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The Complexity of Deadline Analysis for Workflow
Graphs with a Single Resource

Mirela Botezatu1,2, Hagen Völzer1, and Lothar Thiele2

1 IBM Research – Zurich, Switzerland
2 ETH – Zurich, Switzerland

Abstract. Workflow graphs (WFGs) are control-flow graphs extended by paral-
lel fork and join. They are used to represent the main control-flow of e.g. business
process models modeled in languages such as BPMN or UML activity diagrams.
A WFG is said to be sound if it is free of deadlocks and exhibits no lack of syn-
chronization. We study the question whether the executions of a time-annotated
sound WFG meet a given deadline. We present polynomial-time algorithms and
NP-hardness results for different cases. In particular, we show that it can be de-
cided in polynomial time whether some executions of a sound WFG meet the
deadline. Furthermore we show that for general probabilistic WFGs, it is NP-
hard to determine whether the probability of an execution meeting the deadline is
higher than a given threshold, whereas the expected duration of an execution can
be computed in polynomial time.

1 Introduction
Workflow graphs can capture the main control flow of processes modeled in languages
such as BPMN, UML-AD, and EPC [15]. That is, the core routing constructs of these
languages can be mapped to the routing constructs of WFGs, which are alternative
choice and merge, and concurrent fork and join. Fig. 1 shows an example of a WFG
modeling a data analysis workflow. After a task to read the data, there is an alternative
choice s1 whether the read data is of type 1 (DT1) or type 2 (DT2). After a prepro-
cessing task for each type, there is a concurrent fork f 1, and different tasks (Feature
Selection, Train SVM, Train RF) are executed in part concurrently to each other and
separately for each of the two data types. Finally, two tasks are executed concurrently
that are independent of the data type (Predict SVM and Predict RF) after which the
concurrent threads are synchronized through a concurrent join j1 and two tasks are
executed after the synchronization to return the results.

Fig. 1: An example of a WFG and one of its executions (dotted)



A workflow graph is equivalent to a two-terminal Free-Choice Petri net i.e., a con-
nected net with a unique source and sink, which is also called a free-choice workflow
net [7]. A workflow graph can be seen as a compact representation of the correspond-
ing free-choice net. Therefore, the theory of free-choice Petri nets directly applies to
workflow graphs.

A workflow graph may contain a deadlock or lack of synchronization. The latter
corresponds to unsafeness in Petri nets. The absence of deadlock and lack of synchro-
nization has been termed soundness, which can be decided in cubic time by help of the
rank theorem for free-choice Petri nets [4].

In this paper, we study real-time analysis for WFGs, in particular, whether the exe-
cutions of a sound WFG meet a given deadline, where tasks, or, equivalently, edges are
annotated with execution times. We are not aware of any similar work for this model
class. We restrict here to the case where all tasks are executed by a single resource, i.e.,
the time that is needed to execute two concurrent tasks is the sum of the times needed
for each task. The case where a WFG is executed by multiple resources is left as future
work.

Table 1 shows the results, where our contributions are written in bold. The first two
columns refer to the question whether all executions or some execution of the WFG
finish before the deadline, respectively. In the former case, cycles in the graph are con-
strained by a termination order. For the third and fourth columns of Table 1, alternative
choice is resolved by a coin flip and we ask whether the probability to terminate within
the given deadline is above a given threshold (third column) or what the expected dura-
tion is (fourth column).

Sequential graphs refers to the subclass of classical control-flow graphs without
concurrency. We can use Dijkstra’s algorithm [6] for computing the shortest path of a
sequential graph and therefore determine the minimum duration (Cell B.2). If the se-
quential graph is acyclic, then the shortest and the longest path can be computed in
linear time through a combination of topological sort and dynamic programming [20]
(Cells A.1 and A.2). To define the maximum duration of a WFG, we need to constrain
the number of times a loop can be traversed. We propose a general model of loop con-
straints for cyclic WFG in this paper. For this general model, we adapt the known result
that computing the longest simple path in a sequential graph is NP-hard to show that it
is NP hard to compute whether all admissible executions of a sequential WFG meet a
given deadline (Cells B.2 and E.2).

The expected duration of a probabilistic sequential graph, i.e., Markov chain, can be
computed in polynomial time [3] (Cell B.4), and again there is a linear time solution for
the acyclic case [3] (Cell A.4). Regular graphs refers to the subclass where the graph
can be generated by a regular expression, i.e., every split corresponds to a join of the
same logic (alternative or concurrent), see Fig. 3 for an example. For regular workflow
graphs, solutions are simple recursive algorithms which we briefly mention in the paper
and which run in linear time (Cells C.1, C.2, and C.4).

General WFGs can of course be analyzed for timing behavior in terms of their reach-
ability graph, and there are various techniques and tools that support this [9, 11, 19].
However, since the construction of the reachability graph incurs an exponential blowup,
these techniques do not run in polynomial time. In this paper, we show that some dead-
line analysis problems for WFGs can nevertheless be solved in polynomial time. Specif-
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ically, we show that Cells E.2, E.4 can be solved in polynomial time, whereas Cells D.1,
D.2 and D.4 can be solved in linear time. Furthermore, we show that computing the
probability of transgressing a deadline is NP-hard even for sequential regular graphs,
while it is known that there is a pseudo-polynomial solution for sequential graphs.

1. All executions 2. Some execu-
tion

3. Probability of
transgression

4. Expected du-
ration

A. Acyclic Se-
quential WFG

O(|V | + |E|) O(|V | + |E|) Weakly NP-hard O(|V | + |E|)

B. Sequential
WFG

NP-hard O(|E|+|V |·log|V |) As in A.3 O(|E|3)

C. Regular WFG O(|V | + |E|) O(|V | + |E|) As in A.3 O(|V | + |E|)
D. Acyclic
Sound WFG

O(|V| + |E|) O(|V| + |E|) NP-hard O(|V| + |E|)

E. Sound WFG As in B.1 O(|V||E|) As in D.3 O(|E|3)

Table 1: Overview of results; new contributions in bold.

The paper is structured as follows. After the preliminaries, we present a new al-
gorithm for computing the minimum duration for a given WFG in polynomial time,
and we present the NP-hardness proof for computing the maximum duration execution
in Sect. 3. In Sect. 4, we present the hardness result for assessing the probability of
deadline transgression and the polynomial time algorithm for computing the expected
duration for probabilistic cyclic WFG.

2 Preliminaries

In this section, we introduce workflow graphs, their semantics and their various sub-
classes.

A weighted, directed multi-graph G = (V, E, c,w) consists of a set of nodes V , a set
of edges E, a mapping c : E → V × V that maps each edge to an ordered pair of nodes
and a mapping w : E → N that maps each edge to a nonnegative integer, called its
weight or duration. For each edge e with c(e) = (v, z), we assume v , z for simplicity
throughout the paper.

A workflow graph Γ = (V, E, c, l,w), is a weighted multi-graph G = (V, E, c,w)
with distinct and unique source and sink nodes, denoted vsource and vsink, respectively,
equipped with an additional mapping l : V \ {vsource, vsink} → {XOR,AND} that as-
sociates a branching logic with every node, except for the source and the sink. Fur-
thermore, we assume that every node is on a path from the source to the sink, that
the source has a unique outgoing edge, called the source edge (esource), and that the
sink has a unique incoming edge, called the sink edge (esink). For each node v, we de-
fine the pre-set of v, •v = {e ∈ E | ∃w ∈ V : c(e) = (v, z)} and the post-set of v,
v• = {e ∈ E | ∃ z ∈ V : c(e) = (v, z)}. A node v where |•v| > 1 or |v•| > 1 is called a
gateway, in the former case, v is called a join and in the latter case, a split.

Fig. 1 shows a WFG in BPMN notation: An XOR gateway is depicted as a diamond,
an AND gateway as a diamond decorated with a plus sign. Source and sink are depicted
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as circles. A node that is neither a join, split, nor source or sink is usually called a task.
A task is shown as a rounded rectangle in Fig. 1. It is natural to assign durations to tasks.
However, we will henceforth omit tasks for simplicity and annotate each edge with a
duration w(e) as formalized above.

A marking m : E → N of a WFG maps each edge to a non-negative integer. If
m(e) = i, we say that there are i tokens on edge e. The marking with exactly one token
on the source edge and no token elsewhere is called the initial marking. The marking
with exactly one token on the sink edge and no token elsewhere is called the final
marking of the WFG.

The semantics of workflow graphs is defined as a token game as it is in Petri Nets.
A comprehensive analysis of the relationship between workflow graphs and free-choice
workflow nets (a subclass of Petri nets) can be found in [7]. The execution of a node
with an AND logic removes one token from each of its incoming edges and adds one
token to each of the outgoing edges. The execution of a node with a XOR logic removes
non-deterministically a token from one of its incoming edges that has a token, then non-
deterministically adds one token to one of the outgoing edges. Although we omit tasks,
we allow nodes with just one incoming and one outgoing edge for technical reasons.
For such nodes, XOR and AND logic behaves the same. In figures, we depict such a
node as an XOR node.

More formally, we define the relation m
v
−→ m′, pronounced v is enabled in m and

execution of v in m results in m′, for a pair m,m′ of markings and a node v as follows:
l(v)=AND and

m′(e) =


m(e) − 1, if e ∈ •v and m(e) > 0
m(e) + 1, if e ∈ v•

m(e), otherwise

l(v)=XOR and there exists an e′ ∈ •v and an e′′ ∈ v• such that:

m′(e) =


m(e) − 1, if e = e′ and m(e) > 0
m(e) + 1, if e = e′′

m(e), otherwise

We write m −→ m′ if m
v
−→ m′ for some v and

∗
−→ for the transitive and reflexive closure

of −→. We say m′ is reachable from m if m
∗
−→ m′.

An execution σ of a WFG Γ is a sequence of markings of Γ, σ = m0,m1,m2, . . .
such that m0 is the initial marking of Γ and for each i ≥ 0, mi −→ mi+1. If there is no
marking m such that mn −→ m, then we call the execution σ = m0, ...,mn finite.

A reachable marking m is a deadlock if m has a token on an incoming edge e ∈ E
of an AND join such that each marking reachable from m also contains a token on e.
A reachable marking m is unsafe or has lack of synchronization if one edge has more
than one token in m. A workflow graph is said to be sound if it has no deadlock and no
unsafe reachable marking. Soundness guarantees that every finite execution terminates
in the final marking of Γ. Soundness has various equivalent characterizations and can
be decided in polynomial time [2, 4].
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Let Γ be a WFG; Γ is sequential if it contains no AND-split or -join, it is acyclic
if the underlying graph has no cycles. A regular WFG is a WFG that can be generated
from a regular expression as follows. Let ε be a constant symbolizing an edge and X,Y
variables for WFGs. Then a regular WFG expression is the smallest set such that ε is a
regular WFG, and if X and Y are regular WFG, then X ; Y , X AND Y , X XOR Y , and
X LOOP Y are also regular WFG. From each regular WFG expression, we can generate
a WFG, where each expression type corresponds to one of the graph fragment patterns
shown in Fig. 2 and composition is done by replacing an edge labeled with a variable
by another pattern. For example, the expression (ε; ε) AND (ε LOOP ε) generates

Fig. 2: Regular patterns Fig. 3: Regular graph

the graph shown in Fig. 3. Note that the loop construct has two loop bodies. It can be
viewed as a combination of a while and a repeat loop, one loop body before the loop
condition one after it. It can be decided in linear time whether a WFG is a regular WFG
using graph parsing techniques [16].

3 Workflow graphs with nondeterministic choice

In this section, we study deadline analysis where choices in the WFG are assumed to be
nondeterministic. We distinguish two cases. First, we assume that choices are made by
the process internally, e.g., based on data-based decisions that we abstract from. In this
case, we are interested in whether the process always terminates within the deadline,
i.e., whether all its executions meet the deadline. Secondly, we consider that the choices
are made by a superimposed scheduler that has the goal to make choices in order to meet
the deadline, i.e., we ask whether there exists an execution that meets the deadline. It is
clear that for the first case, it is sufficient to compute the maximum duration execution
and for the second case, the minimum duration execution.

In the following, we present the polynomial time algorithm to determine the min-
imum duration of an execution of a WFG, Sect. 3.1. In Sect. 3.2, we define a system
model to rule out infinite executions of a WFG and adapt the known NP-hardness result
of the longest path problem to that system model. Finally, we show in Sect 3.3 that if
we restrict to acyclic WFGs the minimum or maximum duration of an execution can be
computed in linear time.

3.1 The minimum duration of a WFG

In the following, we present an algorithm to compute the minimum duration execution
of a WFG. WE will start by presenting several preliminaries that are needed for the
algorithm.

Let Γ be a sound workflow graph.
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Since we assume a single resource, the duration of an executionσ, of a WFG, which
we denote as c(σ), can be defined by:

c(σ) =
∑
e∈E

w(e) · σ(e). (1)

where

σ(e) =

|{i | mi,mi+1 consecutive markings of σ, mi(e) < mi+1(e)}|, if e ∈ E \ {esource}

1 if e = esource

(2)

is the number of times edge e is marked in an execution σ, which is either 0 or 1 if the
WFG is acyclic, but can be any nonnegative integer or∞, otherwise.

We will re-write the cost of an execution (1) in terms of recursive equations, that
represent the accumulated cost for reaching the sink, for a chosen execution.

As an example, consider the WFG in Fig. 4. In Fig. 4, edges are labeled (e.g. e8;
2) with an edge name (e8) and a duration (2). Fig. 5 represents the WFG restricted to
the elements that are contained in the execution with minimum duration, i.e., it is a
representation of the minimum duration execution. Each edge in Fig. 5 is labeled with
the accumulated cost for reaching the sink.

Fig. 4: WFG with edge weights Fig. 5: Minimum duration execution and the
accumulated costs

For e11, the accumulated cost to reach the sink is: w(e11) to which we add the cost
of esink therefore, 6 + 3 = 9. Since in any execution in which edge e8 is marked, edge
e9 is also marked we accumulate the cost to reach the sink on only one of the edges
(otherwise the cost is over-counted). The cost associated to e9 stays w(e9) and the cost
associated to e8 becomes w(e8) plus the cost of e11, and we obtain 2+9=11, etc. The
duration of the minimum duration execution (Fig. 5) equals the cost accumulated to
esource which is 31.

As presented in the example, for each node v such that l(v) =AND, and |•v| > 1,
the cost associated to the outgoing edge has to be accumulated only once. For this, we
define a mapping sel : E → {0, 1} that specifies which of the incoming edges of an
AND node v, for which |•v| > 1, accumulates the cost of the outgoing edge. Note that
for all the v of the type mentioned above,

∑
e∈•v sel(e) = 1.

The recursive definition for the cost of an execution is technically simpler for a
loop-free execution.
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Definition 1 An execution σ, of a WFG Γ, is a loop-free execution if no node is exe-
cuted more than once in σ, and implicitly no edge is marked more than once in σ. Let
LF = {σ | σ is a loop-free execution of Γ}.

It sufficies for us to restrict to loop-free executions due to the following lemma:

Lemma 1 The execution with minimum duration of a WFG is a loop-free execution.

The proof of the Lemma is presented in the Appendix.
We can finally write the recursive equations for defining the accumulated cost and

the cost of an execution.
Let σ be a loop-free execution of a WFG. For each node v, and for each edge e ∈ •v,

we define recursively dσ(e) - the accumulated cost for reaching the sink for e in σ.
dσ(esink) = w(esink) and for e ∈ E \ {esink}, if σ(e) = 0, then dσ(e) = 0, otherwise, if
σ(e) = 1 as follows:

dσ(e) =



w(e) + dσ(e′) if l(v) = XOR and |v•| > 1 and e′ ∈ v• s.t. σ(e′) = 1
w(e) + dσ(e′) if l(v) = XOR and |v•| = 1, and {e′} = v•

w(e) +
∑
e′∈v•

dσ(e′) if l(v) = AND and |v•| > 1

w(e) + dσ(e′) if l(v) = AND and |v•| = 1, {e′} = v• and sel(e′) = 1
w(e) if l(v) = AND and |v•| = 1, {e′} = v• and sel(e) = 0

(3)

Due to the inductive definition of dσ(e), it holds that dσ(esource) = c(σ), the duration
of a loop-free execution σ (i). From Lemma 1, it holds that the minimum duration
execution is loop-free (ii). From (i) and (ii) it holds that the duration of the minimum
duration execution is min{dσ(esource) | σ ∈ LF}.

We define d∗(e), the minimum cost downstream from e, as follows:

d∗(e) =

min{dσ(e) | σ(e) = 1 ∧ σ ∈ LF}, if {σ | σ ∈ LF ∧ σ(e) = 1} , ∅
0, otherwise

(4)

Since σ(esource) = 1 for any (loop-free) execution σ, d∗(esource) = min{dσ(esource) |
σ ∈ LF} and therefore d∗(esource) is the duration of the minimum duration execution.

The algorithm for computing the minimum duration of an execution of a WFG,
works on a weighted WFG, and for each node v, for each edge e ∈ •v it updates a value
δ(e) that represents the currently known minimum duration of an execution to reach the
sink from e. Upon termination of our algorithm, the value associated to esource, δ(esource),
represents the duration of the minimum duration execution. The idea is similar to the
Bellman-Ford algorithm [1] for sequential graphs, but the edge relaxation procedure is
different, to reflect the semantics of sound WFGs.

The algorithm that computes the duration of the minimum duration execution is
Algorithm 1, which contains a call to the subroutine represented by Algorithm 3.

Next, we will show the correctness of the algorithm.
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Algorithm 1 Minimum duration
1: function WFGMin( V, E)
2: for e ∈ E \ {esink} do
3: δ(e)← ∞
4: end for
5: δ(esink)← w(esink)
6: for i = 1 : |V | do
7: for all v ∈ V do
8: for all e ∈ •v do
9: Relax(e,v)

10: end for
11: end for
12: end for
13: end function

Algorithm 2 Min duration, acyclic
1: function AcyclicWFGMin(V, E)
2: for e ∈ E \ {esink} do
3: δ(e)← ∞
4: end for
5: δ(esink)← w(esink)
6: TopologicalSort(Γ)
7: while V , ∅ do
8: Select v ∈ V s.t. v is maximal with

respect to the topological sort
9: V ← {V \ v}

10: for all e ∈ •v do
11: Relax(e,v)
12: end for
13: end while
14: end function

Algorithm 3 Relaxation of an edge e ∈ •v
1: function Relax(e,v)
2: if l(v) = XOR, |v•| = 1, and {e′} = v•

then
3: if δ(e) > w(e) + δ(e′) then
4: δ(e)← w(e) + δ(e′)
5: end if
6: end if
7: if l(v) = XOR, |v•| > 1, and e′ ∈ v•

then
8: if δ(e) > w(e)+mine′ (δ(e′)) then
9: δ(e)← w(e) + mine′ (δ(e′))

10: end if
11: end if
12: if l(v) = AND, |v•| = 1, and {e′} =

v• then
13: if δ(e) > w(e) + δ(e′) then
14: if sel(e) = 1 then
15: δ(e)← w(e) + δ(e′)
16: else
17: δ(e)← w(e)
18: end if
19: end if
20: end if
21: if l(v)= AND and |v•| > 1 then
22: if δ(e) > w(e) +

∑
e′∈v•

δ(e′) then

23: δ(e)← w(e) +
∑
e′∈v•

δ(e′)

24: end if
25: end if
26: end function

Lemma 2 After each call of Relax(e, v) it holds that δ(e) ≥ d∗(e). Each relaxation of
an edge e can only decrease the current value of δ(e).

The proof of the Lemma is presented in the Appendix.
For a workflow graph Γ and one loop-free execution σ of Γ, we define Γσ as the

workflow graph Γ restricted to σ such that it contains only the nodes of Γ that are
executed in σ and the edges of Γ such that σ(e) = 1. Note that for a workflow graph Γ
and σ - a loop-free execution of Γ it follows that Γσ is an acyclic workflow graph.

The elements of an acyclic workflow graph are in a partial order defined by the
flow of the graph: Let G = (V, E, c) be an acyclic multi-graph. If x1, x2 are two distinct
elements in V ∪ E such that there is a path from x1 to x2, then we say that x1 precedes
x2, denoted x1 � x2, and x2 follows x1.
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Lemma 3 Let e be an edge of a workflow graph Γ for which {σ | σ ∈ LF ∧ σ(e) =

1} , ∅. Let S =< ei−1 · · · , esink > be the edges that get marked after e gets marked, in
an execution σ ∈ LF for which σ(e) = 1 and dσ(e) = d∗(e). Each sequence of calls
of Relax(e, v) that has the property that edges esink, · · · , ei−1, e have been relaxed in
decreasing order with respect to � on Γσ, leads to δ(e) = d∗(e).

The proof of the lemma is presented in the Appendix.

Lemma 4 For a sound workflow graph, after running the Algorithm 1 for computing
the minimum duration execution, it holds that for any e such that {σ | σ(e) = 1, σ ∈
LF} , ∅, δ(e) = d∗(e).

Proof: Let e be an edge of the workflow graph such that {σ | σ(e) = 1, σ ∈ LF} , ∅.
Let σ∗ = argminσdσ(e), σ ∈ LF, σ(e) = 1.

Since σ∗ is loop-free, it means that at most |V | nodes are executed in σ∗. In each
complete relaxation step (one iteration of the loop on line 6 in Algorithm 1) we relax all
the edges. Therefore, at the |V |-th iteration we have relaxed all the edges, in decreasing
order with respect to the partial order on the edges of Γσ∗ . It means that at the |V |-th
iteration, we will have relaxed all the edges that get marked after e gets marked in σ∗.
Therefore, from Lemma 3, δ(e) = d∗(e). ut

Since esource ∈ {e | {σ | σ(e) = 1, σ ∈ LF} , ∅} it holds, given Lemma 4, that
after running Algorithm 1, δ(esource) = d∗(esource). We computed the duration of the
minimum duration execution of the workflow graph, which is d∗(esource).

For Algorithm 1, the initialization of the edge costs takes O(|V |) time and each of the
|V | iterations over the edges of the WFG is performed in O(|E|) time. The cost update is
performed also in O(|E|) time. Hence we have proven the following:

Theorem 1 1 The minimum duration execution of a sound workflow graph can be com-
puted in polynomial time O(|V ||E|).

3.2 The maximum duration of a WFG

To define the maximum duration of a WFG, we need to constrain the number of times
a loop can be traversed. We propose a general model of loop constraints for cyclic
WFG in this section. For this general model, we adapt the known result that computing
the longest simple path in a sequential graph is NP-hard to show that it is NP hard to
compute whether all admissible executions of a sequential WFG meet a given deadline.

Fig. 6: A WFG with irre-
ducible loops

For graphs with reducible loops as produced by the
structured constructs (while, repeat loops) where retreat-
ing edges are unique, (back edges), loop bounds represent
the maximum iteration count of the loop body relative to
the header. In a WFG however, there may be irreducible
loops - loops with multiple entry points.

For irreducible loops, the specification of loop bounds
is more complex [10] due to the multiple loop entries. An
example of a graph containing irreducible loops is given in
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Fig. 6. As a generalization of the limitation of loop bounds
in regular graphs, we define a system model that rules out
infinite executions and show that computing the maximum duration execution for work-
flow graphs with cycles is NP-hard, as follows:

Assume a sound WFG Γ is given. We furthermore assume that the following two
specifications are given with Γ:

1. a partitioning V0,V1, · · · ,Vk of the nodes V of Γ, where each Vi is called a termi-
nation layer such that V0 contains only the sink, and

2. a mapping φ : E → N∪{∞}, called an decision outcome traversal restriction, which
denotes the maximal number of times an edge may be traversed in an admissible
execution such that

(i) each XOR-split v has an unrestricted outcome edge, i.e., an edge e ∈ v•, such that
φ(e) = ∞, and (ii) each unrestricted edge leads into a lower termination layer, i.e.,
φ(e) = ∞ where c(e) = (v,w) implies v ∈ Vi, w ∈ V j where i > j.

A workflow graph with these properties is called a workflow graph with loop con-
straints.

We then call an execution σ of Γ admissible if for each outcome edge o of Γ,
σ(o) ≤ φ(o) , i.e., if the specified traversal restrictions are obeyed by σ. Condition (ii)
above guarantees that each admissible execution terminates. Condition (i) requires that
the restrictions given by φ do not create an artificial deadlock, i.e., a partial execution
that cannot be extended into an admissible execution. Hence, an admissible execution
always exists. Any termination order that satisfies these two natural requirements may
be specified using the node partition and φ. We now present a hardness result for se-
quential WFGs with cycles:

Theorem 2 The problem to determine whether all admissible executions of a sequen-
tial WFG with loop constraints meet a given deadline is NP-hard.

Proof. We reduce from the problem of computing the longest simple path (between
any nodes) in a directed graph, which in turn is a reduction from the Hamiltonian path
problem. Given such a directed graph G, we construct an annotated sequential WFG Γ
as follows, cf. Fig. 7.

First we expand each node of G that is a split as well as a join (e.g., the two interior
nodes of G in Fig. 7) into a separate join and a separate split with a single edge from the
join to the split. These added edges are weighted with duration 0. The obtained graph
is called G′, cf. subgraph of the right hand side graph in Fig. 7 encircled with label V2.
Note that each path in G′ corresponds to a path in G of the same duration and vice versa.

We add a fresh source and a fresh sink, we add an edge from the source to each
node in G′ and an edge from each node in G′ to the sink, which all have duration 0 and
are unrestricted (φ(e) = ∞). The termination layers are specified as in Fig. 7, all edges
in G′ are restricted with 1, i.e., must not be traversed more than once. It is easy to check
that all conditions of the system model above are met.

Suppose the maximum duration, admissible execution in Γ can be computed in
polynomial time. That execution is a path in Γ and due to the construction of Γ, it
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contains the longest duration path π′ of G′ between any nodes that contains each edge
of G′ at most once. This path π′ of G′ corresponds to a path π in G of the same duration
that contains each node at most once and π must be the longest path of G with that
property. Any longer path of G that visits each node at most once would correspond to
path in G′ of the same duration that visits every edge at most once. Hence we would be
able to solve the longest simple path problem in polynomial time which is known to be
NP-complete.ut

Fig. 7: Constructed WFG for proof of Thm. 2

Thm. 2 settles Cells B.1 and E.1 of Table 1.

3.3 Regular and acyclic WFG

For a regular WFG, with a structured cycle, i.e., a while or repeat loop, or more general,
of the form X LOOP Y , in order to compute the maximum duration, one needs the
number of iterations for each loop. If we assume that the backedge of each loop of the
regular graph is annotated with a positive integer k that represents the maximum number
of times the backedge can be traversed, then the maximum duration of X LOOP Y is
(k + 1) · dX + k · dY where dX denotes the maximum duration of the loop body X, and dY

represents the duration associated to reentering the loop. For computing the minimum
duration we take k = 0. We still obtain the minimum/maximum duration of such an
annotated regular WFG in linear time (Cell C.1, C.2 of Table 1).

If the graph is not regular but it is sequential, the minimum duration execution can
be computed using Dijkstra’s algorithm (Cell B.2 of Table 1).

For the acyclic case, the simplest case is when the graph is regular (e.g., cf. Fig.3), in
which we can compute the minimum and maximum durations recursively. If the graph is
the sequential or concurrent (AND) composition of its subgraphs, then its duration is the
sum of the durations of its subgraphs. If the graph is the alternative (XOR) composition
of its subgraphs, then its minimum (maximum) duration is the minimum (maximum)
of the minimum (maximum) durations of its subgraphs. We thus obtain an algorithm
that runs in O(|V | + |E|) time. If the acyclic graph is not regular, but sequential, there is
still a well-known simple solution to finding the longest path between two nodes, which
runs in time O(|V | + |E|) (Cell A.1 of Table 1). Analogously, the same algorithm can be
applied to compute the shortest simple path by taking the minimum (Cell A.2 of Table
1).

For acyclic WFGs, we can use the algorithm for the cyclic case but without the
need to perform |V | iterations. Instead we exploit the fact that the elements of an acyclic
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WFG are in a partial order defined by the flow of the graph. Therefore, in order to
make sure that the edges are relaxed respecting the partial order, first, the graph is
sorted topologically - O(|V | + |E|). Secondly,the edges are relaxed in descending order
with respect to the topological sorting O(|E|). The algorithm that formalizes this idea is
Algorithm 2.

Theorem 3 The minimum duration execution of a sound ayclcic workflow graph can
be computed in linear time O(|V | + |E|).

Note that, in the acyclic case, for computing the maximum duration execution, one
only needs to select the maximum instead of the minimum in the Relax(e, v) procedure
when l(v) = XOR and |v•| > 1.

4 Workflow graphs with probabilistic choice

If not all executions of a WFG meet the deadline, we could ask whether at least a
large portion of the executions does. We approach this question by assuming that deci-
sions are resolved through a coin flip, i.e., each XOR-node v is assigned a distribution
µ : v• → [0, 1] such that µ(e) > 0 for each e ∈ v• and

∑
e∈v• = 1. Although some

executions may not terminate, their probability3 is zero. We can then take the duration
of an execution as a random variable and ask whether the probability of an execution
terminating before the deadline exceeds a given threshold. We address this question
in Sect.4.1 and contrast the obtained results with results on computing the expected
duration in Sect.4.2.

4.1 Probability of deadline transgression

We will show that computing whether the probability of an execution terminating before
the deadline exceeds a given threshold is NP-hard. The hardness result can be obtained
even for the simplest of graphs:

Theorem 4 Given a regular, sequential, acyclic probabilistic WFG, a deadline α ∈ N
and a threshold p ∈ [0, 1], computing P(c(σ) ≤ α) ≥ p is NP-hard.

Proof. The proof consists of a reduction from the subset sum problem, which is, given
a set {d1, · · · , dn} of integers and an integer α, determine whether any non-empty subset
sums up to exactly α. This problem is known to be NP-hard. Given these parameters

3 We do not explicitly construct the probability space here on which the development of this
chapter is formally based on. As WFGs contain concurrency, we need to consider maximal
partial-order executions to obtain a single probability space and to avoid the notion of an
adversary as in Markov decision processes. Note that a probabilistic WFG does not contain real
non-determinism, just concurrency. The construction of such a probability space is provided
elsewhere [17, 18], e.g. for Petri nets and in fact rests on the assumption that the Petri net is
free-choice. In this paper, we are only concerned with the duration of an execution, which is
independent of the interleaving, i.e., the ordering of concurrent events.
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we consider the (regular, acyclic, sequential) probabilistic WFG in Fig. 8, where each
decision outcome has probability 0.5.

Fig. 8: A chain of XOR blocks

Suppose we can answer in polynomial time to P(c(σ) ≤ α) ≤ p. We can then also
compute P(c(σ) ≤ α) in polynomial time. Please note that for the class of graphs of
Fig. 8, P(c(σ) ≤ α) = k

2n , for some k where 0 < k < 2n and n is the number of XOR
gateways. One way to compute P(c(σ) ≤ α) is to run binary search with queries for
P(c(σ) ≤ α) ≤ p with varying p. Binary search takes log(2n) = n operations.

Because we now know P(c(σ) ≤ α), we can also answer in polynomial time if there
exists an execution σ such that c(σ) = α: We have P(c(σ) ≤ α − 1) , P(c(σ) ≤ α), if
and only if there exists σ such that c(σ) = α. This in turn is the case exactly when there
is a subset of {d1, d2, . . . dn} which sums to α.ut

The subset sum problem can be solved in pseudo-polynomial time, i.e., in polynomial
time if numbers are represented in unary form. One way to represent the durations in
unary form in a workflow graph is to assume that each edge needs one time unit and
represent a duration of k time units by a sequence of k edges. For such a model, it is
known for the case of sequential graphs, i.e., for Markov chains, that the probability of
deadline transgression can be computed in polynomial time, e.g., by using the model
checking algorithm of pCTL [12]. Therefore, the problem is said to be weakly NP-hard
for sequential graphs. This can be extended to regular graphs, because each regular
AND-block with subblocks X and Y can be treated as an sequence of X and Y under the
assumption of a single resource. Therefore regular graphs can be reduced to sequential
graphs.

4.2 Expected duration

In some use cases, it may be sufficient to compute the expected duration, which turns out
to be easier than the probability of transgression. The main contribution of this section
is a polynomial-time algorithm for computing the expected duration for general sound
WFGs. Subsequently we discuss some subclasses which have a linear-time solution.

General sound WFGs. For probabilistic sequential graphs, i.e., Markov chains, it is
known that computing the expected duration can be done in polynomial time. In this
context, it is often phrased as computing the mean hitting hxy time in a Markov chain,
which is the expected time of a random walk starting at node x to reach node y. The
mean hitting times are the minimal non-negative solution to a set of n linear equations,
as in [13], of which the computational cost is O(n3), cf. Cell B.4 of Table 1.

We can use a similar approach by identifying a suitable set of equations. Due to the
linearity of the expectation, we can compute the expected duration of an execution as
follows:
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E(c) = E(
∑
e∈E

w(e) · Xe) =
∑
e∈E

w(e) · E(Xe) (5)

where the random variable Xe(σ) is defined as the number of times an execution σ
produces a token on e, defined in equation 2, which can be any non-negative integer
in a cyclic WFG. To compute E(Xe), we can define a set of equations. For each AND-
gateway v, we have E(Xe) = E(Xe′ ) for each e, e′ ∈ •v ∪ v•. For each XOR-gateway v
and each o ∈ v•, we have

E(Xo) = µ(o) ·
∑
e∈•v

E(Xe) (6)

In addition, we know E(Xe0 ) = 1 for the source edge e0. We can now solve this system
of linear equations in time O(|E|3) and we use equation 5 to compute the final result.

To sum up, we obtained the following result for Cell E.4 of Table 1:

Theorem 5 The expected duration of a sound workflow graph can be computed in time
O(|E|3).

As an example, we consider the cyclic WFG in Fig. 9.

Fig. 9: Expected duration in a cyclic graph

For the example from Fig. 9, we obtain the following set of linear equations, where
a variable e stands for E(Xe): e0 = e1 = e2 = 1; e4 = 0.2 · e2; e3 = 0.8 · e2; e5 =

e3 +e4; e6 = e7 = e10; e9 = e5 +e7; e9 = e8; e11 = e9 = e8; e12 = 0.6·e11; e10 = 0.4·e11.
For this example, assuming for simplicity, that all edges have duration 1, we obtain an
expected duration of 12.95.

Regular graphs with cycles. For regular WFGs, the expected duration can be com-
puted in linear time (Cell C.4 of Table 1) recursively, by exploiting the linearity of the
expectation, as follows:

– Sequential and concurrent composition: The expected duration of (X ; Y) and
X AND Y is the sum of the expected durations of X and Y .

– Alternative composition: The expected duration of X XOR Y is pX · dX + pY · dY ,
where pX (pY = 1 − pX) is the probability of branching into subgraph X (Y resp.)
and dX is the expected duration of X.
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– Loops: The expected duration of X LOOP Y , where p is the probability of re-
entering the loop and 1− p is the probability of exiting, can be computed by solving
the system of two linear equations, which yields the following closed formula:

∞∑
k=0

(1 − p)k((k + 1)dX + dY )

Sequential WFGs. It is known for acyclic sequential graphs that the expected duration
can be computed in linear time [14]. We approach the problem for acyclic sound WFG
in a similar way. We compute the expected number of times each edge is taken itera-
tively which is possible by processing the edges in the partial order defined by the flow
of the graph. Having computed the expected frequencies for each edge of the graph, the
expected duration is just the inner product of the expected frequencies and the durations
of the edges.

5 Conclusion

We presented new results on the deadline analysis of workflow graphs. Since workflow
graphs correspond to Free-Choice Petri nets, their expressiveness is strictly between
control-flow of sequential programs (state machines) and control-flow of general con-
current processes (Petri nets). While they do allow concurrency as well as choice, the
overlap of concurrency and choice is restricted in a way that no race conditions can
arise. While this restriction limits their application, many applications are known, in
particular in business process modeling. For example, the set of 735 of industrial pro-
cess models used in [5] could be mapped completely to WFGs.

We have shown that where efficient algorithms for deadline analysis of sequential
programs exist, we were able to define efficient algorithms for the corresponding WFG
classes exploiting the linear-algebraic properties of WFGs.

In future work, we would like to address the case of WFGs executed by more than
one resource and investigate whether the problem designated by Cell D.3 is weakly
NP-hard (as it is the case for Cell A.3).
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Appendix (at discretion of the reviewer, not in Proceedings version)

Preliminaries for Lemma 1

Let m and m′ be two markings of Γ. A tuple (E1, v, E2) is called a transition if v ∈ V ,
E1 ⊆

•v, and E2 ⊆ v•. A transition (E1, v, E2) is enabled in a marking m if for each edge
e ∈ E1 we have m(e) > 0 and any of the following propositions:

– l(v) = AND, E1 = •v, and E2 = v•.
– l(v) = XOR, there exists an edge e ∈ E such that E1 = {e}, and there exists an edge

e′ ∈ E such that E2 = {e}.

A transition T can be executed in a marking m if T is enabled in m. An execution
sequence of Γ is an alternate sequence σ =< m0,T0,m1,T1 · · · > of markings mi of Γ
and transitions Ti = (Ei, vi, E′i ) such that, for each i ≥ 0, Ti is enabled in mi and mi+1
results from the execution of Ti in mi.

The Parikh vector of an execution σ =< m0,T0,m1,T1 · · · >, written
→
σ maps every

transition T to the number of occurrences of T in σ. More formally, it is the multi-set
of edges such that

→
σ (esource) = 1 and ∀e ∈ E \ {esource} it holds

→
σ (e) = k such that

k = |{i | Ti = (E, v, E′) ∧ e ∈ E′}|
The cluster [v] of a node v ∈ V is a subset of E ∪ V such that [v] = {v} ∪ •v ∪ v•.
A permutation of a finite execution sequence, is a finite execution sequence with

the same transitions as the original sequence, and the same initial marking as the orig-
inal. Since the two execution sequences have the same Parikh vector, it follows from
the marking equation lemma in [4], that the final marking of the permutation of the
execution sequence is the same as that of the original.

Proof of Lemma 1

Let σ∗ be the execution sequence of Γ of minimum cost. If σ∗ is not loop-free,
then σ∗ =< m0,T0, · · · ,mi,Ti, · · · ,m j,T j, · · · ,mn,Tn > such that Ti = (E1, v, E2) and
T j = (E1, v, E2) (there exists a node v such that a transition in [v] is executed more than
once).

Let σ′ be a permutation of σ∗, σ′ =< m0,Tx, · · · ,m′i ,Ti, · · · ,m′j,T j, · · · ,mn,Ty >.
We construct σ′ from σ∗ in the following way. When we reach the marking mi such that
the transition Ti ∈ [v] is enabled, we first execute all the other transitions from σ∗ that
are enabled until the only enabled transitions belong to [v]. We then obtain a marking
m′i , and we can execute transition Ti. Next, we proceed similarly for when T j is enabled,
and we obtain a marking m′j.

It holds that m′i = m′j due to Lemma 5, stated by the authors in [8]. Since m′i = m′j,
σ′ and implicitly σ∗ can not be the executions of minimum cost, as one can construct a
lower cost execution sequence by removing the execution sequence in σ′ that led to the
repetition of the marking.

Lemma 5 If Γ is a sound workflow graph and v a node in Γ, then there exists a unique
reachable marking mv such that the only enabled transitions are the set of transitions
in [v].
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In the original paper, Lemma 5 is phrased in the context of free choice Petri Nets,
but due to the equivalenece between workflow graphs and free choice Petri Nets stated
in [7], the result holds for workflow graphs as well.ut

Proof of Lemma 2

We prove the lemma by induction on k, the number of calls of Relax(e, v).
Base case: P(0) : δ(esink) = w(esink), therefore clearly, δ(esink) = d∗(esink), and for all
e ∈ E \ {esink} δ(e) = ∞, and therefore δ(e) > d∗(e).
Induction step: Suppose P(k) is true, and thus after the k-th call of Relax(e, v) we have
δ(e) ≥ d∗(e) for all e. At the k + 1-th call of Relax(e, v), only δ(e) may get updated,
while all the other δ(e′), e′ ∈ E \ {e} remain unchanged.

We will show that from the definition of d∗(e) and from the induction hypothesis, it
follows that δ(e) ≥ d∗(e), for each of the relaxation cases. We will present the reasoning
for one of the cases, as the justification for the remaining ones is analogous.

Let v be a node, with l(v) = XOR and |v•| > 1. Let {e} = •v and {e1, e2, · · · , em} = v•.
Before the k + 1-th relaxation step, it holds that δ(ei) ≥ d∗(ei) ∀i, 1 ≤ i ≤ m. After the
k + 1-th relaxation step, δ(e) gets updated, such that, δ(e) becomes w(e) + minei (δ(ei)),
1 ≤ i ≤ m. Therefore, due to the induction hypothesis, δ(e) ≥ w(e)+minei (d

∗(ei)) ∀i, 1 ≤
i ≤ m (i). From the definition of d∗(e), it holds that d∗(e) = w(e) + minei d

∗(ei), 1 ≤ i ≤ m
(ii). From (i) and (ii) it follows that δ(e) ≥ d∗(e).ut

Note that at each relaxation step we can only decrease the value of δ(e). Once δ(e) =

d∗(e), it doesn’t change (it can not decrease further) as otherwise it would contradict the
claim that δ(e) ≥ d∗(e).

Proof of Lemma 3

We prove the lemma by induction on the number of edges in the set, k.
Base case: P(0) : δ(esink) = w(esink), therefore δ(esink) = d∗(esink).
Induction step: Suppose P(k) is true, and thus after having relaxed esink, · · · , ek−2, ek−1
in order, we have accordingly that δ(esink) = d∗(esink), · · · , δ(ek−2) = d∗(ek−2), δ(ek−1) =

d∗(ek−1). We will show that when we relax the edge ek, given the definition of d∗(e) and
the induction hypothesis , it follows that δ(ek) = d∗(ek). We present the reasoning for
one of the cases, as the justification for the remaining ones is analogous.

Let {e} = •v where v is a node, with l(v) = XOR and |v•| > 1. As above, assume
< ek−1 · · · , esink > are the edges that get marked after e gets marked, in an execution
σ ∈ LF for which σ(e) = 1 and dσ(e) = d∗(e). Assume without loss of generality that
ek−1 ∈ v•.

From the induction hypothesis we have δ(esink) = d∗(esink), · · · , δ(ek−2) = d∗(ek−2),
δ(ek−1) = d∗(ek−1) (i). From the relaxation procedure, when e is relaxed, δ(e) = w(e) +

mine′ (δ(e′)) where e′ ∈ v•. Since ek−1 is the edge that gets marked after e gets marked
in σ for which dσ(e) = d∗(e), we have that ek−1 = argmine′ (δ(e

′)) (ii). Therefore, from
(i) and (ii), we have that δ(e) = w(e) + d∗(ek−1), and therefore δ(e) = d∗(e).ut
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