
RZ 3883 (# Z1209-002) 09/04/2012
Computer Science 24 pages

Research Report

ExaBounds—Better-than-back-of-the-envelope Analysis for
Large-Scale Computing Systems

Phillip Stanley-Marbell‡

IBM Research – Zurich
8803 Rüschlikon
Switzerland

‡Author is now at the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich

ExaBounds—Better-than-back-of-the-envelope Analysis for
Large-Scale Computing Systems

Phillip Stanley-Marbell
∗

Abstract
Large-scale computing systems such as supercomputers

and commercial data centers pose many unique challenges
in terms of power delivery and heat removal, performance
at-scale, monetary cost of purchase and operation, and re-
liability during operation. Architectures to address these
challenges must make appropriate hardware-level choices,
in the context of the demands of target applications. Given
the huge combinatorial space of choices of algorithms for
solving various computational problems, hardware archi-
tectures, and technology for system implementation, it is
necessary to have a mechanism to identify subsets of the al-
gorithm, architecture, and technology design space worth
more detailed study.

EXABOUNDS is an analytic framework being developed
for efficiently estimating coarse-grained bounds on, and
growth rates of, compute performance, power dissipation,
monetary cost, and reliability, of large-scale computing sys-
tems. While not intended to enable precise performance
prediction as detailed processor or interconnect simulators
do, it enables insight into the interaction between perfor-
mance, power, cost, and reliability, by providing a meaning-
ful yet simple model with complete visibility into the causal
relations between system parameters and resulting system
behavior. The framework incorporates a large body of em-
pirical technology data, and its utility is demonstrated with
a design study for a real future large-scale computing sys-
tem.

1 Introduction

This draft document provides a very brief and prelim-
inary overview of the EXABOUNDS analysis tool, the pre-
liminary version of which is due to be delivered in month
5 of the Dome project (item 9.6 in version 4 of the planning
Gantt charts); the EXABOUNDS analysis tool is being devel-
oped over the course of the five-year Dome project. This
document also serves as the deliverable for the literature
survey of the state-of-the-art (item 1.2 in version 4 of the
planning Gantt charts).

Recent semiconductor technology generations have
yielded diminishing returns from utilizing silicon area to
achieve improved performance via aggressive pipelining

∗This work was done in 2012, while the author was affiliated
with IBM Research — Zürich,
Säumerstrasse 4, 8803 Rüschlikon, Switzerland. The author
is currently with the Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA.

and sophisticated wide out-of-order issue architectures.
Across the spectrum of computing applications, there has
therefore been a growing interest in eschewing the previ-
ous norm of processors with complex microarchitectures,
for large numbers of simpler processors.

This trend raises many questions. For example, which
point in the design spectrum—with embedded processors
on one end, and server processors on the other—is the ap-
propriate choice, in the contexts of energy-efficiency, com-
pute performance, reliability, and monetary cost? Should
3D integration be employed in preference to on-die (2D)
integration of larger numbers of cores?, and so on. Such
questions must ideally be contemplated in the context of
complete systems incorporating components such as power
supplies, cooling, etc. To illustrate, Figure 1 plots the pur-
chase price, versus 1-year operation costs for just the pro-
cessors, for achieving a peak performance of 1018FLOP/s
(top) and 1018INT OP/s (bottom), based on a range of
commercially-available processors (see Table 1). From the
figure, the processor designs on the Pareto frontier (MX5 and
OMP) are clearly desirable over the other processor choices
with respect to purchase price and operating cost for work-
load sizes of 1018FLOPs / 1018INTOPs. However, the power
dissipation for real systems will comprise much more than
just the processor power. Furthermore, this power will scale
with process generations, achieved performance will be de-
pendent on application properties, and the appropriate sys-
tem architecture will depend on the properties of applica-
tions to be executed on it.

1.1 Contributions
EXABOUNDS is being designed to provide an analytic

framework to enable the qualitative investigation of the
above questions for future exaflop-scale (exa-scale) systems
having millions of hardware compute cores and tens of
millions of software threads or contexts. Systems of such
scale cannot, by definition, be analyzed using conventional
queuing-theoretic [41], network [64] or microarchitectural
simulation tools [63], and require new tools to enable the
efficient exploration of their design space. EXABOUNDS is
a new analytic framework being designed with the goal of
providing:

• lower bounds on power dissipation, based on lower
limits imposed by CMOS device physics and intercon-
nect and packaging technology properties;

• upper bounds on performance imposed by available
hardware concurrency and hardware data movement
capability, application data movement requirements,
available parallelism at different application granulari-

1

MSPMSP

SM7SM7
C55C55

SM9SM9

MX5MX5

ATMATM

OMPOMP

1010 1011 1012 1013 1014 1015 1016
104

106

108

1010

1012

System CPU-only Purchase Price HUSDL

O
pe

ra
tin

g
C

os
t,

80
%

ac
tiv

e
�

20
%

id
le

HU
S

D
L

MSPMSP

SM7SM7 C55C55

SM9SM9

MX5MX5

ATMATM

OMPOMP

1 ´ 1010 2 ´ 1010 5 ´ 1010 1 ´ 1011 2 ´ 1011 5 ´ 1011 1 ´ 1012
104

105

106

107

108

109

System CPU-only Purchase Price HUSDL

O
pe

ra
tin

g
C

os
t,

80
%

ac
tiv

e
�

20
%

id
le

HU
S

D
L

Figure 1. From measured performance, peak and idle
power, price, and cost of energy delivery, it is possible to
calculate purchase price versus 1-year operation costs for
servers, for exa-FLOP (top) and exa-INTOP systems (bot-
tom). This however yields no insight into the tradeoffs
for different applications with varying fine- and coarse-
grained parallelism, good or poor data locality, the effects
microarchitecture, or of technology progression.

ties, and workload size;

• upper bounds on reliability across components of a
large-scale system, as a function of, among other
things, hardware concurrency (number of system com-
ponents);

• lower bounds on cost imposed by design, manufactur-
ing, hardware, and power delivery costs, over the run-
ning time of an application;

• precise analytic formalization of the strong- and weak-
scaling properties of applications paired to hardware
architectures, and an analytic treatment of their re-
lation to work and span parallelism [21], Amdahl’s
law [2], isoefficiency [36], and the roofline model [85].

Where applicable, the analytic models are supported
with empirical models of technology scaling trends, built
from a large collection of data from real designs, spanning
the last three decades, and augmented by ITRS roadmap
data. This enables prediction of trends and changes in
system-level tradeoffs across future generations of sys-
tems. For algorithm-dependent properties in the model, we
present characterizations of real-world algorithms, as input
to the analytic framework.

Coarse estimates of the bounds on performance, power,
reliability, and cost, while not providing the precision of
microarchitecture simulation studies or analytic models
based on microarchitectural parameter design space explo-
ration [59], are still useful to system designers. Such bounds
are complementary to fine-grained modeling tools such as
McPAT [60], CACTI [81], Graphite [63], Wattch [12], and
Mambo [8], which would find use in more detailed model-

ing of some fraction (e.g., the processor socket granularity)
of a complete data center or supercomputer. We use McPAT
and CACTI to obtain die-level power and area estimates,
and build on top of them an analytic model for compute
performance at the core-level, and power, performance, re-
liability, and cost models for entire computing clusters. By
considering performance, power, reliability, and cost within
a unified analytic framework, we are able to capture impor-
tant potentials for design-time tradeoffs. For example, this
enables co-consideration of how constraints, on, say, power
delivery can influence performance, or how reliability and
cost can be affected by architectures which require large
numbers of system sockets. Unfortunately, however, there
has hitherto been little research in such integrated whole-
system bounds.

1.2 Structure of the framework
EXABOUNDS captures the interaction between applica-

tion properties such as instruction-level parallelism (ILP),
thread-level parallelism (TLP), data-level parallelism (DLP),
data movement, and memory reference locality, and hard-
ware properties. These hardware properties include avail-
able instruction-, thread- and task-level concurrency, avail-
able memory and interconnect bandwidth, and the influ-
ence of clock frequencies, operating voltages, and transis-
tor counts. Interactions between hardware and software are
captured from the die level, through the socket, card, mid-
plane (rack-unit), rack and aisles of racks, to a complete sys-
tem. The central themes of parallelism and data movement
at all levels of the hierarchy, are used to constrain the com-
plexity of the models. Because the models are constructed
in a bottom-up fashion, as opposed to using generic regres-
sion fits of empirical data, the analytic formulations capture
the intuition behind the trends observed.

The effectiveness of the bounds predictions is evaluated
by comparing its predictions to the power, performance,
and cost of two real prototype systems. The real-world
validation on a diverse set of platforms, ranging from two
ARM-based platforms to a multi-core PowerPC platform,
is achieved using a combination of performance measure-
ments, power measurements, and thermal measurements
to estimate power dissipation apportionment for whole
computing systems (including aspects such as fans and
power supplies), as captured by the model.

Following an overview of related research in Section 2,
Section 4 presents the integrated power, performance, re-
liability and cost framework, along with empirical data,
drawn from information obtained for more than 130 pro-
grammable processor designs over the last three decades,
that provides part of the device-related input to the analy-
sis. Section 5 presents the implementation of EXABOUNDS
as a software tool, and a preliminary analysis of the trends
predicted by the framework, using both a state of the art
high-performance server configuration, as well as a state-
of-the-art low-power ARM processor implementation. The
article concludes in Section 6 with a summary.

2 Related Research
The analysis and prediction of computation- and power-

performance of systems encompasses a broad range of
techniques. Traditionally, different approaches have been
employed at different levels of system detail, and for differ-
ent system scales or sizes.

EXABOUNDS may be compared to existing research along
five dimensions: Êmodeling approach, Ë efficient design-
space exploration, Ìempirical semiconductor- and circuit-

2

Table 1. Energy per integer (INT-OP) and double-precision floating-point operation (DP-FLOP) at peak system utilization,
average leakage power, and silicon (packaged die) cost for achieving a peak capability of 1018 DP-FLOP per second. For
processors without hardware floating-point units, the cost of software emulation is used. Energy delivery operational
expenses (E-OPEX) per processor assumes 80% of time at peak performance, over a time period of 1 year, and an energy
cost of 0.15 USD per kWh.

Processor Energy for Idle Power for Device cost for Energy for Idle Power for Device cost for
1 DP-FLOP 1018 DP-FLOP/s 1018 DP-FLOP/s 1 INT-OP 1018 INT-OP/s 1018 INT-OP/s
(µJ) system (MW) system (Trillion USD) (nJ) system (KW) system (Billion USD)

and 1 yr. E-OPEX and 1 yr. E-OPEX

No hardware FPU

Ê TI MSP430F2274 (MSP430) 7.9 130 1,300 ; 34 E-6 4.9 82 810 ; 21 E-6
Ë Marvell PXA32x (ARM) 3.8 230 n ; 62 E-6 2.4 140 n ; 39 E-6
Ì Atmel AT91SAM7S16 (ARM) 3.1 3,200 68 ; 860 E-6 1.9 2,000 42 ; 540 E-6
Í TI TMS320C5515 (C55x) 1.4 8,000 690 ; 2,100 E-6 0.22 1,200 100 ; 320 E-6
Î Atmel AT91SAM9M10 (ARM) 0.52 48,000 100 ; 12,000 E-6 0.32 30,000 63 ; 7,800 E-6
Hardware IEEE754-
compliant DP-FPU

Ï Freescale i.MX515 (ARM) 0.0025 3.3 0.13 ; 0.86 E-6 0.63 820 32 ; 210 E-6
Ð Intel Atom N450 (x86) 0.0033 1,200 0.038 ; 320 E-6 3.3 1,200,000 38 ; 320,000 E-6
Ñ TI OMAP3503 (ARM) 0.0084 0.96 0.22 ; 0.25 E-6 2.1 240,000 56 ; 63 E-6
Ò IBM BG/L CPU (Power™) 0.0046 71 n ; 18 E-6 9.2 140,000 n ; 37,000 E-6
Ó IBM PowerEN (Power™) 0.0017 540 n ; 140 E-6 1.7 540,000 n ; 140,000 E-6

level models, Ímodeling of algorithm-hardware interaction,
and Î modeling total cost of ownership.

2.1 Modeling approach
The challenge of design space exploration may be ap-

proached from two extremes. A top-down empirical charac-
terization of whole-system performance may be performed,
possibly using techniques from statistical experiment de-
sign [74] to significantly reduce the number of measure-
ments needed. Alternatively, a bottom-up first-principles
approach may be employed, in which the known interac-
tions between system parameters are used to construct a
model for system performance. Such a model may then be
used without calibration for comparative studies (relative
performance), or may be calibrated with real-system mea-
surements to enable prediction for absolute performance.

A variety of methods to characterize parallel system per-
formance in a bottom-up manner, with a small set of closed-
form relations have been previously explored in the re-
search literature. They include models such as various
PRAM models, LogP [23] (which improves upon PRAM
models by capturing the computation and communication
latency, overhead, bandwidth and processing constraints of
real-world parallel computing systems), and parallel perfor-
mance metrics such as the isoefficiency [36].

Like Hoefler et al. [43], our objective is to enable early-
design-stage exploration of the interaction between algo-
rithm properties and compute architectures, in the context
of whole-system metrics such as performance and power
dissipation. Hoefler et al. however, like Kerbyson et al. [53],
illustrate these concepts with hand-constructed analytic
models for specific applications (what they term a semi-
empirical approach), while we provide a set of broadly-
applicable models, and tools for automation of application
characterization to complement them.

To enable the estimation of application performance
without the need for time-consuming simulation or hand-
crafted analytic models of program behavior, Karkhanis
and Smith developed a first-order superscalar processor
model [51], which, like the model of Azizi et al. which follows
it [5], is at the microarchitecture level. Like the mechanistic

models of Karkhanis and Smith, and Eyerman [51, 52, 32, 33]
(but unlike the work of Noonburg and Shen [67]), for the
processor-level component of our models, we start from a
baseline performance model formulated from empirically
determined ideal-case instruction-, thread-, and data-level
parallelism, and data reuse distance distributions, and add
penalties due to non-ideal components of the memory hi-
erarchy. This is similar in spirit to the lost cycle analysis
(lca) approach of Crovella and LeBlanc [22], as well as to
techniques employed in performance analysis to build CPI
stacks; indeed, we use the unique detailed CPI stacks that
can be constructed from the IBM Power7 platform’s hard-
ware performance counters to validate our performance
predictions later in this article. Lca, however, requires the
user to build analytic models of the performance of each
algorithm, in order to fit these models to empirically mea-
sured properties.

Like Boyd et al. [11], Czechowski et al. [24] and DeBene-
dictis [27], our intentions are to provide upper bounds on
performance, to enable system designers to estimate the
best performance achievable for a given algorithm imple-
mentation on a target machine; the MACS (machine, appli-
cation, compiler, and schedule) bounds from Boyd et al. are,
in essence, best-case instruction execution rates coupled
with instruction mix counts. While both their work and ours
involve the concept of “hierarchies”, the MACS hierarchy
refers to levels of refinement of the model, while in our case,
a hierarchy is used to capture the physical composition of
large-scale computing systems. DeBenedictis estimates sys-
tem performance using a simple set of machine balance
targets combined with “derated” processor and technol-
ogy characteristics. The “balance principles” of Czechowski
et al. [24], can be seen as a subset our bounds relations,
with a focus only on the best-case instruction throughput
and memory bandwidth, not taking into account the in-
teractions between various hardware constraints (e.g., cost,
packaging, and power delivery).

In analyzing whole-system performance, one popular
approach is to model system behavior as a Markov chain
or queuing network. Queuing models permit the analysis

3

of whole-system behavior when some dynamic properties
of the hardware and applications are known. These proper-
ties might be, e.g., the access duration and inter-arrival time
distributions for specific hardware resources, resulting from
application or end-user properties. Given these characteris-
tics, discrete event simulation is typically used to determine
steady-state resource utilization, and hence system perfor-
mance. Under certain restrictions, it is possible to obtain
direct analytic results without resorting to such simulation.

Sharapov et al. [76] use a combination of queuing-
theoretic modeling and hardware constraints to capture
the behavior of applications on petascale-class systems, fo-
cusing on performance prediction, and not capturing the
interactions between performance, power, reliability, and
cost. Even though they outline a detailed infrastructure for
manual performance characterization of individual appli-
cations, they employ a simple argument based on Amdahl’s
law for performance scaling predictions to large (petascale)
system sizes.

The PHANTOM framework [87], like the performance pre-
diction sub-component of EXABOUNDS, is relevant to the
task of predicting behavior of applications at scale. It how-
ever inherently depends on access to a single node instance
of the target full system, and it provides no facilities for a sys-
tem architect or algorithm designer to gain insight into how
algorithm properties might influence performance, power,
reliability, or cost, across a range of architectural choices
and implementation technologies; it simply achieves per-
formance prediction by scaled simulation and replay of
measured compute times and communication traffic.

For performance and power estimation of small-scale
systems (e.g., a single processor socket) microarchitec-
tural simulators such as Simics [61], Mambo [9], Sim-
plescalar [13], Wattch [12], and Graphite [63] may be used,
in conjunction with memory subsystem timing and power-
performance predictors such as CACTI [81], or network sim-
ulators [84, 64].

2.2 Efficient design-space exploration
Several prior research efforts have focused on enabling

rapid exploration of architectural choices for microproces-
sor designs, using techniques ranging from regression mod-
eling [59] and neural networks [47], to various determinis-
tic and probabilistic first-principles and mechanistic mod-
els [5, 51, 52, 67]. These efforts have however focused al-
most entirely on modeling or estimating performance, with
limited coverage of the interaction between performance,
packaging, power consumption, reliability, and cost. Un-
like the few prior attempts to estimate the effects of de-
vice, materials, and circuit parameters on computing per-
formance for a single processor socket [60, 38, 35], the EX-
ABOUNDS framework is targeted at coarse-grained analysis
of complete computing clusters; this means that the ana-
lytic framework takes into account properties ranging from
transistor switching speeds and logic depth per pipeline
stage, to number of racks and machine room cooling effi-
ciency. Like the HLS framework [68], our goal is to enable
fast early-stage design exploration; HLS, however, only tar-
gets performance prediction for a microprocessor core.

2.3 Empirical semiconductor data and
circuit-level models

One commonly-used rule of thumb for the relation be-
tween hardware complexity (in die area or transistor count),
and achievable performance, is Pollack’s rule, which postu-
lates that performance grows as the square root of the num-

ber of transistors [10]. A number of research efforts have
provided more quantitative bases for relating achieved per-
formance to transistor-level cost, starting with the work of
Palacharla et al. [69].

McPAT [60] enables analytic modeling of complete mi-
croprocessors, from their microarchitectures and on-chip
interconnect networks, to the influence of circuit and his-
torical (ITRS) CMOS technology trends. Its use of timing es-
timation is primarily in the context of using timing targets
as constraints for its power and area estimation. Area es-
timation is performed using analytic modeling in the style
of CACTI for on-chip array structures such as SRAMs and
CAMs, and using historical data for estimating the area costs
of structures such as on-chip memory controllers.

The empirical models of Eble [30] relate cycles per in-
struction (CPI) to the number of transistors for on-chip logic
(i.e., excluding transistors for caches). Eble however im-
plicitly assumes that CPI can continue to increase as long
as more hardware resources are used. While this was true
for low-issue-width architectures as empirically demon-
strated by Eble, it ceases to be true for high issue widths,
since many applications have limited usable instruction-
level parallelism [17]; the diminishing returns to perfor-
mance from increasing transistor counts in recent years is
illustrated in Figure 2.

Timing- and power-performance of circuit-level designs
are typically performed with tools such as SPICE [66], possi-
bly using technology models such as the Berkeley predictive
technology model and its derivatives [88] to predict proper-
ties of future semiconductor process generations. Similarly,
tools such as BACPAC [79], SUSPENS, and GTX [16] enable
timing and power prediction for an entire design or die—
clock distribution, wiring, I/O, etc.

To support the analytic models in EXABOUNDS, we built
a database of design properties for a large collection of
digital designs (microprocessors, DSPs, and other digital
ASICs), from publications in the solid state circuits liter-
ature (e.g., ISSC and JSSC). The Stanford CPU database
(CPUdb) curated by Horowitz et al. [25], in contrast, is based
on datasheet values, and is restricted to microprocessors.
Like them, we have published the provenance of our data
points [78], enabling the community to duplicate or verify
our observed insights. An advantage of our use of data from
ISSCC and JSSC publications is however that the values used
in our corpus are typically measured values of, e.g., power
dissipation at a stated supply voltage and clock frequency
as opposed to CPUdb’s reliance on the reported supply op-
erating range, and their use of thermal design point (TDP)
values as estimates of power consumption.

2.4 Algorithm-hardware interaction
Like Jouppi [49], and Noonburg and Shen [67], the per-

formance sub-component of our models are structured
by decoupling an application’s available parallelism from
machine-available parallelism. Our application-parallelism
characterization captures not just mean values like prior
work [58, 72, 83, 4, 71], but rather, the entire distribution of
ideal-case ILP/TLP values over the program’s execution, a
superset of the smoothability information of Theobald and
Gao [80].

Hill and Marty [42], and, more recently, Borkar and
Chien [10], investigated the tradeoff between homogeneous
and heterogeneous mixes of core sizes. Our work enables
such discussions to be placed on a more quantitative foot-
ing by capturing application properties that map to large

4

0.5 1.0 5.0 10.0 50.0100.0

1

2

5

10

20

50

Transistors HmillionsL

9S
P

E
C

ba
se

in
t9

5,
1=

Stanford CPUdb Device�Packaging Data

DRAFT
SPECbase int95 � 2.65476 nxistors

0.635859

æ : Mean Values— —

(a) SPEC INT 95 rating versus transistors per die.

100 1000500200 300150 700

10

20

30

15

Transistors HmillionsL

9S
P

E
C

ba
se

in
t0

6,
1=

Stanford CPUdb Device�Packaging Data

DRAFT
SPECbase int06 � 1.66938 nxistors

0.388384

æ : Mean Values— —

(b) SPEC INT 2006 rating versus transistors per die.

Figure 2. Diminishing benefits to performance from increasing transistor counts (from n0.64
xistors, to n0.39

xistors).

single-thread-performance cores (i.e., ILP), versus applica-
tion properties that map better to many smaller cores (more
DLP or TLP).

There have been a number of previous attempts at
characterizing the interrelation between algorithm paral-
lelism, performance, power dissipation, and energy-to-
completion [57, 19]. These efforts have focused on manually
analyzing the parallelism in an algorithm (e.g., via manual
work and span analysis [21]), and then subsequently com-
bining these hand-analysis results with relations between
supply voltage, power/energy, and clock frequency. In our
work, we make the significant step of being able to per-
form such analysis on compiled program binaries, automat-
ing the work and span analysis to estimate ideal-case par-
allelism of real applications. More importantly, we use the
results of these analyses at the scale of complete compute
clusters, and not for an isolated microprocessor.

Like Marin and Mellor-Crummey [62], we employ
architecture-agnostic characterization of applications, and
the subsequent independent pairing of that characteriza-
tion with machine properties to enable performance pre-
diction. Unlike their work however, which characterizes
only application locality, we characterize temporal and spa-
tial locality, as well as instruction- and thread-level paral-
lelism. Characterizing parallelism inherent in serial appli-
cations enables us to start with serial applications just like
Marin and Mellor-Crummey, but to then make realistic pre-
dictions not just for candidate serial platforms, but also for
parallel ones.

Our goals of enabling fast early-design-stage modeling
are similar to those of the PMaC project [1], which fo-
cused primarily on memory bound kernels. Like them,
we also adopt the approach of separately characteriz-
ing architecture-independent application/algorithm prop-
erties, and hardware properties, before combining the two
to predict performance; thus, the PMaC approach at the
cluster level is similar to the approach of Noonburg and
Shen [67] and by Jouppi [49] at the microarchitecture level,
and to our approach at the level of a complete supercom-
puting cluster or datacenter. Unlike PMaC, which estimates
the effect of the memory system based on an empirical
probe program (MAPS), we rigorously characterize the tem-
poral and spatial reuse distances of applications, which en-
ables us to accurately estimate cache and TLB hit rates for a
variety of hardware configurations after the fact, from a sin-
gle application characterization.

2.5 Modeling costs in large-scale systems
Koomey [56] describes a tool for estimating the true total

cost of ownership for datacenters, capturing both the capi-
tal and operational expenses. Our cost models, presented
in Section 4.7, are focused on operating expenses, in par-
ticular, energy delivery costs for computing and communi-
cation, while treating other operation costs such as cooling
and power regulation using efficiency factors. For the com-
puting and communication energy costs however, we pro-
vide significantly more fine-grained modeling, as functions
of application properties, workload size, and hardware im-
plementation properties.

Patel et al. [77] have investigated modeling the thermo-
dynamics and electrical energy for driving cooling equip-
ment in datacenters. We purposefully thus sidestep dupli-
cating such work, and focus on modeling more interaction
between applications and hardware, and components of the
hardware at the board level.

3 Illustrative Example
As an illustrative running example in the remainder of

the article, we consider the task of designing a computa-
tional backend for a radiotelescope. This challenge is one of
significant importance to large scientific instruments such
as the preexisting low-frequency array (LOFAR) [26], and the
planned square-kilometer array (SKA) [28].

Two aspects of the computational workload of these
systems are the per-station processing for aperture arrays
(beamforming of signals from multiple antenna elements),
and central data processing (correlation of the signals be-
tween multiple stations). The core computational problems
(Figure 2.5, top) behind the latter component can be ad-
dressed with the simple algorithmic solution listed in Fig-
ure 2.5(bottom). Although the core algorithms solving the
problems of interest may be simple, the data rates that must
be processed are substantial.

The current LOFAR deployment sustains data rates of
230 Gb/s going into the per-station beamformer, requiring
approximately 36× 1012 multiplies per second, per station.
Given the inherent requirement that stations are in remote
locations, this processing should be achievable at a mini-
mum power budget, such as that which can be provided by
a local solar panel.

At an even larger scale, the central data processor must
cross-correlate signal streams from all antennas in an in-
strument. For example, for the high-frequency (< 25 GHz))
component of the final SKA system, this will correspond to
up to 3300 antennas, each handling up to 17,000 channels,
each of two polarizations. At 16 bits per sample, and a sam-

5

CORRELATE(samples : R×R×R×R→ visibilities : R×R×R×R)
1 t : N= {0, . . . ,nintg−1}.
2 ch : N= {0, . . . ,nchns−1}.
3 bl : N= {0, . . . , 1

2
(
n2

chns−nchans

)
+nchns−1}.

4 stnA,stnB : N= {0, . . . ,nstns−1}.
5 pol1, pol2 : N= {0, . . . ,npols−1}.
6
7 �

8 � Computational problem definition for correlation. The following property is satisfied by a valid visibilities array:
9 �

10 ∀bl∀ch∀pol1∀pol2∀stnA∀stnB

(
(stnB ≥ stnA)

⋂ (
bl = 1

2 stnA (2nstns− stnA−1)
))
⇒

11 visibilities[bl][ch][pol1][pol2] = ∑
nintg−1
t=0

(
samples[stnA][ch][t][pol1] · samples[stnB][ch][t][pol2]

)
.

SIMPLECORRELATOR(SamplesType samples[nstns][nchns][nintg][npols])

1 for ch← 0 to nchans

2 bl← 0
3 for stat1← 0 to nstns

4 for stat2← stat1 to nstns

5 bl← bl +1
6 for pol1← 0 to npols

7 for pol2← 0 to npols

8 sum← 0
9 for pol2← 0 to npols

10 sum← sum+ samples[stat1][ch][time][pol1]∗ con j(samples[stat2][ch][time][pol2])
11
12 visibilities[bl][ch][pol1][pol2]← sum
13
14 return visibilities

Figure 3. A computational problem of interest and a simple algorithm that solves this computational problem.

ple rate of 1 Gs/s, this yields over 1× 1017 samples per sec-
ond, which must be cross correlated, or 112 M correlations
per sample group, at a rate of 1 Gs groups per second.

For the above subsystems, we would like to be able to an-
swer certain kinds of questions:

• What are the properties of various algorithmic solu-
tions to the beamforming and correlation computa-
tional problems?

• At the microarchitecture level, do these algorithms in
consideration have available instruction- or thread-
level parallelism?

• Do the different algorithms solving the same computa-
tional problem have differing amounts of data reuse?

• What is the interplay between exploited parallelism
and the pressure on the memory system?

• What is the tradeoff in terms of performance, power,
and die area of larger caches?

• Should multiple cores be integrated on a die, or should
concurrency integration occur at the level of packaged
dies?

• What fraction of system power dissipation will be lost
to point-of-load voltage regulation?

• What will be the monetary power delivery costs for a
system of a given size, over the course of a year?

The EXABOUNDS analytic framework is designed to pro-
vide insight into such questions, by providing bounds on

compute performance, power dissipation, monetary cost,
and reliability. These bounds are not tight, but rather
coarse estimates intended to guide more detailed (and time-
consuming) analysis, early in the design process.

4 Hierarchical analysis of large-scale
computing systems

A typical large-scale computing system may be viewed
from at least eight layers of detail—the core, die, socket,
card, rack unit, rack, aisle, and whole system layers, as illus-
trated in Figure 4. When the behavior of such a hierarchy
is captured in a set of analytic relations, the equations cor-
responding to lower levels in the hierarchy may be seen as
forward predictive equations, and predict values of proper-
ties at higher levels; the metrics or outputs of the relations at
one level are often parameters or inputs of the next level. An
example is the formulation of the performance per die (level
1 in Figure 4) in terms of the performance per core (level 0 in
Figure 4), number of cores per die, available memory band-
width per die, and application properties. Similarly, a set of
backward constraint equations may restrict the values of pa-
rameters and metrics at lower levels of detail, based on con-
straints defined at higher levels of detail; an example of such
a constraint is the core-level power dissipation limit impos-
ing constraints on the core design parameter values.

4.1 Terminology and notation
Tables 2 and 3 list a representative subset of the parame-

ters that appear in the analytic relations defined in the re-
mainder of this article, across multiple levels of the hier-
archy of Figure 4. In the table, the parameters at a given

6

2

Semiconductor process and logic designcore

socket
card

0
1

rack unit
rack

aisle

3
4

5
6

7

die Microarchitecture
Architecture

System architecture
Backplane
Network
Cooling

Level
Number

Level
Name

Relevant properties

system

Fo
rw

ard
 pr

ed
ict

ive
 eq

ua
tio

ns

Backward constraint equations

Figure 4. A computing cluster may be viewed at several hi-
erarchical levels, which may be referred to as tiers, scales,
strata, etc. This article considers eight such levels.

level have subscripts corresponding to which (of eight) lev-
els they pertain to. Thus, e.g., n1 denotes the number of pro-
grammable processor cores per die (level 1). Superscripts
are used to distinguish between possibly-multiple parame-
ters of the same type at a given level, and will be omitted
when the intended meaning should be clear from the con-
text. In the remainder of this article, the basic granularity of
time employed will be a processor clock cycle, clk.

The term application-level parallelism (ALP) at a given
level in a hierarchy will be used to denote the maximum
number of units of work, for a given application, that may
simultaneously be in progress at a particular moment, re-
stricted only by the application’s innate dependencies. At
level 0 (within a processor core), this corresponds to the
instruction-level parallelism (ILP); at level 1, it is the thread-
level parallelism (TLP). In the remainder of this article,
when the parallelism is characterized from serial appli-
cations [17], this TLP will be basic-block-level TLP, since
that is the granularity at which thread-level parallelism can
be meaningfully machine-extractable from serial applica-
tions. At higher levels in the hierarchy, the parallelism
may be coarse-grained TLP (e.g., as manifest in explic-
itly parallel programming models such as Cilk, OpenMP, or
Pthreads), multiple-program-multiple-data (MPMD) paral-
lelism, or data-level parallelism (DLP).

The bounds we consider fall into four groups:

• bounds on computation throughput (C0 to C7), the re-
ciprocal of the time to solution for a hierarchy of prob-
lem subdivisions Li at level i;

• bounds on power dissipation at all the levels in the
system hierarchy (P0 to P7);

• bounds on monetary cost $i at a given hierarchy level;

• bounds on mean time to failure, MTBFi.

The compute throughput is in principle defined for each
of integer (henceforth abbreviated INT), single- (SPFP) and
double-precision floating point (DPFP). In what follows,
to simplify the exposition, the type distinction is however
omitted unless necessary; instruction mixes can however
be used in practice as input to the link between application
parallelism and machine parallelism models.

Table 2. Notation for application-/algorithm-specific ap-
plication parameters. Only this small set of application
properties are required, and tools for their automatic
characterization are detailed in Section 5.

Description Notation Working
Example

Overall workload size (instructions) Lsys 120E12 instrs.
Workload subdivision at level i Li 10E9 instrs.
Fraction of instrs. that perform Fdmo

i 0.5
Data movement operations at level i
Data movement accesses per cycle, level i Bdmo

app,i 0.5 B/pclk
Innate parallelism at level i ALPtype

i 4 at i = 0
Data address reuse distribution at level i Ddata-reuse

i (distribution)

Instruction address reuse at level 0 Dinstr-reuse
0 (distribution)

Instruction type mix at level 0 Ftype
0 Fctrl

0 = 0.15

The relations that follow feature a number of constants of
proportionality, which are all denoted K, with distinguish-
ing super- and subscripts.

4.2 Performance bounds
Computation may be characterized, broadly, as consist-

ing of arithmetic operations and data accesses. Memory
is used as the mechanism through which dependent in-
struction streams communicate, e.g., via read-after-write
(RAW) true dependencies. When applications are paral-
lelized, whether across multiple cores on a die sharing a sin-
gle memory, or across multiple processors connected via a
network, these (formerly serialized) dependencies must be
satisfied through memory (in the former case) or via net-
work communication (in the latter). In what follows, the
term data movement is used to refer to both communica-
tion to memory and communication over an interconnect.

The raw data movement requirements of applications
(and the temporal and spatial reuse in those access pat-
terns) will limit the benefits of added hardware concurrency
in the presence of limited scaling of memory and intercon-
nect bandwidths and latencies. Similarly, application par-
allelism (at the instruction-, thread- or task-level) will limit
the benefits that can be gained from hardware-provided
concurrency.

In practice, a system will execute a large collection of al-
gorithms both concurrently and in series. In the remainder
of this article, the workload is described as though it were a
single algorithm with properties representative of the over-
all workload mix.

4.2.1 Hierarchical workload division
Given an algorithm and its input, there is a total amount

of work, Lsys, in instructions of a given type, that needs to
be completed. Small problem sizes correspond to the dom-
inant case in so-called capacity machines, while large prob-
lem sizes correspond to the typical situation in capability
machines. We formulate the computational work, Li, to be
performed per computation unit at level i in the hierarchy of
Figure 4, by an application with amount ALPi of parallelism
available, as

Li =
Li+1

min(ni,ALPi)
instructions, ∀ i < 7,

with the boundary condition of

L7 =
Lsys

min(n7,ALP7)
instructions.

7

2

Semiconductor process and logic designcore

socket
card

0
1

rack unit
rack

aisle

3
4

5
6

7

die Microarchitecture
Architecture

System architecture
Backplane
Network
Cooling

Level
Number

Level
Name

Relevant properties

system

n0, Vdd, …

C0, P0, $0, Bi
dmo, Ti

dmo, n1, …

C1, P1, $1, n2
io, n2

supply, n2, …

C2, P2, $2, n3, …

C3, P3, $3, n4, …

C4, P4, $4, n5, …

C5, P5, $5, n6, …

C6, P6, $6, n7, …

C0, P0, $0,

C1, P1, $1

C2, P2, $2

C3, P3, $3

C4, P4, $4

C5, P5, $5

C6, P6, $6

C7, P7, $7

Figure 5. Inputs to, and outputs from, the different layers of the hierarchical EXABOUNDS model. Only a small set of appli-
cation properties are needed for application-driven analyses. The majority of the parameters in the model are technology
dependent quantities that change over technology generations and need not be specified by architects.

A

D

C

B
F

G

H

I

L

K

N

J

M

O

E
A

B

C

D

F

G

H

I

J
K
L
M
N
O

Cycles per instruction, d0

Data stalls, d0
L1data + d0

L2data

Instruction stalls, T0
L2latencyf iL1(D0

instr-reuse)

Instruction completions, 1/ṅ0

E

Instruction cache misses, d0
icache

Branch mispredictions

ITLB misses, T0
DRAMlatencyf iTLB(D0

instr-reuse)

Address computations, F0
addr

Integer, F0
int

Double-precision floating-point, F0
DPFP

Control, F0
control

Load/store, F0
memory

Other, F0
other

L1-D miss, d0
L1data

Last-level cache miss, d0
L2data

Figure 9. The EXABOUNDS analytic framework captures
the contributors to execution delay. The cycle delays per
instruction can be represented as a CPI stack breakdown
diagram.

That is, the actual workload per each compute component
at a given level is determined by how much parallelism in
hardware at that level (ni) can be exploited by an applica-
tion having available parallelism ALPi. These relations suc-
cinctly capture the recursive division of a workload (i.e., a
given algorithm paired with an input dataset) over a sys-
tem’s compute components; this formulation will be refined
in Section 4.6 to account for the additional work, per com-
pute element, that must be carried when some parts of the
system fail. An example is shown in Figure 6.

4.2.2 Computation throughput
The computation throughput achieved by a system is

a combination of properties of applications and that of

the hardware (micro) architectures on which they execute.
This is most intuitively captured by the cycles per instruc-
tion (CPI), expressed as the product of program properties
(events per instruction for event type i, Fi) and hardware
properties (cycles per event, for event type i, MPi) [31]:

CPI = ∑Fi ·MPi. (1)

The CPI for an application is broken down further into mul-
tiple components, as illustrated in Figure 9. The CPI stack
estimated from EXABOUNDS can be compared to that ob-
tained from hardware performance counters read from ac-
tual applications running on the IBM Power architecture
(Figure 7 and Figure 8). These components to the instruc-
tion delay, shown in the Figure, are detailed further in what
follows.

The instruction cache and I-TLB miss components of CPI
are computed as the product of I-cache/I-TLB miss penalty
(cycles to access L2 or memory) and the probability of a
miss, which is in turn computed from the instruction ad-
dress reuse histogram (i.e., the instruction stream’s “LRU
stack distance”, as detailed further in Section 5), i.e.,

dicache
0 =T L2latency

0 · f iL1(Dinstr-reuse
0)+

T DRAMlatency
0 · f iTLB(Dinstr-reuse

0),
(2)

where T L2latency
0 and T DRAMlatency

0 are the L2 and DRAM ac-
cess latencies in cycles, Dinstr-reuse

0 is the application’s in-
struction reuse distribution, characterized with tools such
as those described in Section 5, and f iL1 and f iTLB are func-
tions from the distribution values to the i-L1 and i-TLB miss
rates.

The branch misprediction delay, dbranch
0 , is computed as

the sum of the pipeline length, npipe
0 , and the expected time

between a branch misprediction and its resolution; the lat-
ter is shorter if there are shorter dependence chains [33, 51],
and is modeled as the sum of the frontend pipeline’s ca-
pacity (length times width), nfront

0 , and the reorder buffer
size, nROB

0 , divided by the application’s harmonic mean ILP,

8

Level 0
H1. FUs per CoreL

Level 1
H32. Cores per DieL

Level 2
H4. Dies per Sock.L

Level 3
H4. Sock. per CardL

Level 4
H1. Cards per Midp.L

Level 5
H2 Midp. per RackL

Level 6
H2 Racks per AisleL

Level 7
H1. Aisles per Sys.L

0

2´1014

4´1014

6´1014

8´1014

1´1015

Level 0
H1. FUs per CoreL

Level 1
H32. Cores per DieL

Level 2
H4. Dies per Sock.L

Level 3
H4. Sock. per CardL

Level 4
H1. Cards per Midp.L

Level 5
H2 Midp. per RackL

Level 6
H2 Racks per AisleL

Level 7
H1. Aisles per Sys.L

Hierarchy Level

P
ro

bl
em

S
iz

e
pe

r
C

om
pu

te
U

ni
t

Hin
st

ru
ct

io
ns

L

Figure 6. Illustrative example of work per system hierarchy level, for the correlator working example of Section 3, mapped
to one example system (a single IBM BlueGene/P rack). It is a function of the hardware concurrency at each level, coupled
to the application’s available parallelism at different levels.

Linux with
OProfile

kernel module

0100011001
1011110110
0011011101
0101110011

Compiled
program
binary

OProfile counter reports, per
counter group, across

replications, with a total of
11 N run reports per benchmark

IBM Power7:
24 completion unit

counters, across 11
groups

1 run for each of 11 groups, N
replications, to compute means

and variances (N > 1)

Post-
processing in
Mathematica

CPI Stack
(hierarchical
depiction of
sources of
stall cycles)

A

B

D

E

G

I

J

O

E2
G2

G4

I1

Figure 7. Applications are executed on an IBM Power7 system to obtain hardware performance counter data, which is then
post-processed to obtain the CPI stack visualizations.

9

A

D

C

B

M
N

P
O

R
Q

S

I

E1

F1

E

L
K
J
I2
I1

H

F

G

E2

F2

F3
F2B
F2A

F1A
F1B

G1
G1A
G1B

G2
G3
G4

A PM_RUN_CYC
B PM_CMPLU_STALL
C PM_GCT_NOSLOT_CYC
D PM_GRP_CMPL

G PM_CMPLU_STALL_LSU
H PM_CMPLU_STALL_THRD
I PM_CMPLU_STALL_IFU
J PM_CMPLU_STALL_OTHER

O PM_1PLUS_PPC_CMPL: integer
P PM_1PLUS_PPC_CMPL: float
Q PM_1PLUS_PPC_CMPL: control
R PM_1PLUS_PPC_CMPL: load/store
S Overhead of PPC instr. expansion

E PM_CMPLU_STALL_FXU
F PM_CMPLU_STALL_VSU

K PM_GCT_NOSLOT_IC_MISS
L PM_GCT_NOSLOT_BR_MPRED
M PM_GCT_NOSLOT_BR_MPRED_IC_MISS
N PM_GCT_EMPTY_OTHER

E1 PM_CMPLU_STALL_DIV
E2 PM_CMPLU_STALL_FXU_OTHER
F1 PM_CMPLU_STALL_SCALAR
F2 PM_CMPLU_STALL_VECTOR
F3 PM_CMPLU_STALL_DFP

G1 PM_CMPLU_STALL_REJECT
G2 PM_CMPLU_STALL_DCACHE_MISS
G3 PM_CMPLU_STALL_STORE
G4 PM_CMPLU_STALL_LSU_OTHER
I1 PM_CMPLU_STALL_BRU
I2 PM_CMPLU_STALL_IFU_OTHER
F1A PM_CMPLU_STALL_SCALAR_LONG
F1B PM_CMPLU_STALL_SCALAR_OTHER
F2A PM_CMPLU_STALL_VECTOR_LONG
F2B PM_CMPLU_STALL_VECTOR_OTHER
G1A PM_CMPLU_STALL_ERAT_MISS
G1B PM_CMPLU_STALL_REJECT_OTHER

Figure 8. The Power architecture provides a comprehensive set of hardware performance counters (counter names shown
in the legend of the figure), designed specifically to enable the construction of a detailed CPI stack. Such actual CPI stacks
can be compared to the CPI stacks estimated from EXABOUNDS (Figure 9).

n̂0 = min(n0,ALP0), i.e.,

dbranch
0 = npipe

0 +
nfront

0 +nROB
0

n̂0
. (3)

The miss penalty for L1 data cache misses is computed
from the data reuse histogram distribution and the L1-to-L2
latency, i.e.,

dL1data
0 = T L2latency

0 · f L1D(Ddata-reuse
0). (4)

The miss penalty for L2 data cache misses is computed
as the product of the L2 miss probability, and the difference
between the main memory latency and reorder buffer size
divided by the program ILP; the latter term captures the fact
that applications with longer dependence chains (smaller
ILP), will take longer filling the reorder buffer, and, until that
happens, the mean IPC would not have fallen below its non-
miss-event equilibrium:

dL2data
0 = (T DRAMlatency

0 −
nROB

0
n̂0

) · f L2D(Ddata-reuse
0). (5)

The above relations do not capture the effects of
prefetching or of software-managed memories. While such
hardware optimizations are important, they are not per-
vasively implemented in microprocessors. Thus, in argu-
ing for generality and simplicity, we currently exclude them
from EXABOUNDS. These bounds build on prior work [33,
51], but we extend them in a number of important ways de-
scribed below.

The rate of completion of a given workload is not only
dependent on the compute operations to be completed, but

also on the data motion bandwidth needs of an application
being met. The components of instruction delay due to the
memory hierarchy presented in Equations 2 to 5 however
implicitly assume that while accessing DRAM has a latency
T DRAMlatency

0 , an unlimited number of such accesses may be
initiated in aggregate by the concurrent hardware units at a
given level in the hierarchy. In practice, at any level of the
hierarchy, there will be an additional queuing delay com-
ponent, due to real systems having limited memory band-
width.

For an application with data motion bandwidth require-
ment of Bdmo

app,i, a hardware platform that provides Bdmo
i data

motion bandwidth per pin, and degree of concurrency con-
strained by both application parallelism and hardware re-
sources n̂i = min(ni,ALPi), the queuing delay can be approx-
imated by Little’s law [54]:

dBWq
0 =

Bdmo
app, 0

min

(
Bdmo

app, 0,
Bdmo
0 ·nIO

0
n̂0

)

Fdmo
0

. (6)

The numerator on the right hand side of the above expres-
sion represents queue length, and the denominator repre-
sents the arrival rate of memory requests to the (bandwidth-
limited) memory channel.

The overall instruction throughput at the processor core

10

Table 3. Notation for hardware parameters. The example
values are based on observations of actual systems; spe-
cific references are omitted for brevity.

Description Notation Working
Example

Data motion bandwidth Bdmo
i 1 Gb/s per pin

per signal line at level i at i = 0
Data motion latency at level i T dmo

i 100 ns at i = 0
Volatile Memory at level i Mi 16 GB equiv.

DRAM per
core, at i = 0

Datapath width in bits nbits
0 64

Pipeline depth npipe
0 10

Func. units per core (integer) nINT
0 8

Func. units per core (single float) nSPFP
0 8

Func. units per core (double float) nDPFP
0 8

Transistors per core nxpcore
0 40 million

(or, Programmable cores per die) n1 8
Dies per socket ndie

2 4
Resistance, power supply pin + pad Rsupply

2 1µΩ

I/O interfaces per card n3 8
Sockets per card n3 2
Cards per rack unit n4 10
Rack units per rack n5 6
Racks per aisle n6 16
Aisles per system n7 8
Clock frequency fi 4×109 Hz

at i = 0
Supply voltage Vi 1.2 V

at i = 0
Threshold voltage Vt 0.4 V
Parameters based on technology
improvements over time
Transistors per die nxpc

0 200 million/mm2

Area per die napd
1 200 mm2

Transistors per unit area nxpc
0 /napd

1 2 million/mm2

at 90 nm node
Power supply pins per socket nsupply

2 150
I/O pins per socket nio

2 64

level is thus:

d0 =
1
n̂0

+dicache
0 +dbranch

0 ·Fcontrol
0

+(dL1data
0 +dL2data

0) ·Fmemory
0 +dBWq

0 ,

(7)

where F type
0 is the instruction mix fraction for each instruc-

tion of type type (e.g., integer, floating-point) 1.
From the foregoing relation for total amount of work (in

instructions executed), needed to solve a given problem,
and from the above relation for delay per instruction, rate
of problem solutions per second for a given problem size, Ci
when seen from level i, is thus

Ci =
Li +Lovhd

i
d0

instructions/second. (8)

Lovhd
i is the overhead incurred per computing unit, in par-

allelization at level i. The delay per instruction is only
formulated for level 0, and for all higher layers, the addi-
tional computational overheads are captured by the term,
Lovhd

i , representing overhead work at a given layer. Equa-
tion 8 expresses the compute performance of a system as
a closed-form hierarchical expression, as di is a function of

1This division of the delay per operation into compo-
nents due to latency, bandwidth and parallelism is similar
to the approach of Burger et al. [14].

A

D

C

B
F

G

H

I

L

K

N

J

M

O

E

(a) Illus-
tration of
model CPI
stack.

1184621868

A

D

C

B

J

IHGF

E

PONM

LK

(b) Actual
measure-
ment.

Figure 10. Comparison of EXABOUNDS performance
breakdowns (left) to that measured using hardware per-
formance counters on the IBM Power7 (right), for the sim-
ple algorithm corresponding to the correlator computa-
tional problem in Figure 2.5.

Ci−1. It succinctly captures the interaction between hard-

ware properties (Bdmo
i , ni/o pins

i ni, and Ti), application prop-
erties (Lsys, Bdmo

app,i, Fdmo
i , and ALPi) and system software over-

heads (Lovhd
i). When best-case (i.e., smallest) values of Fdmo

i
and T dmo

i are used in the relation for di, one obtains an up-
per bound on Ci, and conversely, worst-case values provide
lower bounds on Ci.

For the working example application, whose instruction
mix breakdown is shown in Figure 10(a). Figure 10(b, c)
show the estimated C0 (core-level compute throughput, i.e.,
CPI), based on these models, compared to the measured CPI
from hardware performance counter measurements on the
IBM Power7, an 8-core/32-thread system whose relevant
properties in the context of the EXABOUNDS model are listed
in Table 4, and illustrated in Figure 11. Figure 10(d, e) show
the estimated C2 (socket-level compute throughput), based
on these models, compared to the measured socket-level in-
struction throughput from hardware performance counter
measurements on the IBM Power7, for the working example
application.

4.3 Bandwidth versus cache size tradeoffs
At each level, i, of a computing system hierarchy, there is

an inherent tradeoff between the effective available band-
width (Bdmo

i), and the size of buffer storage. These buffers
range from the registers within a core microarchitecture, to
the cache hierarchy (L1, L2, and deeper). For a given buffer
size at a given level of the system (e.g., L1 cache size), an
application reuse distance distribution can be used to esti-
mate the miss rate and hence the required memory band-
width. These reuse distance distributions can be collected
using techniques described further in Section 5. In the ab-
sence of application-specific reuse distance distributions, a
reasonable rule of thumb that captures the empirically ob-
served relation between cache size (Slevel

i) and the effective

11

Level Name Relevant properties

Po
w

er
7

Se
rv

er

Core

Socket

Card

Rack unit

Die

8-wide issue; n0 = 8

8 cores per die; n1 = 8

1 die per socket; n2 = 1

4 sockets per card; n3 = 4

1 card per rack unit; n4 = 1

Figure 11. Illustration of a system built out of Power7 processors, in the context of the hierarchy presented in this article.

Table 4. Values for parameters of the EXABOUNDS model,
corresponding to a single-socket IBM Power7 system. The
L3 bandwidth and latency values in parentheses are for
the case where the L3 latency is taken to be that of the non-
local adaptive victim L3.

Parameter Description Value for
IBM Power7

Bdmo
0 ·ni/o

0 L2 bandwidth 256 GB/s
Bdmo

1 ·ni/o
1 L3 bandwidth 128 (512) GB/s

Bdmo
2 ·ni/o

2 DRAM bandwidth 100 GB/s
T dmo

0 L2 latency 8 clks
T dmo

1 L3 latency 25 (125) clk
T dmo

2 DRAM latency 400 clk
M0 L2 size 256 kB
M1 L3 size 32 MB
nbits

0 Datapath width 64
npipe

0 Pipeline capacity 120
n f ront

0 Frontend capacity 6 ·9
nROB

0 Reorder buffer capacity 48
nINT

0 # integer units 4
nDPFP

0 # DP FP units 4
ncor

1 Cores per die 8
ndie

2 Dies per package 1
f0 Core clock frequency 4×109 Hz

napd
1 Area per die 567mm2

nxpc
0 Transistors per die 1.2×109

available bandwidth [39], is:

Bdmo-effective
i =

KS
i√

Slevel
i

. (9)

4.4 Unification of existing models and ter-
minology

The foregoing relations for compute performance as a
function of parallelism, workload size, and data movement
bandwidth encompass several existing bounds, rules of

thumb, and terminology, of application scaling on parallel
systems.
4.4.1 Strong and weak scaling

The term strong scaling is used in the computing systems
literature to refer to improvement in performance of a sys-
tem as a function of hardware concurrency, at a fixed prob-
lem size [82]. This corresponds to the increase in Ci (from
the viewpoint of any level, i) as a function of the total avail-
able hardware concurrency at level i and below (∏i

l=0 nl), at
fixed problem size Li. To capture strong scaling properties,
we introduce the notion of the strong scaling coefficient

dCi

d nz
, (10)

where z ≤ i is the level at which hardware concurrency is
scaled. Similarly, the term weak scaling is used to refer to
improvement in performance of a system with increasing
hardware parallelism, if the problem size is permitted to in-
crease, and may be analyzed both numerically and analyt-
ically as in the case of strong scaling above. In an extreme
case of weak scaling, where the degree of hardware concur-
rency remains fixed and problem size increases, weak scal-
ing can be represented by the weak scaling coefficient

dCi

d Li
. (11)

This makes the relation between weak scaling and data-
level parallelism apparent, as both relate to increases in per-
formance as problem size is increased.
4.4.2 Isoefficiency and Gustafson’s law

The rate at which a system’s input size must grow with in-
creasing processor count in order to maintain the speedup
observed at a smaller (baseline) number of processors, is
captured in the concept of the isoefficiency [36] (scalability)
for a given pairing of an algorithm to a platform. For a given
algorithm and hardware, the isoefficiency function can be
formulated from the expressions for Ci, as

d Li

d nz
such that

Ci(Li,nz)

Ci(Limin ,nzmin)
≥

Ci(Li0 ,nz0)

Ci(Limin ,nzmin)
.

In the above, z ≤ i is the level at which hardware concur-
rency is scaled, nz0 and Li0 are the baseline hardware con-

12

currency and problem size to which scaled speedup is be-
ing compared, and nzmin and Limin are the minimum hard-
ware concurrency and problem size. The term d Li

d nz
can

be expressed in terms of the expression for computation
throughput (Equation 8) and that for strong and weak scal-
ing (Equations 10 and 11), as

d Li

d nz
=

d Li

dCi
· dCi

d nz
, (12)

i.e., the isoefficiency is related to the ratio of the strong scal-
ing coefficient to the weak scaling coefficient. Gustafson’s
law [37], like isoefficiency analysis, captures the fact that the
fraction of an algorithm’s execution that is not parallelizable
may effectively decrease with increasing problem size.

4.4.3 Amdahl’s, work, and span laws
Amdahl’s law [2] captures the bound on performance im-

provement as a result of some portion (AMDAHLp) of an al-
gorithm’s dynamic execution stream being (infinitely) par-
allelizable (ALP = ∞), and the remainder being completely
serial (ALP = 1), assuming problem sizes remain fixed.

The “fraction of an application’s workload that is par-
allelizable”, as often attributed to Amdahl’s law, is not al-
ways a meaningful quantity. It is meaningful in applica-
tions which have only two phases or components—one
which has no parallelism, and a second which has unlim-
ited parallelism (more than any degree of hardware con-
currency that will ever be paired with it). Most applica-
tions however have a variety of phases or components, each
with varying amounts of parallelism, with application paral-
lelism not always exceeding the available hardware concur-
rency. The EXABOUNDS model however enables us to define
a proxy parameter for the Amdahl parallelism, AMDAHLp,
since speedup can also be expressed in terms of the rela-
tions derived in the foregoing sections for Ci, at fixed L, i.e.,

speedup =
Ci
(
Li,n′z

)

Ci (Li,nz = 1)

=
1

(1−AMDAHLpz)+
AMDAHLpz

n′z

.
(13)

Thus

AMDAHLpz =
n′z
(
Ci
(
Li,n′z

)
−Ci (Li,nz = 1)

)
(
n′z−1

)
Ci
(
L′i,n

′
z
) . (14)

It is therefore possible to calculate the effective “Amdahl
parallel fraction”, given an observed improvement in com-
pute throughput from Ci (Li,nz = 1) to Ci

(
Li,n′z

)
. The calcu-

lated fraction will however depend not only on the change
in performance (Ci

(
Li,n′z

)
−Ci (Li,nz = 1)) with increasing

hardware concurrency, but also on the baseline system size
(nz).

Contrary to the (useful) simplifying assumptions made
by Amdahl’s law analysis, many applications cannot be split
into two well-defined phases, with one having unlimited
parallelism and the other being entirely serial. When ALP
is greater than ni at any level i, then the parallel execution
time is limited by the ratio of the problem size to the num-
ber of processors, i.e., n̂i = min(ni,ALPi). This corresponds
to Leiserson’s work law [21, 40], when ignoring the con-
straints on data movement captured in the expression for
di above. Similarly, when n is greater than ALP at any level
(i.e., n̂i = ALPi), execution time is limited by the ratio of the

1980 1985 1990 1995 2000 2005 201010-18

10-17

10-16

10-15

10-14

10-13

10-12

Year

K
0

pd
yn

HF
ar

ad
sL

K0
pdyn

� 10221.646-0.118464 year

æ : Mean Values— —

Figure 12. Empirical values of Kpdyn
0 , based on reported

measurements in the solid state circuits literature.

problem size to the amount of ALP, corresponding to the
span law [21, 40].
4.4.4 The roofline model

The roofline model [85] bounds the maximum attainable
performance (FLOPSpeak) of an application as a function of
the peak memory bandwidth (BWpeak) and operational in-
tensity (OI):

min
(

FLOPSpeak,BWpeak×OI
)
. (15)

The operational intensity at which the two terms in the min
expression are equal corresponds to the “ridge point” be-
tween the flat and slanted parts of the “roof” in the roofline
model.

The operational intensity, peak memory bandwidth, and
peak floating-point performance correspond, respectively,
in EXABOUNDS, to Fdmo

i , Bdmo
i , and ni · fi. The coupling of

parameters to implementation constraints in EXABOUNDS
therefore enables the investigation of new tradeoffs, such
as the effect of power delivery constraints (which limit the
number of package pins left over for memory bandwidth)
on the position of the roofline ridge point.

The ridge point represents the point (in terms of the op-
erational intensity) where performance shifts from being
memory bandwidth dominated, to being compute domi-
nated. An application operating with operating intensity at
the ridge point is therefore “balanced”, being equally con-
strained by memory bandwidth and computation. Thus, a
ridge point at lower operating intensity values means an ap-
plication on the platform has a smaller need to reach a high
flops per DRAM access.

The ridge point can be formulated analytically in the
context of EXABOUNDS as the point when

ni · fi = Bdmo
i ·Fdmo

i (16)

Applying the constraint imposed by Equation 16 to any of
the components of the EXABOUNDS model (e.g., compute
throughput or power dissipation) enables the formulation
of an expression for that quantity in a balanced system, po-
tentially yielding new insight into the properties of balanced
systems.

4.5 Hierarchical power dissipation and
technology trends

The performance bounds presented in the previous sec-
tion capture the dependence of execution time on applica-
tion and hardware properties, and can be linked to bounds
on average power dissipation, energy usage, and resulting
subsystem temperatures for a given workload. In what fol-
lows, we focus on power and energy estimates, excluding

13

temperature estimation from the analysis as it will depend
significantly on the nature of packaging and cooling solu-
tions employed; in the presence of models for the ther-
mal resistance of system packaging, the analyses we provide
may be used as input to estimating system temperature.

4.5.1 Core dynamic and leakage power
Contemporary computing system integrated circuits

(ICs) are implemented almost exclusively in CMOS tech-
nology. For (bulk) CMOS, the power dissipated is a func-
tion, among other things, of the supply voltage, which we
denote as V0, the threshold voltage, Vt , clock frequency, f0,
and the switching activity, s0. The switching activity, which
is the fraction of the maximum logic transitions achieved
per cycle, is a function of the application or algorithm being
executed. The power dissipation of core logic (ALUs, etc.)
and on-chip memory structures (pipeline latches, register
file, CAM structures, cache SRAMs) can thus be modeled
as [50, 44]:

Pcor
0 = K pdyn

0 ·V0
2 · f0 · s0︸ ︷︷ ︸

dynamic power

+ V0 ·K pleak
0

(
e

q·(Vgs−Vt)

Kleak
a ·k·T

)

︸ ︷︷ ︸
static/leakage power

.
(17)

Vgs is the gate voltage, k is Boltzmann’s constant, q is the elec-

tron charge constant, and T is temperature in Kelvin; Kpdyn
0 ,

Kleak
a , and K pleak

0 are functions of the number of transistor

properties and transistor technology. K pdyn
0 is estimated em-

pirically by fitting the first term on the right hand side of
Equation 17 to measurements of die power dissipation over
a range of clock frequencies or voltages, under an assump-
tion of a fixed value for the activity factor. Figure 12 shows
the K pdyn

0 , estimated empirically in this manner, from re-
ported measurements for a collection of 130 digital designs.
The resulting empirical model for K pdyn

0 can be used to guide
predictions of values for future systems, and similar em-
pirical data sets can be used to guide predictions for K pleak

0
and Kleak

a . System architects employing this framework need
only supply values of the independent variables (operating
temperature, operating voltage, operating clock frequency).

The supply voltage (V0) and clock frequency (f0) in Equa-
tion 17 are however not independent: f0 is limited to a maxi-
mum value of f max

0 , by the Sakurai alpha-power-law voltage-
frequency dependence [73],

f max
0 = KV

0 ·
(V0−Vt)

Kα

V0
. (18)

KV
0 and Kα are process technology and design- and

transistor-sizing-dependent constants, to which we do not
attach a strict physical interpretation in what follows. Vt is
similarly treated without a strict physical interpretation; for
designs which operate in the super-threshold regime, it cor-
responds to the device threshold voltage.

Figure 13(a) and Figure 13(b) plot values of KV
0 and Kα

for several digital designs across several years of published
data from the solid state circuits research literature. Each
point in the plot was obtained by curve-fitting the data from
a “Shmoo” plot to Equation 18; a subset of those Shmoo
plots is shown in Figures 13(c) and 13(d). From Figure 13,

1980 1985 1990 1995 2000 2005 2010
1 ´ 107

5 ´ 107
1 ´ 108

5 ´ 108
1 ´ 109

5 ´ 109
1 ´ 1010

Year

K
0

V

(a)

1980 1985 1990 1995 2000 2005 2010
1.0

2.0

1.5

Year

K
Α

(b)

ìììììììììì

òò
òò

òò
òòòòòòòòòò

ôôôôôôôôôôô

í
í
í
í
í
í
í
í
í
í
í
í
í
í
í
íí
íí
íí
íí
ííí
íííí

0 1 2 3 4 5 6

107

108

109

Supply Voltage, V HVoltsL
F

re
qu

en
cy

,f
m

ax
HH

zL

Α=1.11, Σ0=0.32
1993, WP2.2

Α=1.21, Σ0=0.53
1996, SP22.1

Α=1.71, Σ0=0.11
2000, WP25.3

Α=1.09, Σ0=0.46
2006, 22.5

Α=1.28, Σ0=0.41
2008, 13.1

Α=3.61, Σ0=0.21
2011, 7.5

(c)

éééééééééééé éé é é

á
ááá

áááááááááõõõõõõõõõõ

øøøøøøøøø
øøøøøøø
øøøøøø
øøøøø

øøøø

0 1 2 3 4 5 6

107

108

109

Supply Voltage, V HVoltsL

F
re

qu
en

cy
,f

m
ax

HH
zL

Α=1.00, Σ0=0.41
1986, WPM9.5

Α=1.63, Σ0=0.23
1999, TP15.3

Α=2.70, Σ0=0.19
2012, 3.6

Α=1.42, Σ0=0.25
2001, 15.4

� Α=1.00, Σ0=0.44 2005, 10.3

Α=1.29, Σ0=0.35
1991 FP15.3

(d)

Figure 13. Empirical values of (a) KV
0 and (b) Kα, and a

subset of the frequency-versus-voltage curves from which
they are derived (c–d). In the latter, the points denote
measurements, and the lines represent the best-fit to the
model of Equation 18.

it is evident that while the value of KV
0 is closely correlated

to the system’s year of introduction (shown in figure), im-
plementation process and peak clock frequency (not shown
for brevity), the value of Kα is more design dependent, par-
ticularly for sub-90 nm designs (after year 2000 in the fig-
ure). The ranges and trends from Figure 13 can be used as
estimates; the values necessary to achieve desired whole-
system properties can serve as design goals in the eventual
system implementation.

4.5.2 Resistive losses between die and socket
In many processor designs, the use of lower operating

voltages across process generations is coupled with designs
employing larger numbers of transistors. This is illustrated
empirically for the same collection of microprocessor and
other digital designs discussed in prior sections, in Fig-
ure 14.

When the overall power consumption stays the same
(e.g., due to the desire to use the increased transistor budget

14

Pi =
ni ·Pi−1 +Pglu

i +Pohmic
i +KdmoPwr

i ·Bdmo
i +KMemPwr

i ·Mi

ηi
, (19)

∀i≥ 1,

Figure 16. Hierarchical power model.

1980 1985 1990 1995 2000 2005 2010

1.0

5.0

2.0

3.0

1.5

Year

S
up

pl
y

V
ol

ta
ge

,
V

dd
HV

L

Vdd � 1059.6457-0.0296745 year

æ : Mean Values— —

1980 1985 1990 1995 2000 2005 2010
1000

105

107

109

Year

T
ra

ns
is

to
rs

pe
r

D
ie

HD
im

en
si

on
le

ss
L æ : Mean Values— —

Figure 14. Empirical transistor density trends.

to pack more features into an an implementation), a reduc-
tion in the operating voltage leads to higher power supply
currents (Figure 15), resulting in larger resistive losses in the
power supply pins. These losses are typically mitigated by
using a larger number of power supply pins (i.e., increasing
nsupply

2) to reduce the current per pin. When the number of
pins that are available per package are limited, this leads to
restrictions on the number of pins available for other pur-
poses, e.g., for I/O and memory. There is therefore a direct
link between power supply currents and restrictions on data
movement bandwidth for a packaged die [78]. Integrating
an increasing number of cores per die, as is the often as-
sumed trend for future performance growth of computing
systems [3, 10], will thus place increasing pressure on pack-
aging (pins).

An alternative to increased integration at the die level,
is the design of systems with integration occurring more
at the system-level rather than at the die-level. For exam-
ple, Chang et al. [20] assume that increased resistive power
loss will not be an issue for deeply-voltage-scaled devices,
and assume that such systems will achieve parallelism via
system-level scaling and not scaling number of devices per
die. However, due to the need to mitigate packaging cost
in large-scale systems, there will be an ever increasing de-
sire to maximize the number of devices per die, at least to
the limit permitted by memory bandwidth limits and man-
ufacturing yield losses. For all of these reasons, it is impor-
tant to capture the interaction between power delivery and
resistive loss constraints, and package-level I/O bandwidth
requirements.

The resistive power losses incurred, Pohmic
i , whether at

controlled-collapse chip connection (C4) solder bumps on a
die or in bond wires in a package (within level i = 2), or in
current-carrying conductors at the rack level (within level

1980 1985 1990 1995 2000 2005 2010
0.001

0.1

10

1000

Year

P
ea

k
S

up
pl

y
C

ur
re

nt
HA

m
pe

re
sL

Current � 100.0913554 year-182.172

æ : Mean Values— —

104 105 106 107 108 109 1010
0.01

0.1

1

10

100

Logic Transistor
Count

:
P

dy
n

V
dd

,
Jo

ul
e

S
ec

on
d

V
ol

t> IBM ZRL ExaBounds Device�Packaging Data

DRAFTPdyn

Vdd

� 0.00004653 nlogic-xistors
0.709738

æ : Mean Values— —

Figure 15. Empirical supply current trends.

i = 5), are formulated in generalized form as

Pohmic
i =

(
Isupply
i

nsupply
i

)2

·Rsupply
i ·nsupply

i

=

(
ni ·Pi−1

nsupply
i ·Vi−1

)2

·Rsupply
i ·nsupply

i .

(20)

For example, for Pohmic
2 , with pad resistances of up-

wards of 40 mΩ [55], assuming combined pad, C4 and
pin resistances of 300 mΩ, and nsupply

2 of near 600 in high-
performance designs [46], the data from Figure 15 implies
resistive power losses in packages of up to 5 W.
4.5.3 Data movement power

Table 4.5.2 lists cost assumptions for data movement on-
die, off-die, at the board level, and at coarser granularities,
along with the projected achievable signaling rates, for both
electrical and optical interconnects. The data in the table
is based on the 2011 ITRS roadmap [34] as well as data re-
ported in the research literature [7].

The power efficiency of electrical interconnect links typ-
ically decreases with increasing bit rates, making it some-
times desirable to use many I/O pins at a lower signalling
rate, rather than one at a high rate. We capture this trade-
off by modeling bandwidths in terms of the number of pins
available for signaling, the bit rate per pin, and the power
dissipation as a function of bit rate.

Dunning et al. [29] cite power usage at between 40
and 200 mW per Gb/s, with performance on current and
planned state-of-the-art implementations ranging from as

15

Table 5. Projected properties of electrical and optical global on-chip interconnects as a function of year, 2012–2022. For
optical interconnects, the table below assumes the die can always be crossed in a single hop.

Electrical Optical
Signaling voltage 0.8 V – 1.8 V N/A
Signaling rate 2 Gb/s – 6 Gb/s TBD
Resistivity aluminum: 3.3 mΩ·cm; N/A

thin-film copper: 2.2 mΩ·cm N/A
Capacitance TBD N/A
Energy per bit per cycle max

(
2,−1.32E8 · (y−2006)4.13E−7 +1.32E8

)
90 aJ [7]

Cycles to cross die 0.17 · y2.85 +35.45 1

low as 1 mW per Gb/s, to 25 mW per Gb/s. Based on I/O de-
signs from Intel [18, 6], which span the 5–20 Gb/s range, we
employ the model of increase in power with bit rate of

Power dissipation per Gb/s = 0.0170 · rate1.86 +2.36mW. (21)

Dunning et al. predict an eventual limit to pin bandwidth
for DDR DRAM interfaces of between 2.5 and 3.5 Gb/s per
pin, given the nature of DDR mechanical and electrical con-
nections (sockets, multi-drop channel, etc.). If using board-
soldered GDDR-like DRAM ICs, they cite an achievable up-
per limit of between 5 and 6 Gb/s per pin. The above are all
for single-ended signaling; a move to differential (current-
mode) signaling will permit additional per-pair signal rates,
but requires a doubling of the number of pins per logical
signal channel.

In addition to estimating the growth rate of power dissi-
pation with signaling rate, it is also useful to capture how
signaling rate and power dissipation vary as a function of
process geometry. Signaling rate increases (approximately
linearly) with decreasing capacitance relative to the strength
of gate drivers, while the energy per bit transmission is a
function of the product of capacitance and the square of
signaling voltage. Horowitz et al. [45] state a trend in sig-
naling delay with technology trend of 500 ps for a FO-4 gate
delay, per micron of gate length. These effects are cap-
tured by the models listed in Table 4.5.2, from the 2011 ITRS
report, which also take into account floorplanning con-
straints, such as the need to pipeline long global wires.

The energy cost for communication may also be ex-
pressed in terms of the energy per bit, per millimeter of
trace distance; contemporary values are on the order of
18 fJ/bit-mm for on-chip electrical links, approximately 2 pJ
per bit for PCB traces, and approximately 10 pJ per bit for
optical communications, but not including the required se-
rialization/deserialization (SerDes) and clock data recovery
(CDR) [70].

4.5.4 Overall power model
The power dissipation at levels above the processor core

are thus formulated as shown in Equation 19, in Figure 16.
In Equation 19, ηi captures the loss in power delivery ef-
ficiency due to power supply regulation and cooling over-
heads. The term involving the memory capacity at a given
level captures the fact that for modern large-scale systems,
a significant component of the system power dissipation
is contributed by the memory devices (DRAM), for both
the memory cell storage energy (e.g., in DRAM cells) and
in the memory access logic, and data and control signal-
ing. Pglu

i captures the power dissipation by peripheral cir-
cuits required at a given hierarchy level, and the product
KdmoPwr

i ·Bdmo
i captures the power associated with commu-

nication.

4.6 Whole-system reliability and failover
model, and device reliability trends

At scales of millions of processor sockets, system reliabil-
ity, as captured by the mean time between failures (MTBF),
will be of great interest in future large-scale systems. In
what follows, we assume that faults in a given level are inde-
pendent and identically distributed, with exponentially dis-
tributed inter-arrival times T , having mean failure rate λi for
the dominant source of failures at level i. The distribution of
inter-arrival times, which take on instance values t, is thus
given by

Pr(T = t) = λie−λi·t . (22)

The mean failure rate (λi) in practice equates to the empiri-
cally measured failures in time (FIT), with 1 FIT correspond-
ing to one failure every billion hours (λ = 10−9). Individ-
ual integrated circuits, whether DRAM or compute ASICs,
when designed with resilience in mind, can have FIT rate of
less than 100, while components with moving parts, such as
power supplies and fans may have fit rates an order of mag-
nitude higher.

Treating time as continuous, the mean time to failure of
an entire level, i, of a system (e.g., an entire core, socket,
rack, etc.), is related to the performance and power models
through the variable ni, and is given by

MT BFi =
∫

∞

0
t ·λie−λi·t · (1−λie−λi·t)ni−1d t (23)

=
HPFQ(1,1,1−ni,2,2,λ)

λ
.

HPFQ is the generalized hypergeometric function, and re-
sults from the expression of the integral in terms of stan-
dard closed-form special functions. Using the closed-form
expression in terms of the hypergeometric special function
enables efficient evaluation of the MTBF at level i. The
above relation captures the fact that ni− 1 devices must si-
multaneously be in working condition in the case where
only one device fails. Intuitively, larger per-device failure
rates, and larger numbers of devices ni, lead to exponen-
tially smaller times between failures. Faults in lower layers
are assumed to be mitigated by design techniques, and do
not propagate to lead to a fault in all devices at the layer
above in the system hierarchy. The translation of this per-
hierarchy-layer MTBF into a system-level MTBF will depend
on whether the machine in question is used as a capability
or capacity machine, and is thus not discussed further here.
4.6.1 Failover

When failures are mitigated by using failover, the work-
load of a failing device must be taken over by the remaining

16

devices in a system. Thus, the finer the granularity (larger ni)
of concurrency, the smaller the impact of a single failing de-
vice on the system’s performance. This is captured by refin-
ing the expression for the work, Li per component at level i,
to include the additional work from failed components that
must be carried, yielding

Li =
Li+1

min
(
ni− failovhdi ,ALPi

) ,∀i < 7. (24)

The parameter failovhdi is the ratio of the MTTR to MTBF for
a given level i, assuming at most singly-occurring failures,
and corresponds to the fraction of compute unit equivalents
lost.

However, smaller granularities, as shown above, lead to
poorer MTBF performance. There is thus a tradeoff between
decreased MTBF with more cores and an associated po-
tential for increased performance in the presence of avail-
able application-level parallelism, and the benefit of lower
overheads in the presence of an occurred failure. Reddi et
al. [48] give quantitative evidence of such a tradeoffs in the
Microsoft Bing server, in investigating the tradeoff between
using a larger number of lower-performance Intel Atom pro-
cessors, versus a smaller number of higher-performance In-
tel Xeon processors for a large-scale search system.

Another example of a real-world reliability study is pre-
sented by Shroeder, Pinheiro, and Weber [75], who give
empirical measurements of DRAM failure rates (both cor-
rectable errors (CEs) and uncorrectable errors (UEs)) in the
wild. They show that:

• Error rates were not correlated to temperature for the
range of temperatures occurring within the server de-
ployments studied, after accounting for the depen-
dence on utilization.

• Error rates increased with age.

• Error rates seemed to follow a power law, with DIMMs
that have witnessed an error being more likely to wit-
ness an error in the future. This, along with the
utilization-dependence was postulated to be due to the
dominant failure mode being permanent hard errors,
as opposed to soft errors: if errors are hard, then the
more memory is used, the more likely it is that an er-
ror will be detected. Likewise once an error in a bit is
hard, the more likely an error in the bit will be detected
again.

Reliability may also degrade with system age, due to age-
related effects such as oxide traps and negative bias tem-
perature instability (NBTI), hot carrier injection (HCI), and
electromigration. ExaBounds does not however capture
such aging effects, and extension to do so is a subject of fu-
ture research.

4.7 Hierarchical cost bounds and trends
For large-scale computing systems, costs of purchase

and operation play a role of equal importance to the tra-
ditional concern of computation performance. The cost of
purchase includes compute hardware cost, as well as build-
ing infrastructure costs needed for running such large sys-
tems, and often include the cost of power distribution, re-
dundant power, generators, cooling infrastructure, and so
on. The dimensioning of such infrastructure is dependent
on the power dissipation profile of the computation hard-
ware it encloses. The cost of operation, while including com-
ponents such as wages for operators and software license

costs, is dominated by energy supply costs. A holistic model
of large-scale systems must thus capture both the total cost
of acquisition (TCA), and the total cost of ownership (TCO)
of a system. Such a formulation, in the context of the frame-
work introduced thus far, is presented in Equation 25.

In Equation 25, K$NRE
i and K$ pkg

i are the costs associated
with non-recurring engineering costs and hardware/pack-
aging respectively, and make up the TCA; at the die level,

K$ pkg
i is interpreted as the cost per transistor. The TCO com-

prises the costs associated with power dissipation in the in-
terconnect, computation, memory, and cooling, and are a
function of the time, Lsys

C7
, needed for execution of an appli-

cation with input Lsys. Examples of the constants in Equa-
tion 25 at various hierarchy levels include K$pwr (4.14×10−8

USD per Joule), K$Si
0 (≈ 8×10−19 USD per Hz, and predicted

to drop to≈ 2×10−19 USD per Hz in the next five years [65]).
For a system to be cost-effective, the rate of increase

of cost with added hardware resources (the costup [86])
should be smaller than the rate of increase of performance
(speedup) with the same increase of resources. From Equa-
tions 8 and 25, taking the derivatives with respect to a sys-
tem growth parameter (e.g., number of cores at the die
level), one may formulate constraints on cost-effective sys-
tems.

4.8 Constraints: power delivery, cooling,
and area

Constraints play an important role in the early stages of
most computing system designs, since they are often one
of the few aspects which are pre-determined. Based on the
hierarchical EXABOUNDS analytic framework, any derived
value or metric at a given layer in the hierarchy may also
be treated instead as a constraint on its constituent param-
eters; this is detailed further in the description of the tool
implementation in Section 5.

4.8.1 Power delivery and cooling constraints
At a fixed supply voltage, power dissipation (and hence

the cooling requirements) grows approximately linearly
with clock frequency (Equation 17), and hence with per-
formance. However, achieving higher ranges of clock fre-
quency (and performance) require operation at higher sup-
ply voltages as dictated by Equation 18 and shown em-
pirically for many designs in Figure 13. In particular,
for a system that always operates at the maximum per-
mitted frequency for a given supply voltage, power dissi-
pation grows approximately quadratically with increasing
voltage/frequency operating point, and hence with perfor-
mance. These trends of performance and power usage are
illustrated in Figure 18.

A limit on the amount of heat that can be removed from
a system (thick horizontal line in the figure) will impose a
limit on the achievable performance (dotted line in the fig-
ure). However, even below this limit, it may still be unde-
sirable to increase performance, when the marginal bene-
fit of higher operating points is outweighed by the marginal
cost of increased power dissipation. At operating points be-
low a certain “performance-power/thermal balance” point,
θbalance, it is always beneficial, in the context of a com-
bined view of performance and cooling requirements, to
move to a higher operating point if the performance is re-
quired by an application. Above θbalance however, heat
generation grows at a faster rate than performance. As illus-
trated in Figure 18, EXABOUNDS enables these tradeoffs and

17

$i = K$NRE
i + K$ pkg

i +K$pwr ·Kcool
i ·Pi−1 ·

Lsys

C7
+ni ·$i−1, ∀i≥ 1, (25)

and

$0 = KNRE
0 +K$ pkg

i +K$Si
0 · f0 ·nxpc

0 +K$pwr ·Pcor
0 ·

Lsys

C7
. (26)

Figure 17. Hierarchical cost model.

Performance
(C)

Temperature
or Power

(θ)

Power/Thermal Limit
(θmax)Power- or

Thermally-
Limited

Performance

Power/Thermally-
Limited

Operating Point

Operating Point
(f, or V)

✓
�✓

�f

◆
✓
�C

�f

◆

✓
�✓

�f

◆

✓max

✓
�C

�f

◆
: (clock rate) speedup

✓
�✓

�f

◆
: (clock rate) “heatup”

✓
�C

�f

◆

✓max

: speedup at power/thermal limit

✓
�✓

�f

◆

✓max

: “heatup” at power/thermal limit

✓
�C

�f

◆

✓balance

def
=

✓
�✓

�f

◆

✓balance

f✓max, V✓max : power- or thermally-limited operating point

Figure 18. Tradeoffs exist between gains in performance versus both the absolute thermal limits, and the marginal thermal
cost associated with a given increase in performance.

optimal operating points to be captured analytically, and to
be related to application performance, C (and thence to re-
liability and cost as well).

4.8.2 Area constraints
Die area models can be constructed by associating a

transistor count with each of the parameters in levels 0
(core) and 1 (die) of the EXABOUNDS model. These transis-
tor counts can then be used in conjunction with the tran-
sistor areal density trend model shown in Figure 14 to es-
timate required die area at a given target implementation
technology generation. The EXABOUNDS framework calls
upon CACTI to obtain area, access time, and power esti-
mates for on-die memories (caches).

One avenue for dealing with area constraints is the uti-
lization of stacked dies with three-dimensional integra-
tion [55], with connections between dies in a stack imple-
mented using through-silicon vias (TSVs). The effective die
area available can be approximated by

Effective die area = Adie
1 ·n

stack
2 ·

(
1−FPwrTSV

2 −F IoTSV
2

)
, (27)

where Adie
1 is the area per die in the stack, nstack

2 is the num-
ber of layers stacked, FPwrTSV

2 is the fraction of area devoted
to power TSVs, and F IoTSV

2 is the area fraction dedicated to
signaling I/O TSVs.

5 EXABOUNDS—A Framework for Better-
than-back-of-the-envelope Analysis of
Large-scale systems

Figure 19 shows the overall architecture of the frame-
work. This document focuses only on the final stage; the
characterization framework is described elsewhere [15, 17].

5.1 Application of The Framework: Cost-
effective processor choices for scale-
out systems

As an illustrative practical application, when completed,
the EXABOUNDS framework should enable addressing ques-
tions such as the two sets of questions listed below, for
the station-level beamforming application described previ-
ously in Section 3.

The first set of questions concerns statements that can
be made about desirable hardware properties, given the al-
gorithm characteristics and technology trends:

Ê Power budget available for processors, given power
delivery constraints.

Ë Memory bandwidth requirements per core, given ap-
plication’s raw memory bandwidth and temporal/spa-
tial reuse characteristics.

Ì Core count limitation, based on expected package pin
count and memory bandwidth requirements.

Í The ratio of functional unit area to cache area.
The second set of questions involves a comparison be-

tween a range of candidate architectures (Figure 20): a GPU-
based platform, three platforms based on low-power em-
bedded processor architectures, and two platforms based
on high-performance server processors. For each plat-
form, we investigate (relative to a common baseline), for the
station-level beamforming algorithm:

Ê Mean time to failure (MTTF) under assumptions of
socket lifetime being the typical deployment duration
of the processor type in question, as well as with a fixed
per-processor failure rate across all processor types.

Ë Performance, under a whole-system power constraint
of 10 kW.

Ì Scalability of performance with technology genera-

18

Compiled
Program Binary

00111010
00101001

Algorithm
Characterization Data (ILP
distributions, reuse distance

distributions, etc.)

 1 4 19
2 9 22
16 4 88

Representative
Input Dataset

00111010
01011101

Application
Source Code
(C, C++, …)

int
main(void)
{
}

TLP
Characterization Performance

Modeling

Power
Modeling

Cost Modeling

Reliability
Modeling

Temporal Locality
Characterization

Instruction Mix
Characterization

ILP
Characterization

Spatial Locality
Characterization

DLP
Characterization+

Compilation
and

Optimization
(LLVM)

Hardware
Characterization Data

(Empirical device
trends, etc.)

 0.3 4 3.3
2 1.0 22
2.4 4 88

+
 0.3 4 3.3
2 1.0 22
2.4 4 88

 0.3 4 3.3
2 1.0 22
2.4 4 88

 0.3 4 3.3
2 1.0 22
2.4 4 88

 0.3 4 3.3
2 1.0 22
2.4 4 88

 0.3 4 3.3
2 1.0 22
2.4 4 88

 0.3 4 3.3
2 1.0 22
2.4 4 88

 0.5 4 3.3
2 1.6 90
2.3 2 80

 0.5 4 3.3
2 1.6 90
2.3 2 80

 0.3 4 3.3
2 1.0 22
2.4 4 88

 0.3 4 3.3
2 1.0 22
2.4 4 88

 0.3 4 3.3
2 1.0 22
2.4 4 88

 0.3 4 3.3
2 1.0 22
2.4 4 88

 0.3 4 3.3
2 1.0 22
2.4 4 88

 0.3 4 3.3
2 1.0 22
2.4 4 88

 0.5 4 3.3
2 1.6 90
2.3 2 80

 0.8 4 3.3
3 1.9 45
2.5 3 90

Die-, Package-, and System-Level Hardware
Characterizations from Several Designs

➍➊

➋

➌

Figure 19. EXABOUNDS and application characterization tool flow.

tions. Some architectures may not be able to take ad-
vantage of improvements in transistor density due to,
e.g., being memory bandwidth limited.

Í Power dissipation under the performance require-
ments of the station-level beamforming.

Î Total cost of acquisition and operation over a fifteen
year period.

6 Summary of Contributions
This article provided an overview of the ideas and imple-

mentation behind the EXABOUNDS framework, being devel-
oped as part of the five year Dome project, a collaboration
between IBM, ASTRON, and the South-African square kilo-
meter array organization (SKA-SA).

A Data Sources
To obtain the data presented in this article, approxi-

mately 250 publications were analyzed, primarily from the
International Solid-State Circuits Conference (ISSCC), per-
taining mostly to programmable processor designs (rang-
ing from microcontrollers to microprocessors, digital signal
processors (DSPs), and other digital ASICs). The selected
publications were restricted to those which provided infor-
mation on most or all of: die size, number of transistors
(split into logic versus latches/memory where known), mea-
sured peak power dissipation, nominal operating voltage,
operating frequency, gate length, total package pins, and
number of signal versus supply pins. From the initial set of
design publications analyzed, 130 (some of which described
multiple designs) were retained which provided most of the
required data, or for which there was an associated IEEE
Journal of Solid-State Circuits (JSSC) publication with the
missing detail.

The publications corresponding to the data points in
the analysis are listed in Table 6; the format of entries is
Year:paper-ID. In the PDF version of this article, each en-
try encodes a web search URL for the corresponding paper’s
title.

Table 6. Publications corresponding to the ISSCC device
technology data in this article.

1980:THAM9.1 1980:WAM3.4 1981:THAM9.3 1982:THAM10.2
1982:WPM6.1 1983:FAM18.4 1983:THAM10.2 1983:THAM10.4
1984:WPM8.4 1985:THPM14.4 1985:WAM1.3 1985:WPM8.4
1985:WPM8.5 1986:THAM10.2 1986:THAM12.1 1986:WPM8.2
1986:WPM9.5 1987:FAM20.2 1987:THPM16.2 1987:THPM16.3

1987:THPM16.4 1987:WAM2.4 1988:THAM11.6 1988:THAM12.3
1988:THPM12.6 1988:THPM12.7 1989:THPM12.8 1989:WAM3.1

1989:WAM3.2 1989:WAM3.5 1989:WPM7.2 1990:TAM7.6
1990:TPM9.4 1990:WPM3.3 1990:WPM3.7 1991:FPM15.15
1991:FP15.3 1991:TAM5.3 1992:TA6.5 1992:TA6.2
1992:WP4.6 1993:WP2.2 1993:WP2.6 1993:TA5.2
1993:TA5.5 1994:TP12.5 1994:FA15.2 1994:TP12.7

1994:TP12.6 1994:TP12.2 1995:TA6.6 1995:TP10.3
1995:TP10.6 1996:FA10.4 1996:FA8.6 1996:FP13.5
1996:SP22.1 1997:FA10.2 1997:FA10.3 1997:FA10.4
1997:SP25.1 1997:FA10.5 1997:FP16.3 1997:SP25.2
1998:FA7.6 1998:FP15.1 1998:FP15.3 1998:SA18.3
1998:SA18.6 1999:MP5.1 1999:MP5.6 1999:MP5.7
1999:TP15.3 1999:TP15.4 2000:14.6 2000:MP4.2
2000:MP5.2 2000:MP5.4 2000:MP5.5 2000:MP5.7
2000:TP14.5 2000:WP25.2 2000:WP25.3 2000:WP25.6

2001:15.4 2001:15.1 2001:15.5 2001:15.6
2002:20.4 2002:22.5 2003:14.1 2003:14.4
2003:14.5 2003:14.6 2004:3.1 2004:3.2
2004:3.4 2005:10.1 2005:10.3 2005:10.4

2005:10.7 2006:22.4 2006:22.5 2006:23.6
2006:29.5 2006:5.1 2006:5.3 2006:5.5
2007:15.1 2007:5.3 2007:5.6 2008:13.1
2008:4.2 2008:4.4 2008:4.5 2008:4.6
2009:3.1 2010:5.1 2010:5.5 2010:5.7

B References
[1] Modeling Application Performance by Convolving Ma-

chine Signatures with Application Profiles. (Cited on
page 5.)

[2] G. Amdahl. Validity of the single-processor approach
to achieving large scale computing capabilities. In
AFIPS Conference Proceedings vol. 30, pages 483–485,
Reston, VA, April 18–20 1967. AFIPS Press. (Cited on
pages 2 and 13.)

19

http://www.google.com/search?q=A+10000+Gate+CMOS+LSI+Processor
http://www.google.com/search?q=A+Digital+Signal+Processor+for+Telecommunications+Applications
http://www.google.com/search?q=A+13000+Transistor+NMOS+Microprocessor
http://www.google.com/search?q=An+LSI+Adaptive+Array+Processor
http://www.google.com/search?q=An+Automatically+Designed+32b+CMOS+VLSI+Processor
http://www.google.com/search?q=An+Image+Signal+Processor
http://www.google.com/search?q=A+Speech+Recognition+Processor
http://www.google.com/search?q=A+2+u+NMOS+256+Point+Discrete+Fourier+Transform+Processor
http://www.google.com/search?q=A+CMOS+Floating+Point+Multiplier
http://www.google.com/search?q=A+CMOS+Facsimile+Video+Signal+Processor
http://www.google.com/search?q=A+Single+Chip+80b+Floating+Point+Processor
http://www.google.com/search?q=An+NMOS+Digital+Signal+Processor+with+Multiprocessing+Capability
http://www.google.com/search?q=A+Programmable+Digital+Signal+Processor+with+32b+Floating+Point+Arithmetic
http://www.google.com/search?q=A+32b+Digital+Signal+Processor+for+Motor+Control
http://www.google.com/search?q=A+Micro+Programmable+Realtime+Image+Processor
http://www.google.com/search?q=A+32b+Floating+Point+CMOS+Digital+Signal+Processor
http://www.google.com/search?q=A+20+MHz+32b+Pipelined+CMOS+image+Processor
http://www.google.com/search?q=A+Character+String+Search+Processor
http://www.google.com/search?q=A+256+Element+Associative+Parallel+Processor
http://www.google.com/search?q=A+VLSI+Chip+Set+for+a+Massively+Parallel+Architecture
http://www.google.com/search?q=A+32b+LISP+Processor
http://www.google.com/search?q=A+32b+CMOS+Microprocessor+with+On+Chip+Instruction+and+Data+Caching+and+Memory+Management
http://www.google.com/search?q=A+Cryptography+Processor
http://www.google.com/search?q=A+40M+Pixel+s+Bit+Boundary+Block+Transfer+Graphics+Processor
http://www.google.com/search?q=A+Hidden+Surface+Processor+for+3+Dimension+Graphics
http://www.google.com/search?q=A+32b+3D+Graphic+Processor+Chip+with+10M+Pixels+s+Gouraud+Shading
http://www.google.com/search?q=200+MHz+16+bit+BiCMOS+Signal+Processor
http://www.google.com/search?q=A+50MHz+24b+Floating+point+DSP
http://www.google.com/search?q=A+40+MFLOPS+32+bit+Floating+point+Processor
http://www.google.com/search?q=An+80b+6.7+MFLOPS+Floating+Point+Processor+with+Vector+Matrix+Instructions
http://www.google.com/search?q=A+64b+RISC+Microprocessor+for+a+Parallel+Computer+System
http://www.google.com/search?q=A+200+MIPS+Image+Signal+Multiprocessor+on+a+Single+Chip
http://www.google.com/search?q=A+1+GOPS+8b+Josephson+Digital+Signal+Processor
http://www.google.com/search?q=A+50+MHz+Microprocessor+with+a+Very+Long+Instruction+Word+Architecture
http://www.google.com/search?q=A+90+MHz+CMOS+RISC+CPU+Designed+for+Sustained+Performance
http://www.google.com/search?q=A+200+MFLOPS+100+MHz+64b+BiCMOS+Vector+Pipelined+Processor
http://www.google.com/search?q=A+300+MOPS+Video+Signal+Processor+with+a+Parallel+Architecture
http://www.google.com/search?q=A+65+MHz+Floating+point+Coprocessor+for+a+RISC+Processor
http://www.google.com/search?q=A+289+MFLOPS+Single+Chip+Supercomputer
http://www.google.com/search?q=A+200MHz+64b+Dual+-+Issue+CMOS+Microprocessor
http://www.google.com/search?q=A+Video+Digital+Signal+Processor+with+a+Vector+Pipeline+Architecture
http://www.google.com/search?q=A+16b+Low+Power+Consumption+Digital+Signal+Processor
http://www.google.com/search?q=A+300+MHz+16b+BiCMOS+Video+Signal+Processor
http://www.google.com/search?q=A+1.71M-Transistor+CMOS+CPU+Chip+with+a+Testable+Cache+Architecture
http://www.google.com/search?q=A+160+,+000+Transistor+GaAs+Microprocessor
http://www.google.com/search?q=A+CMOS+RISC+CPU+with+On+Chip+Parallel+Cache
http://www.google.com/search?q=A+3.84+GIPS+Integrated+Memory+Array+Processor+LSI+with+64+Processing+Elements+and+2+Mb+SRAM
http://www.google.com/search?q=A+500+MHz+32b+0.4+um+CMOS+RISC+Processor+LSI
http://www.google.com/search?q=A+3.0+W+75+SPECint+92+85+SPECfp+92+Superscalar+RISC+Microprocessor
http://www.google.com/search?q=A+300MIPS+300+MFLOPS+Four-Issue+CMOS+Superscalar+Microprocessor
http://www.google.com/search?q=A+150+MIPS+CMOS+RISC+Processor+for+PDA+Applications
http://www.google.com/search?q=A+133+MHz+64b+Four+Issue+CMOS+Microprocessor
http://www.google.com/search?q=A+1.2+W+66+MHz+Superscalar+RISC+Microprocessor+for+Set+Tops+Video+Games+and+PDAs
http://www.google.com/search?q=A+1V+Multi+Threshold+Voltage+CMOS+DSP+with+an+Efficient+Power Management+Technique+for+Mobile+Phone+Application
http://www.google.com/search?q=A+100+MHz+0.4W+RISC+Processor+with+200MHz+Multiply-Adder+using+Pulse+Register+Technique
http://www.google.com/search?q=A+200+MHz+2.5+V+4+W+Superscalar+RISC+Microprocessor
http://www.google.com/search?q=A+Dual+Floating+Point+Coprocessor+with+an+FMAC+Architecture
http://www.google.com/search?q=A+330+MHz+4+Way+Superscalar+Microprocessor
http://www.google.com/search?q=A+400+MHz+S+390+Microprocessor
http://www.google.com/search?q=A+300+MHz+CMOS+Microprocessor+with+Multi+Media+Technology
http://www.google.com/search?q=A+200+MHz+RISC+Microprocessor+with+128+kB+On+Chip+Caches
http://www.google.com/search?q=An+X86+Microprocessor+with+Multimedia+Extensions
http://www.google.com/search?q=A+2.2++GOPS+Video+DSP+with+2+RISC+MIMD+6+PE+SIMD+Architecture+for+Real+Time+MPEG2+Video+Coding+Decoding
http://www.google.com/search?q=A+250+MHz+5W+RISC+Microprocessor+with+On+Chip+L2+Cache+Controller
http://www.google.com/search?q=A+High+Precision+1024+point+FFT+Processor+for+2D+Convolution
http://www.google.com/search?q=A+1.0+GHz+Single+Issue+64b+PowerPC+Integer+Processor
http://www.google.com/search?q=A+Commercial+Multi+threaded+RISC+Processor
http://www.google.com/search?q=An+800+MOPS+110mW+1.5V+Parallel+DSP+for+Mobile+Multimedia+Processing
http://www.google.com/search?q=A+Low+Cost+300+MHz+RISC+CPU+with+Attached+Media+Processor
http://www.google.com/search?q=A+500+MHz+64b+RISC+CPU+with+1.5+MB+On+Chip+Cache
http://www.google.com/search?q=450+MHz+PowerPC+Microprocessor+with+Enhanced+Instruction+Set+and+Copper+Interconnect
http://www.google.com/search?q=A+600+MHz+IA+32+Microprocessor+with+Enhanced+Data+Streaming+for+Graphics+and+Video
http://www.google.com/search?q=A+2.5+GFLOPS+6.5+Million+Polygons+per+Second+4+Way+VLIW+Geometry+Processor+with+SIMD+instructions+and+a+Software+Bypass+Mechanism
http://www.google.com/search?q=A+32b+64+Matrix+Parallel+CMOS+Processor
http://www.google.com/search?q=A+4+Way+VLIW+Embedded+Multimedia+Processor
http://www.google.com/search?q=A+3.2+GOPS+Multiprocessor+DSP+for+Communication+Applications
http://www.google.com/search?q=A+660+MHz+64b+SOI+Processor+with+Cu+Interconnects
http://www.google.com/search?q=A+1+GHz+Single+Issue+64b+PowerPC+Processor
http://www.google.com/search?q=A+600+MHz+64b+PA+RISC+Microprocessor
http://www.google.com/search?q=A+GHz+IA+32+Architecture+Microprocessor+Implemented+on+0.18+um+Technology+with+Aluminum+Interconnect
http://www.google.com/search?q=A+720+pW+50+MOPS+1+V+DSP+for+a+Hearing+Aid+Chip+Set
http://www.google.com/search?q=Implementation+of+a+3rd+Generation+SPARC+V9+64b+Microprocessor
http://www.google.com/search?q=A+450+MHz+64b+RISC+Processor using Multiple Threshold Voltage CMOS
http://www.google.com/search?q=A+1000+MIPS+W+Microprocessor+using+Speed+Adaptive+Threshold+Voltage+CMOS+with+Forward+Bias
http://www.google.com/search?q=First+Generation+MAJC+Dual+Microprocessor
http://www.google.com/search?q=A+Scalable+Performance+32b+Microprocessor
http://www.google.com/search?q=A+1.1+GHz+First+64b+Generation+Z900+Microprocessor
http://www.google.com/search?q=A+1.2+GHz+Alpha+Microprocessor+with+44.8+GB+s+Chip+Pin+Bandwidth
http://www.google.com/search?q=A+0.9+V+to+1.95+V+Dynamic+Voltage+Scalable+and+Frequency+Scalable+32b+PowerPC+Processor
http://www.google.com/search?q=An+8+Way+VLIW+Embedded+Multimedia+Processor+Built+in+7+Layer+Metal+0.11um+CMOS+Technology
http://www.google.com/search?q=A+1.3+GHz+Fifth+Generation+SPARC64+Microprocessor
http://www.google.com/search?q=A+1.5+GHz+Third+Generation+Itanium+Processor
http://www.google.com/search?q=A+600+MHz+Single+Chip+Multiprocessor+with+4.8+GBs+Internal+Shared+Pipelined+Bus+and+512+kB+Internal+Memory
http://www.google.com/search?q=A+600+MHz+NT3+Network+Processor
http://www.google.com/search?q=Design+and+Implementation+of+the+POWER5+Microprocessor
http://www.google.com/search?q=A+Dual+Core+64b+UltraSPARC+Microprocessor+for+Dense+Server+Applications
http://www.google.com/search?q=A+Scalable+X86+CPU+Design+for+90+nm+Process
http://www.google.com/search?q=The+Implementation+of+a+2+core+Multi+Threaded+Itanium+Family+Processor
http://www.google.com/search?q=Implementation+of+a+4th+Generation+1.8+GHz+Dual+Core+SPARC+V9+Microprocessor
http://www.google.com/search?q=Creating+the+BlueGene+L+Supercomputer+from+Low+Power+SoC+ASICs
http://www.google.com/search?q=A+51.2+GOPS+1.0+GBs+DMA+Single+Chip+Multi+Processor+Integrating+Quadruple+8+Way+VLIW+Processors
http://www.google.com/search?q=A+120M+vertices+s+Multi+threaded+VLIW+Vertex+Processor+for+Mobile+Multimedia+Applications
http://www.google.com/search?q=A+40+GOPS+250+mW+Massively+Parallel+Processor+Based+on+Matrix+Architecture
http://www.google.com/search?q=An+Asynchronous+Array+of+Simple+Processors+for+DSP+Applications
http://www.google.com/search?q=A+Power+Management+Scheme+Controlling+20+Power+Domains+for+a+Single+Chip+Mobile+Processor
http://www.google.com/search?q=A+Power+Efficient+High+Throughput+32+Thread+SPARC+Processor
http://www.google.com/search?q=A+Dual+Core+Multi+Threaded+Xeon+Processor+with+16+MB+L3+Cache
http://www.google.com/search?q=A+64B+CPU+Pair+Dual+and+Single+Processor+Chips
http://www.google.com/search?q=XETAL+II+A+107+GOPS+600+mW+Massively+Parallel+Processor+for+Video+Scene+Analysis
http://www.google.com/search?q=A+4320+MIPS+Four+Processor+Core+SMP+AMP+with+Individually+Managed+Clock+Frequency+for+Low+Power+Consumption
http://www.google.com/search?q=The+Implementation+of+the+65+nm+Dual+Core+64b+Merom+Processor
http://www.google.com/search?q=A+Sub+1W+to+2W+Low+Power+IA+Processor+for+Mobile+Internet+Devices+and+Ultra+Mobile+PCs+in+45+nm+Hi+k+Metal+Gate+CMOS
http://www.google.com/search?q=Implementation+of+a+Third+Generation+16+Core+32+Thread+Chip+Multithreading+SPARC+Processor
http://www.google.com/search?q=TILE64+Processor+A+64+Core+SoC+with+Mesh Interconnect
http://www.google.com/search?q=An+8640+MIPS+SoC+with+Independent+Power+Off+Control+of+8+CPUs+and+8+RAMs+by+An+Automatic+Parallelizing+Compiler
http://www.google.com/search?q=A+65+nm+2+Billion+Transistor+Quad+Core+Itanium+Processor
http://www.google.com/search?q=A+45+nm+8+Core+Enterprise+Xeon+Processor
http://www.google.com/search?q=Westmere+A+Family+of+32+nm+IA+Processors
http://www.google.com/search?q=A+Wire+Speed+Power+Processor+2.3+GHz+45+nm+SOI+with+16+Cores+and+64+Threads
http://www.google.com/search?q=A+48+Core+IA+32+Message+Passing+Processor+with+DVFS+in+45+nm+CMOS

Figure 21. Screenshot of a portion of the EXABOUNDS implementation interface in Mathematica. The implementation in
Mathematica encapsulates all the relations presented in this article, as well as the enabling the visualization of parameter
values in the context of historical hardware and processor performance data.

[3] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny,
K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson,
K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A view
of the parallel computing landscape. Commun. ACM,
52(10):56–67, Oct. 2009. (Cited on page 15.)

[4] T. M. Austin and G. S. Sohi. Dynamic dependency anal-
ysis of ordinary programs. SIGARCH Comput. Archit.
News, 20(2):342–351, 1992. (Cited on page 4.)

[5] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and
M. Horowitz. Energy-performance tradeoffs in pro-
cessor architecture and circuit design: a marginal cost

analysis. In Proceedings of the 37th annual interna-
tional symposium on Computer architecture, ISCA ’10,
pages 26–36, New York, NY, USA, 2010. ACM. (Cited on
pages 3 and 4.)

[6] G. Balamurugan, J. Kennedy, G. Banerjee, J. Jaussi,
M. Mansuri, F. O’Mahony, B. Casper, and R. Mooney.
A scalable 5–15 gbps, 14–75 mw low-power i/o
transceiver in 65 nm cmos. Solid-State Circuits, IEEE
Journal of, 43(4):1010 –1019, april 2008. (Cited on
page 16.)

[7] R. Beausoleil, P. Kuekes, G. Snider, S.-Y. Wang, and

20

H
yp

ot
he

tic
al

Sy

st
em

Ex

te
ns

io
n

24 sockets per card; n3 = 24

1 card per rack unit; n4 = 1

Level Name Relevant properties

AR
M

C

or
et

ex
 A

8
Sy

st
em

Card

Rack unit

Core

Socket

Die

2-wide issue; n0 = 2

1 core per die; n1 = 1

1 die per socket; n2 = 1

(a)

Level Name Relevant properties

In
te

l C
or

e
i7

 S
er

ve
r

Core

Socket

Card

Rack unit

Die

4-wide issue; n0 = 4

4 cores per die; n1 = 4

1 die per socket; n2 = 1

2 sockets per card; n3 = 2

1 card per rack unit; n4 = 1

(b)
Figure 20. Illustration of a (a) “wimpy”, and (b) “brawny”
system. in the context of the hierarchy presented in this
article. Actual instances of the “wimpy” and “brawny” sys-
tems, corresponding to an ARM implementation and an
Intel Nehalem are used in our validation analysis.

R. Williams. Nanoelectronic and nanophotonic inter-
connect. Proceedings of the IEEE, 96(2):230 –247, feb.
2008. (Cited on pages 15 and 16.)

[8] P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony,
A. Gheith, R. Rockhold, C. Lefurgy, H. Shafi, T. Nakra,
R. Simpson, E. Speight, K. Sudeep, E. Van Hensbergen,
and L. Zhang. Mambo: a full system simulator for
the powerpc architecture. SIGMETRICS Perform. Eval.
Rev., 31:8–12, March 2004. (Cited on page 2.)

[9] P. J. Bohrer, J. L. Peterson, E. N. Elnozahy, R. Rajamony,
A. Gheith, R. L. Rockhold, C. Lefurgy, H. Shafi, T. Nakra,
R. O. Simpson, E. Speight, K. Sudeep, E. V. Hensbergen,
and L. Zhang. Mambo: a full system simulator for the
powerPC architecture. SIGMETRICS Performance Eval-
uation Review, 31(4):8–12, 2004. (Cited on page 4.)

[10] S. Borkar and A. A. Chien. The future of microproces-
sors. Commun. ACM, 54:67–77, May 2011. (Cited on
pages 4 and 15.)

[11] E. Boyd, W. Azeem, H. Lee, T. Shih, S. Hung, and
E. Davidson. A hierarchical approach to modeling and
improving the performance of scientific applications
on the ksr1. In Parallel Processing, 1994. ICPP 1994.
International Conference on, volume 3, pages 188–192.
IEEE, 1994. (Cited on page 3.)

[12] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a
framework for architectural-level power analysis and
optimizations. In Proceedings of the 27th annual inter-
national symposium on Computer architecture, ISCA

’00, pages 83–94, New York, NY, USA, 2000. ACM. (Cited
on pages 2 and 4.)

[13] D. Burger, T. M. Austin, and S. Bennett. Evaluating fu-
ture microprocessors: The simplescalar tool set. Tech-
nical Report CS-TR-1996-1308, University of Wiscon-
sin, Madison, July 1996. (Cited on page 4.)

[14] D. Burger, J. R. Goodman, and A. Kägi. Memory band-
width limitations of future microprocessors. In Pro-
ceedings of the 23rd annual international symposium
on Computer architecture, ISCA ’96, pages 78–89, New
York, NY, USA, 1996. ACM. (Cited on page 11.)

[15] V. C. Cabezas and P. Stanley-Marbell. Quantitative
analysis of parallelism and data movement properties
across the berkeley computational motifs. In Proceed-
ings of the 8th ACM International Conference on Com-
puting Frontiers, CF ’11, pages 17:1–17:2, New York, NY,
USA, 2011. ACM. (Cited on page 18.)

[16] A. E. Caldwell, Y. Cao, A. B. Kahng, F. Koushanfar, H. Lu,
I. L. Markov, M. Oliver, D. Stroobandt, and D. Sylvester.
Gtx: the marco gsrc technology extrapolation system.
In DAC: Proceedings of the 37th conference on Design
automation, pages 693–698, New York, NY, USA, 2000.
ACM. (Cited on page 4.)

[17] V. Caparrós Cabezas and P. Stanley-Marbell. Paral-
lelism and data movement characterization of con-
temporary application classes. In Proceedings of the
23rd ACM symposium on Parallelism in algorithms and
architectures, SPAA ’11, pages 95–104, New York, NY,
USA, 2011. ACM. (Cited on pages 4, 7 and 18.)

[18] B. Casper, J. Jaussi, F. O’Mahony, M. Mansuri, K. Cana-
gasaby, J. Kennedy, E. Yeung, and R. Mooney. A 20gb/s
forwarded clock transceiver in 90nm cmos b. In Solid-
State Circuits Conference, 2006. ISSCC 2006. Digest of
Technical Papers. IEEE International, pages 263 –272,
feb. 2006. (Cited on page 16.)

[19] A. Chandrakasan, S. Sheng, and R. Brodersen. Low-
power CMOS digital design. IEEE Journal of Solid-State
Circuits, 27(4):473–484, 1992. (Cited on page 5.)

[20] L. Chang, D. Frank, R. Montoye, S. Koester, B. Ji, P. Co-
teus, R. Dennard, and W. Haensch. Practical strategies
for power-efficient computing technologies. Proceed-
ings of the IEEE, 98(2):215 –236, feb. 2010. (Cited on
page 15.)

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Third Edition. The MIT
Press, 2009. (Cited on pages 2, 5 and 13.)

[22] M. E. Crovella and T. J. LeBlanc. Parallel performance
prediction using lost cycles analysis. In Proceedings of
the 1994 ACM/IEEE conference on Supercomputing, Su-
percomputing ’94, pages 600–609, New York, NY, USA,
1994. ACM. (Cited on page 3.)

[23] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. LogP:
Towards a realistic model of parallel computation. In
M. Chen, editor, Proceedings of the 4th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming, pages 1–12, San Diego, CA, May 1993. ACM
Press. (Cited on page 3.)

[24] K. Czechowski, C. Battaglino, C. McClanahan, A. Chan-

21

dramowlishwaran, and R. Vuduc. Balance principles
for algorithm-architecture co-design. In Proceedings of
the 3rd USENIX conference on Hot topic in parallelism,
HotPar’11, pages 9–9, Berkeley, CA, USA, 2011. USENIX
Association. (Cited on page 3.)

[25] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and
M. Horowitz. Cpu db: Recording microprocessor his-
tory. Queue, 10(4):10:10–10:27, Apr. 2012. (Cited on
page 4.)

[26] M. de Vos, A. Gunst, and R. Nijboer. The lofar telescope:
System architecture and signal processing. Proceedings
of the IEEE, 97(8):1431–1437, 2009. (Cited on page 5.)

[27] E. P. DeBenedictis. The Sandia Petaflops Planner, 2003.
SAND REPORT, SAND2003-3609. (Cited on page 3.)

[28] P. Dewdney, P. Hall, R. Schilizzi, and T. Lazio. The
square kilometre array. Proceedings of the IEEE,
97(8):1482–1496, 2009. (Cited on page 5.)

[29] D. Dunning, R. Mooney, P. Stolt, and B. Casper. Intel
Technology Journal, 13(4), 2009. (Cited on page 15.)

[30] J. Eble III. A generic system simulator with novel on-
chip cache and throughput models for gigascale inte-
gration. PhD thesis, Georgia Institute of Technology,
1998. (Cited on page 4.)

[31] P. G. Emma. Understanding some simple processor-
performance limits. IBM J. Res. Dev., 41:215–232, May
1997. (Cited on page 8.)

[32] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith.
A performance counter architecture for computing ac-
curate cpi components. In Proceedings of the 12th in-
ternational conference on Architectural support for pro-
gramming languages and operating systems, ASPLOS-
XII, pages 175–184, New York, NY, USA, 2006. ACM.
(Cited on page 3.)

[33] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith.
A mechanistic performance model for superscalar out-
of-order processors. ACM Trans. Comput. Syst., 27:3:1–
3:37, May 2009. (Cited on pages 3, 8 and 10.)

[34] I. T. R. for Semiconductors. International tech-
nology roadmap for semiconductors, 2008 update.
http://www.itrs.net/Links/2008ITRS/Update/2008_Update.pdf
(accessed May 2009), 2008. (Cited on page 15.)

[35] D. J. Frank, W. Haensch, G. Shahidi, and O. H. Doku-
maci. Optimizing cmos technology for maximum per-
formance. IBM Journal of Research and Development,
50(4.5):419 –431, july 2006. (Cited on page 4.)

[36] A. Y. Grama, A. Gupta, and V. Kumar. Isoefficiency:
Measuring the scalability of parallel algorithms and ar-
chitectures. IEEE Parallel Distrib. Technol., 1(3):12–21,
1993. (Cited on pages 2, 3 and 12.)

[37] J. L. Gustafson. Reevaluating amdahl’s law. Commun.
ACM, 31(5):532–533, 1988. (Cited on page 13.)

[38] W. Haensch, E. J. Nowak, R. H. Dennard, P. M. Solomon,
A. Bryant, O. H. Dokumaci, A. Kumar, X. Wang, J. B.
Johnson, and M. V. Fischetti. Silicon cmos devices be-
yond scaling. IBM J. Res. Dev., 50:339–361, July 2006.
(Cited on page 4.)

[39] A. Hartstein, V. Srinivasan, T. R. Puzak, and P. G. Emma.
Cache miss behavior: is it

√
2? In Proceedings of the

3rd conference on Computing frontiers, CF ’06, pages
313–320, New York, NY, USA, 2006. ACM. (Cited on
page 12.)

[40] Y. He, C. E. Leiserson, and W. M. Leiserson. The
cilkview scalability analyzer. In SPAA ’10: Proceedings
of the 22nd ACM symposium on Parallelism in algo-
rithms and architectures, pages 145–156, New York, NY,
USA, 2010. ACM. (Cited on page 13.)

[41] P. Heidelberger and K. S. Trivedi. Queueing network
models for parallel processing with asynchronous
tasks. IEEE Trans. Comput., 31:1099–1109, November
1982. (Cited on page 1.)

[42] M. D. Hill and M. R. Marty. Amdahl’s law in the mul-
ticore era. Computer, 41:33–38, July 2008. (Cited on
page 4.)

[43] T. Hoefler, W. Gropp, W. Kramer, and M. Snir. Perfor-
mance modeling for systematic performance tuning.
In State of the Practice Reports, SC ’11, pages 6:1–6:12,
New York, NY, USA, 2011. ACM. (Cited on page 3.)

[44] M. Horowitz, T. Indermaur, and R. Gonzalez. Low-
power digital design. In Low Power Electronics, 1994.
Digest of Technical Papers., IEEE Symposium, pages 8–
11, Oct 1994. (Cited on page 14.)

[45] M. Horowitz, C.-K. K. Yang, and S. Sidiropoulos. High-
speed electrical signaling: overview and limitations.
Micro, IEEE, 18(1):12 –24, jan/feb 1998. (Cited on
page 16.)

[46] Intel Corporation. Xeon 5500. (Cited on page 15.)

[47] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski,
and M. Schulz. Efficiently exploring architectural de-
sign spaces via predictive modeling. In Proceedings
of the 12th international conference on Architectural
support for programming languages and operating sys-
tems, ASPLOS-XII, pages 195–206, New York, NY, USA,
2006. ACM. (Cited on page 4.)

[48] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid.
Web search using mobile cores: quantifying and mit-
igating the price of efficiency. In ISCA ’10: Proceedings
of the 37th annual international symposium on Com-
puter architecture, pages 314–325, New York, NY, USA,
2010. ACM. (Cited on page 17.)

[49] N. Jouppi. The nonuniform distribution of instruction-
level and machine parallelism and its effect on perfor-
mance. Computers, IEEE Transactions on, 38(12):1645
–1658, dec 1989. (Cited on pages 4 and 5.)

[50] H. Kaeslin. Digital integrated circuit design: from VLSI
architectures to CMOS fabrication. Cambridge Univer-
sity Press, 2008. (Cited on page 14.)

[51] T. S. Karkhanis and J. E. Smith. A first-order super-
scalar processor model. In Proceedings of the 31st an-
nual international symposium on Computer architec-
ture, ISCA ’04, pages 338–, Washington, DC, USA, 2004.
IEEE Computer Society. (Cited on pages 3, 4, 8 and 10.)

[52] T. S. Karkhanis and J. E. Smith. Automated design of ap-
plication specific superscalar processors: an analytical
approach. In Proceedings of the 34th annual interna-
tional symposium on Computer architecture, ISCA ’07,
pages 402–411, New York, NY, USA, 2007. ACM. (Cited
on pages 3 and 4.)

22

[53] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J.
Wasserman, and M. Gittings. Predictive performance
and scalability modeling of a large-scale application.
In Proceedings of the 2001 ACM/IEEE conference on Su-
percomputing (CDROM), Supercomputing ’01, pages
37–37, New York, NY, USA, 2001. ACM. (Cited on
page 3.)

[54] L. Kleinrock. Queueing systems. volume 1: Theory.
1975. (Cited on page 10.)

[55] J. Knickerbocker, P. Andry, B. Dang, R. Horton, M. Inter-
rante, C. Patel, R. Polastre, K. Sakuma, R. Sirdeshmukh,
E. Sprogis, et al. Three-dimensional silicon integration.
IBM Journal of Research and Development, 52(6):553–
569, 2008. (Cited on pages 15 and 18.)

[56] J. Koomey, K. Brill, P. Turner, J. Stanley, and B. Taylor. A
Simple Model for Determining True Total Cost of Own-
ership for Data Centers. 2007. (Cited on page 5.)

[57] V. A. Korthikanti and G. Agha. Analysis of parallel al-
gorithms for energy conservation in scalable multicore
architectures. In Proceedings of the 2009 International
Conference on Parallel Processing, ICPP ’09, pages 212–
219, Washington, DC, USA, 2009. IEEE Computer Soci-
ety. (Cited on page 5.)

[58] M. S. Lam and R. P. Wilson. Limits of control flow on
parallelism. In Proceedings of the 19th annual interna-
tional symposium on Computer architecture, ISCA ’92,
pages 46–57, New York, NY, USA, 1992. ACM. (Cited on
page 4.)

[59] B. C. Lee and D. M. Brooks. Accurate and efficient re-
gression modeling for microarchitectural performance
and power prediction. In ASPLOS-XII: Proceedings of
the 12th international conference on Architectural sup-
port for programming languages and operating sys-
tems, pages 185–194, New York, NY, USA, 2006. ACM.
(Cited on pages 2 and 4.)

[60] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. Mcpat: an integrated power,
area, and timing modeling framework for multicore
and manycore architectures. In Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO 42, pages 469–480, New York,
NY, USA, 2009. ACM. (Cited on pages 2 and 4.)

[61] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hållberg, J. Högberg, F. Larsson, A. Moestedt,
and B. Werner. Simics: A full system simulation plat-
form. Computer, 35(2):50–58, Feb. 2002. (Cited on
page 4.)

[62] G. Marin and J. Mellor-Crummey. Cross-architecture
performance predictions for scientific applications us-
ing parameterized models. In Proceedings of the joint
international conference on Measurement and mod-
eling of computer systems, SIGMETRICS ’04/Perfor-
mance ’04, pages 2–13, New York, NY, USA, 2004. ACM.
(Cited on page 5.)

[63] J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beck-
mann, C. Celio, J. Eastep, and A. Agarwal. Graphite: A
distributed parallel simulator for multicores. In High
Performance Computer Architecture (HPCA), 2010 IEEE
16th International Symposium on, pages 1–12, jan.
2010. (Cited on pages 1, 2 and 4.)

[64] C. Minkenberg and G. Rodriguez. Trace-driven co-
simulation of high-performance computing systems
using omnet++. In Proceedings of the 2nd Interna-
tional Conference on Simulation Tools and Techniques,
Simutools ’09, pages 65:1–65:8, ICST, Brussels, Bel-
gium, Belgium, 2009. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering). (Cited on pages 1 and 4.)

[65] G. Moore. Our revolution, 2002.
http://www.singularity.com/charts/page62.html.
(Cited on page 17.)

[66] L. W. Nagel and D. O. Pederson. Simulation Program
with Integrated Circuit Emphasis. In Proceedings of
the 16th Midwest Symposium Circuit Theory, Waterloo,
Canada, 1973. (Cited on page 4.)

[67] D. B. Noonburg and J. P. Shen. Theoretical modeling of
superscalar processor performance. In Proceedings of
the 27th annual international symposium on Microar-
chitecture, MICRO 27, pages 52–62, New York, NY, USA,
1994. ACM. (Cited on pages 3, 4 and 5.)

[68] M. Oskin, F. T. Chong, and M. Farrens. Hls: combining
statistical and symbolic simulation to guide micropro-
cessor designs. In Proceedings of the 27th annual inter-
national symposium on Computer architecture, ISCA
’00, pages 71–82, New York, NY, USA, 2000. ACM. (Cited
on page 4.)

[69] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-
effective superscalar processors. In Proceedings of the
24th annual international symposium on Computer ar-
chitecture, ISCA ’97, pages 206–218, New York, NY, USA,
1997. ACM. (Cited on page 4.)

[70] Peter M. Kogge (editor). Exascale computing study:
Technology challenges in achieving exascale systems,
univ. of notre dame, cse dept. tech. report tr-2008-13,
2008. (Cited on page 16.)

[71] B. R. Rau and J. A. Fisher. Instruction-level parallel pro-
cessing: history, overview, and perspective. J. Super-
comput., 7(1-2):9–50, 1993. (Cited on page 4.)

[72] E. M. Riseman and C. C. Foster. The inhibition of po-
tential parallelism by conditional jumps. IEEE Trans.
Comput., 21:1405–1411, December 1972. (Cited on
page 4.)

[73] T. Sakurai and A. Newton. Alpha-power law MOSFET
model and its applications to CMOS inverter delay and
other formulas. IEEE Journal of Solid-State Circuits,
25(2):584–594, 1990. (Cited on page 14.)

[74] S. M. Sanchez. Better than a petaflop: the power of ef-
ficient experimental design. In WSC ’08: Proceedings of
the 40th Conference on Winter Simulation, pages 73–
84. Winter Simulation Conference, 2008. (Cited on
page 3.)

[75] B. Schroeder, E. Pinheiro, and W.-D. Weber. Dram er-
rors in the wild: a large-scale field study. In Proceed-
ings of the eleventh international joint conference on
Measurement and modeling of computer systems, SIG-
METRICS ’09, pages 193–204, New York, NY, USA, 2009.
ACM. (Cited on page 17.)

[76] I. Sharapov, R. Kroeger, G. Delamarter, R. Chevere-
san, and M. Ramsay. A case study in top-down per-

23

formance estimation for a large-scale parallel appli-
cation. In Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and practice of parallel pro-
gramming, PPoPP ’06, pages 81–89, New York, NY, USA,
2006. ACM. (Cited on page 4.)

[77] R. K. Sharma, R. Shih, C. Bash, C. Patel, P. Varghese,
M. Mekanapurath, S. Velayudhan, and M. Kumar, V. On
building next generation data centers: energy flow in
the information technology stack. In Proceedings of
the 1st Bangalore Annual Compute Conference, COM-
PUTE ’08, pages 8:1–8:7, New York, NY, USA, 2008.
ACM. (Cited on page 5.)

[78] P. Stanley-Marbell, V. Caparros Cabezas, and R. Luijten.
Pinned to the walls: impact of packaging and applica-
tion properties on the memory and power walls. In
Proceedings of the 17th IEEE/ACM international sym-
posium on Low-power electronics and design, ISLPED
’11, pages 51–56, Piscataway, NJ, USA, 2011. IEEE Press.
(Cited on pages 4 and 15.)

[79] D. Sylvester and K. Keutzer. System-level performance
modeling with BACPAC – berkeley advanced chip per-
formance calculator, Sept. 1999. (Cited on page 4.)

[80] K. B. Theobald, G. R. Gao, and L. J. Hendren. On the
limits of program parallelism and its smoothability. In
Proceedings of the 25th annual international sympo-
sium on Microarchitecture, MICRO 25, pages 10–19,
Los Alamitos, CA, USA, 1992. IEEE Computer Society
Press. (Cited on page 4.)

[81] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P.
Jouppi. CACTI 5.1. Technical Report HPL-2008-20,
Hewlett Packard Laboratories, November 2008. (Cited
on pages 2 and 4.)

[82] Vivek Sarkar (editor). Exascale Software Study: Soft-
ware Challenges in Extreme Scale Systems, September
2009. (Cited on page 12.)

[83] D. W. Wall. Limits of instruction-level parallelism.
In Proceedings of the fourth international conference
on Architectural support for programming languages
and operating systems, ASPLOS-IV, pages 176–188, New
York, NY, USA, 1991. ACM. (Cited on page 4.)

[84] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion:
a power-performance simulator for interconnection
networks. In MICRO 35: Proceedings of the 35th annual
ACM/IEEE international symposium on Microarchitec-
ture, pages 294–305, Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press. (Cited on page 4.)

[85] S. Williams, A. Waterman, and D. Patterson. Roofline:
an insightful visual performance model for multicore
architectures. Commun. ACM, 52(4):65–76, Apr. 2009.
(Cited on pages 2 and 13.)

[86] D. A. Wood and M. D. Hill. Cost-effective parallel com-
puting. Computer, 28:69–72, February 1995. (Cited on
page 17.)

[87] J. Zhai, W. Chen, and W. Zheng. Phantom: predict-
ing performance of parallel applications on large-scale
parallel machines using a single node. In Proceed-
ings of the 15th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’10,
pages 305–314, New York, NY, USA, 2010. ACM. (Cited
on page 4.)

[88] W. Zhao and Y. Cao. Predictive technology model
for nano-CMOS design exploration. JETC, 3(1), 2007.
(Cited on page 4.)

24

	rz3883_body.pdf
	Introduction
	Contributions
	Structure of the framework

	Related Research
	Modeling approach
	Efficient design-space exploration
	Empirical semiconductor data and circuit-level models
	Algorithm-hardware interaction
	Modeling costs in large-scale systems

	Illustrative Example
	Hierarchical analysis of large-scale computing systems
	Terminology and notation
	Performance bounds
	Hierarchical workload division
	Computation throughput

	Bandwidth versus cache size tradeoffs
	Unification of existing models and terminology
	Strong and weak scaling
	Isoefficiency and Gustafson's law
	Amdahl's, work, and span laws
	The roofline model

	Hierarchical power dissipation and technology trends
	Core dynamic and leakage power
	Resistive losses between die and socket
	Data movement power
	Overall power model

	Whole-system reliability and failover model, and device reliability trends
	Failover

	Hierarchical cost bounds and trends
	Constraints: power delivery, cooling, and area
	Power delivery and cooling constraints
	Area constraints

	ExaBounds—A Framework for Better-than-back-of-the-envelope Analysis of Large-scale systems
	Application of The Framework: Cost-effective processor choices for scale-out systems

	Summary of Contributions
	Data Sources
	References

