show that there is an

embedding of X2 into Y 2. In particular, the entropy condition

h(X) < h(Y ) is satisfied because h(X) = h(W2) ≈ 0.8791
and h(Y ) = h(W3) ≈ 0.9468.

To check the condition on the embedding of the periodic

points P (X2) →֒ P (Y 2), one can consider the technique

described in Chap. 10.1 of [6], which is based on the n-th net

traces of the adjacency matrices U and Q. By construction,

the spectra (i.e., the set of eigenvalues with multiplicities)

of U and Q can be expressed in terms of the spectra of

A and A′, which will be denoted by sp(A) = {λ1 ≈
1.8393, λ2 ≈ −0.4196 + 0.6063i, λ3 ≈ −0.4196 + 0.6063i}
and sp(A′) = {λ′

1 ≈ 1.9276, λ′
2 ≈ −0.0764 + 0.8147i, λ′

3 ≈
−0.0764− 0.8147i, λ′

4 ≈ −0.7748}, respectively. The spectra

of U and Q are

sp(U) = {λiλj : λi, λj ∈ sp(A), i = 1 ≤ i, j ≤ 3} (1)

sp(Q) = {(λ′
i)

2 : λ′
i ∈ sp(A′), i = 1, . . . , 4}. (2)

From the spectra, one can compute the traces of Un and

Qn, derive the n-th net traces, and verify that the sufficient

condition in Chap. 10.1 of [6] for the embedding of periodic

points holds.

To prove (ii), we show that the embedding condition on

periodic points does not hold for the second-power shifts. The

second power of the (G = 6, I = 3) constraint has 216 4-ary

sequences of least period 4 whereas the second power of the

(G = 4, I = ∞) constraint has only 208 4-ary sequences of

least period 4. �

Remark: The (G = 4, I = 2) constraint cannot be embedded

into a (G = 3, I < ∞) constraint. This follows by noting

that the constraints (G = 4, I = 2) and (G = 3, I = ∞)

have the same number of periodic sequences of least period

6. Therefore, all periodic (G = 3, I = ∞) sequences of

least period 6 will be images of any embedding. In particular,

the periodic sequence . . . 1 0 1 0 0 0 . . . of period 6 is such a

sequence and this sequence has I = ∞. Note that one-sided

embedding into (G = 3, I < ∞) is possible, and will be

discussed in Section III.

The embedding question can be generalized to (G =
2γ, I = γ) and (G = γ + 1, I = ∞), γ ≥ 2. Similarly as in

part (ii) of the proof, it can be shown that for I = γ = 4, there

is no embedding of (G = 8, I = 4) into (G = 5, I = ∞). It is

conjectured that there is no embedding for all I = γ > 2. For

practical values of γ, the entropy condition of the embedding

theorem is satisfied, and the condition on periodic points

prevents the existence of an embedding. Therefore, it is

worthwhile to consider the corresponding embedding problem

for one-sided instead of bi-infinite sequences. Furthermore, the

embedding in the setting of one-sided sequences is relevant for

the construction of modulation codes in practical applications

[7], which will be discussed in Section IV.

III. SLIDING-WINDOW SUBSTITUTION

In this section, we define sliding-window substitution

(SWS) encoders for one-sided sequences. They provide an

efficient means to tighten the global constraint of the one-

sided (G = 2γ, I = γ) constraint from G = 2γ to some G
with G < 2γ while only moderately relaxing the I constraint.

Fig. 2. Sliding-window substitution encoder.

For a bi-infinite shift space B, one defines the one-sided

shift by B+ = {b[0,∞) : b ∈ B} (see e.g. [6]). A sliding-

window substitution encoder is a finite-state machine with L-

bit states s(n) = s
(n)
1 , s

(n)
2 , . . . , s

(n)
L , binary inputs bn+L and

binary outputs cn as illustrated in Fig. 2. These quantities are

related by

x = [x0 x1 . . . xL] = [s(n) bn+L] (3)

y = [y0 y1 . . . yL] = [cn s(n+1)]. (4)

The registers x and y are related by the substitution map

φ : {0, 1}L+1 → {0, 1}L+1, y = φ(x), which eliminates

undesired patterns in the input x. Typically, for most inputs,

the mapping φ is the identity, and only for a relative small

number of inputs, which violate a certain pattern, is the output

y selected such that this pattern is not violated. When applying

the SWS encoder to a one-sided shift B+, one starts at “time

0” and moves from left to right. Given a sequence b[0,∞) as

input, the initial state is set to

s(0) = [b0 b1 . . . bL−1]

and the input at time 0 is bL. The SWS encoder produces a

sequence {cn}n∈{0,...,∞}.

Example 1: Consider the one-sided (G = 4, I = 2)

constraint B+. Let L = 6 and define the substitution mapping

φ by

φ(x) =

{

[0 x6 0 x4 0 x5 1] if [x0 x1 x2 x3] = [0 0 0 0]
x otherwise.

(5)

Let b ∈ B+ and apply the SWS to b. The resulting

sequence satisfies the G = 3 constraint. This can be checked

inductively. At time n = 0, [x0 x1 . . . x6] = [b0 b1 . . . b6].



TABLE I
SUBSTITUTION MAP φ FOR G = 12, I = 6

Case Input x = x0 x1 ... x15 Output y = y0 y1 ... y15
1 0 0 0 0 0 0 0 0 0 0 0x11 1 x13 x14 x15 1 0x15 0x11 0x13 0 0 0 0 0 1 0x14 1
2 0 0 0 0 0 0 0 0 0 0 1x11 x12 x13 x14 x15 1 0x15 0x11 0x13 0 0 0 1 0x12 0x14 1
3 0 0 0 0 0 0 0 0 0 1x10 x11 x12 x13 x14 x15 1 0 x11 0x13 0x15 0 1 0x10 0x12 0x14 1

If the substitution is applied, i.e., [x0 x1 x2 x3] = 0, then

x4 = 1 = x5 because the sequence b satisfies the I = 2
constraint to the right of position n = 0 and, therefore,

y = [0 x6 0 x4 0 x5 1] satisfies the G = 3 constraint. Thus,

the first seven output bits [c0 c1 . . . c6] = y satisfy the G = 3
constraint. Morever, after substitution, the I = 2 constraint

holds in the one-sided sequence [y5 y6 b7 b8 b9 . . .], therefore,

one can move seven time steps ahead to n = 7. After

moving 7 steps forward, the x-register contains the sequence

b7 b8 . . . b13 and the SWS encoder is in a similar condition as

at time n = 0.

If no substitution occurs, the identity is applied, and then

[y0 y1 y2 y3] = [x0 x1 x2 x3] satisfies the G = 3 constraint by

definition. If y0 = 1, then c0 = 1 and one can move one step

further to n = 1 and ensure that the G = 3 constraint holds

in the beginning part of the output. If y0 = 0, then one of the

other three components must be 1 and, again, one can move

one step further to n = 1 and ensure that in the beginning part

of the output the G = 3 constraint holds. After moving 1 step

forward, the x-register contains the sequence b1 b2 . . . b7, and

the SWS encoder is in a similar condition as at time n = 0.

One can verify that the SWS encoder is a one-to-one

mapping. If there are no substitutions within some interval,

the mapping is one-to-one by definition and, in particular, also

the I = 2 constraint is maintained. If there is a substitution on

a stretch bn bn+1 . . . bn+6, the corresponding output sequence

is [cn, s(n+1)] = y. This output sequence has a characteristic

run of exactly three consecutive zeroes in the interleave

cn cn+2 cn+4 cn+6. Thus, the locations of the substitutions

are marked as violation of the I = 2 constraint. As the

substitution map (5) is one-to-one, there cannot be two input

sequences that map to the same output sequence. Moreover,

the output satisfies the I = 3 constraint. Thus, the SWS gives

an embedding of the one-sided (G = 4, I = 2) constraint into

the (G = 3, I = 3) constraint.

Theorem 1: Let B+
(G,I) denote the one-sided (G, I) con-

straint.

(i) There are embeddings B+
(G=2γ,I=γ) →֒ B+

(G=γ+1,I=γ+1)
for γ = 2, 3, 4.

(ii) There is an embedding B+
(G=12,I=6) →֒ B+

(G=8,I=7).

Proof: We will provide SWS encoders for each case. The

case γ = 2 has already been worked out in Example 1.

Case (G = 6, I = 3): Consider the SWS encoder with a

state space of dimension L = 8 and window length L+1 = 9.

The substitution map is given by

φ(x) =

{

[0 x8 0 x6 0 x5 0 x7 1] if [x0 x1 . . . x4] = [0 0 0 0 0]
x otherwise.

(6)

The one-to-one property of the mapping and the constraints of

the output sequences can be verified similarly as in Example 1.

Case (G = 8, I = 4): We consider an SWS encoder with a

state space of dimension L = 10, i.e., with a window length

of 11. The mapping φ : x 7→ y is the identity if the first 6

components of x = [x0 x2 . . . x10] are not all zero. Otherwise

the mapping is given by Table II. The verification of the

constraints is similar to Example 1.

TABLE II
SUBSTITUTION MAP φ FOR G = 8, I = 4

Input x = x0 x1 ... x10 Output y = y0 y1 ... y10
0 0 0 0 0 0x6 x7 x8 x9 x10 0x10 0x6 0x8 0x7 0x9 1

Case (G = 12, I = 6): The SWS encoder has a state

space of dimension L = 15 and a window length of 16. The

mapping φ is the identity if the first 9 components of x are not

all zero. Otherwise, there are three non-identity substitutions

specified in Table I. These substitutions are applied to enforce

G = 8 whenever G > 8. In the following, it is assumed

that the component bn−1 in the input sequence, which is

immediately to the left of the length-16 sliding window, equals

1. We will distinguish three cases depending on the number of

consecutive leading zeros in x. In Case 1 below, component

bn−2 must be 1 because of the I = 6 constraint.

- Case 1 (11 or 12 leading zeros): Note that I = 6 implies

x12 = 1 and either x11 or x13 must be 1. Thus, in the

substitution string y there can be at most 7 consecutive

zeros. As the component bn−1 to the left of x equals 1, the

substitution string y satisfies an I = 7 constraint.

- Case 2 (10 leading zeros): Because of I = 6, either x11 or

x13 must be 1. Thus, in the substitution string y, there can

be at most 5 consecutive zeros. As bn−1 = 1, the substitution

string y satisfies an I = 7 constraint.

- Case 3 (9 leading zeros): Because of I = 6, either x10 or

x12 must be 1. In the substitution string y, there can be at

most 7 consecutive zeros.

In all three cases, the substituted string y has an interleave

constraint of I = 7. Moreover, the components y8 and y10
have different pairs of values, which are indicative for each

case. This makes the substituted strings unique and allows

one to do the proper inverse substitution. In addition, the I
and G constraints towards the left and towards the right of the

substituted string remain unchanged. At the left side, this is

obvious because the first two bits are (x0, x1) = (0, 0). At the

right side, the G constraint is not increased because the last bit

of the substituted string is 1. Furthermore, doing case-by-case

checking, one can show that the I constraint at the right side

is also maintained.

�



IV. BLOCK CODES DEFINED BY ENUMERATION AND

SUBSTITUTIONS

The SWS encoders studied in Section III can embed one-

sided shifts with large G constraints into one-sided shifts

with substantially reduced G constraints at the expense of a

minor increase of the I constraint. In this section, we define

additional substitution maps that operate at the codeword

boundaries. This SWS encoding technique will be illustrated

on a specific high-rate PRML(G = 12, I = 6) code of length

234.

By using an enumerative MTR(N, j, k) block code of length

N in both the even and the odd interleave [5], one obtains

a PRML(G, I) block code with G = 2k and I = k. The

j constraint in each interleave translates into the M = 2j
constraint, which limits the runs of alternating 2T magnets

. . . 0 0 1 1 0 0 1 1 . . . in channel input sequences (i.e., after

1/(1 ⊕ D2) precoding) to ⌊M/2⌋ + 1, where T denotes

the symbol duration. The M constraint is also known as

VFO (variable-frequency oscillator) constraint. It is a desirable

constraint in tape-recording systems, which use a phase-

locked loop to acquire timing based on a long alternating 2T
VFO pattern. The VFO constraint ensures that a modulation-

encoded data sequence does not contain a long VFO pattern.

This interleaving construction is illustrated in Fig. 3. For

instance, based on an enumerative MTR code of length N =
117 and dimension K = 116 with constraints k = 6, j = 11,

one obtains a PRML code with constraints G = 2k = 12,

I = k = 6 and M = 2j = 22. At the left and right codeword

boundaries, the code has the tighter constraints Ileft = 3 =
Iright and Mleft = 10, Mright = 12. Thus, the codewords

can be freely concatenated, and the constraints G = 12, I =
6,M = 22 are maintained.

Fig. 3. Encoder for PRML(G = 2k, I = k, M = 2j) code.

For this PRML(G = 12, I = 6,M = 22) code of length

N ′ = 2N = 234, we will describe a method to reduce

the global constraint from G = 12 to 8 while relaxing the

interleave constraint from I = 6 to 7. There is only a minor

capacity increase from the (G = 12, I = 6) constraint with

capacity 0.994191 (up to 6 digits) to the (G = 8, I = 7)

constraint with capacity 0.99617 (up to 6 digits). Thus, SWS

encoding reduces the efficiency of the rate-232/234 code only

slightly, viz., from 99.72% to 99.53%.

To enforce the G = 8 constraint, we transform any subse-

quence with more than 8 consecutive zeros into a subsequence

that meets the G = 8 constraint. Furthermore, this substitution

subsequence is chosen to be unique in the sense that the

inverse encoder (decoder), which runs backwards from right to

left, can recognize it and reconstruct the original subsequence,

which had more than 8 consecutive zeros. Special care is

required at the left and right codeword ends to enforce tighter

constraints so that the modified codewords can be freely

concatenated. A block diagram of this encoder is shown in

Fig. 4. The registers x and y in the SWS encoder contain

L+ 1 = 16 bits.

Fig. 4. Encoder for PRML(G = 8, I = 7, M = 24) block code.

There are three types of local substitution maps: left-

boundary substitution, substitutions within a codeword, and

right-boundary substitutions, which will be described next.

Substitutions within a codeword are based on the SWS encoder

characterized by Table I in Section III. To transform an input

sequence {bi} of length N ′ = 234 into an output sequence

{ci} of length N ′ = 234, we first apply a 16-bit left-boundary

substitution once (Table III), and then N ′−L−1 = 218 times

16-bit sliding-window substitutions within the codeword (Ta-

ble I), followed by a single 15-bit right-boundary substitution

(Table IV). Furthermore, this transformation is chosen such

that a potential M constraint is only slightly weakened from

M to M + 2.

A. Left-boundary substitution

The substitution at the left codeword boundary enforces

Gleft = 4 whenever Gleft > 4. The non-identity substitution

is specified by Table III. Note that x6 = 1 always holds

TABLE III
LEFT BOUNDARY

Input x = x0 x1 ... x15 Output y = y0 y1 ... y15
0 0 0 0 0x5 1x7 x8 x9 ... x14 x15 0x8 0 1 0x5 0x7 1x9 ... x14 x15

because of Ileft = 3. Only the first nine components are

remapped; the last seven components pass unchanged. The

even interleave of y starts with four zeros, which is a violation

of Ileft = 3 and thus allows one to detect this substitution

during read-back. As the substitution map is one-to-one, it

can be inverted by the modulation decoder. Furthermore, the

I and G constraints of the original codeword towards the right

of position 5 are maintained because the odd interleave is

unchanged and x8 in the even interleave was replaced by a

1. The M constraint towards the right is weakened by at most

1 because of replacing x8 by 1.

B. Right-boundary substitutions

After completing the sliding-window operations of sub-

stitutions within a codeword, the length-16 sliding window

has reached the right boundary. At the right boundary, the

length-16 output register y = y0y1 . . . y14y15 satisfies the I
and G constraints of the original code towards the right; in

particular, the tightened Iright = 3 constraint holds at the



TABLE IV
RIGHT BOUNDARY

Case Relation Input x = x0 x1 ... x14 Output y = y0 y1 ... y14
1.i – x0 0 0 0 0 0 0 0 0 0 0x11 x12 x13 x14 x0 0x11 x12 x13 x14 1 1 0 1 0 0 0 1 0
1.ii – 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 0
2.i x10 6= x0 x0 0 0 0 0 0 0 0 0 0x10 x11 x12 x13 x14 x0 0x11 x12 x13 x14 1 0 0 1 0 0 0 1 0
2.ii x12 6= x2 x0 x1 x2 0 0 0 0 0 0 0 0 0x12 1x14 x0 x1 x2 0 1x14 1 1 0 0 0 0 0 1 0
3.i x14 = 0 0 0 0 0 0 0 0 0 0 1x10 x11 x12 x13 0 0 1x10 x11 x12 x13 1 0 0 1 0 0 0 1 0
3.ii x14 = 1 0 0 0 0 0 0 0 0 0 1x10 x11 x12 x13 1 0x10 x11 x12 1x13 1 0 0 0 0 0 0 1 0
3.iii (x11, x13) 6= (0, 0) 1 0 0 0 0 0 0 0 0 0 1x11 x12 x13 x14 1 0x11 x12 x13 x14 1 0 0 0 0 1 0 1 0
3.iv (x12, x14) 6= (0, 0) x0 1 0 0 0 0 0 0 0 0 0 1x12 x13 x14 x0 1 0x12 x13 x14 1 0 0 0 0 1 0 1 0
3.v x12 6= x3 x0 x1 x2 x3 0 0 0 0 0 0 0 0 x12 1x14 x0 x1 x2 x3 0x14 1 0 0 0 0 0 0 1 0
4 (x7, x9) 6= (0, 0) x0 x1 x2 x3 x4 x5 x6 x7 1x9 0 0 0 0 0 x0 x1 x2 x3 x4 x5 1x7 0x9 0 1 0x6 0

right boundary. Furthermore, the substitutions up to this point

ensure that G = 8 holds towards the left including the first

nine components y0 . . . y7y8 of the output register. It remains

to check the last 15 components of y for violations of G = 8,

to specify suitable substitution maps for these cases and,

additionally, to enforce the boundary constraint Gright = 4.

1) Enforcing G = 8 within the 15 rightmost components:

We consider a length-15 window and initialize the length-15

input register by the last 15 components of the output register,

i.e., x = y1 . . . y14y15. In particular, if no substitutions have

occurred in the last few steps of the sliding-window map, then

x = bN ′−14bN ′−13 . . . bN ′ consists of the last 15 bit positions

of the original codeword {bi}. In any case, the length-15 input

register contains a sequence x that towards the right satisfies

the G and I constraints of the original code. Furthermore,

when restricting ourselves to the case of G = 8 violations, we

can assume that the component of the new codeword {ci} at

the left side of the length-15 window is cN ′−15 = 1.

We will proceed as in the case of substitutions within

codewords and distinguish four cases. The first three cases

correspond to violations of the G = 8 constraint, namely, the

cases in which there are runs of 11 or 12 consecutive zeros, 10

consecutive zeros and 9 consecutive zeros in x. These cases

will be further subdivided depending on the position of the

first zero of the zero-run. Case 4 corresponds to the violation

of the right boundary constraint Gright = 4. The substitution

maps given in Table IV result in local output sequences y

that satisfy the Ieven = 4 constraint at the right boundary

because the pattern 1 0 0 0 0 is at the end of the even interleave.

Moreover, the substitution patterns y=y0 y1 . . . y14 are selected

to have a unique characteristic subsequence y1 y3 y4 y7 y9 y11.

This property is used for the inverse substitutions.

The column “Relation” in Table IV gives a relation among

the input bits in x for each case that has to be satisfied in

order to make a substitution. These relations are important

for the inverse encoder (decoder), which applies the inverse

substitutions. For example, in Case 2.i, the relation x10 6= x0

ensures that there are exactly ten consecutive zeros in the first

11 components of x. As another example, in Case 4, the input x

satisfies the right boundary condition Iright = 3 and, therefore,

there is the relation (x7, x9) 6= (0, 0).

In the first three cases and their subcases, the I and

G constraints towards the left are maintained because any

potential non-zero initial part x0x1x2x3 of the window is

substituted by either the same substring or a substring with 1s

at some dedicated locations. Furthermore, the M constraint at

the left of the substitutions remains unchanged in all cases. In

the first three cases, the M constraint is maintained. In case

4, x6 is substituted by 1 and, thus, the M constraint to the

left of this position can be weakened by 1.

2) Enforcing Gright = 4: To guarantee Gright = 4 at the

right boundary, we check the last nine codeword components,

which correspond to the last nine components in x. Clearly,

in all cases, the substitutions of Table IV meet the Gright = 4
constraint.

V. CONCLUSIONS

A sliding-window substitution encoding technique has been

introduced to improve on existing enumerative high-rate (G =
2γ, I = γ) codes. It has been shown that the new substitution

technique can provide embedding of one-sided (G = 2γ, I =
γ)-constrained sequences into one-sided sequences satisfying

the constraints G = γ + 1 and I = γ + 1. Furthermore,

it has been demonstrated that for specific constraints such

an embedding is not possible for bi-infinite sequences. High-

rate capacity-efficient PRML(G, I) block codes, which impose

additional constraints at codeword boundaries by enforcing a

separate set of substitutions, have been constructed. Specifi-

cally, a rate-232/234 PRML(G = 8, I = 7,M = 24) code for

practical applications has been designed.

REFERENCES

[1] K. A. S. Immink, P. H. Siegel, and J. K. Wolf,“Codes for digital recorders”
IEEE Trans. Inform. Theory, vol. 44, pp. 2260–2299, Oct. 1998.

[2] W. H. Kautz, “Fibonacci codes for synchronization control,” IEEE
Trans. Inform. Theory, vol. 11, pp. 284–292, Apr. 1965.

[3] K. A. S. Immink, “A practical method for approaching the channel
capacity of constrained channels,” IEEE Trans. Inform. Theory, vol. 43,
pp. 1389–1399, Sept. 1997.

[4] M. Blaum, R. D. Cideciyan, E. Eleftheriou, R. Galbraith, K. Lakovic,
T. Mittelholzer, T. Oenning and B. Wilson, “Enumerative encoding with
non-uniform modulation constraints,” IEEE Proc. Intl. Symp. Inform. Th.
(ISIT’07), Nice, France, pp. 1831–1835, June 24 - 29, 2007.

[5] T. Mittelholzer, “Enumerative maximum transition run codes,” IEEE Proc.
Intl. Symp. Inform. Th. (ISIT’09), Seoul, Korea, pp. 1549–1553, June 28
- July 3, 2009.

[6] D. Lind and B. Marcus, Symbolic Dynamics and Coding, Cambridge
Univ. Press, 1995.

[7] US patent application US20140085114 A1.


