RZ 3885 (#ZUR1411-048) 11/15/2011 (extended version: 11/24/2014)
Computer Science 13 pages

Research Report

Quantifying the Common Computational Problems in
Contemporary Applications*

Rik Jongerius**
IBM Research — Netherlands
r.jongerius@nl.ibm.com

Phillip Stanley-Marbell**
Massachusetts Institute of Technology
psm@mit.edu

Henk Corporaal

Eindhoven University of Technology
h.corporaal @tue.nl

*This work was presented at the 2011 IEEE Int'l Symp. on Workload Characterization
“lISWC-2011,” and a one-page summary appeared in the proceedings.

**Work performed while at IBM Research — Zurich, Rischlikon, Switzerland

esearch

||
!!III:”
il

R
Africa » Almaden « Austin « Australia « Brazil » China « Haifa « India « Ireland » Tokyo « Watson « Zurich

Quantifying the Common Computational Problems
In Contemporary Applications

Rik Jongerius
IBM Research— Netherlands
r.jongerius@l.ibmcom

Phillip Stanley-Marbell
Massachusetts Institute of Technology

psm@rit. edu

Henk Corporaal
Eindhoven University of Technology
h. cor por aal @ ue. nl

Abstract—The workloads of computing systems have tradition- systems eschewed the hardware implementation complexity
ally been characterized in terms of the behavior ofalgorithms and instruction non-uniformity of CISC architectures for a
and their embodiments in applications executing on a variety of strategy of simplified hardware, easier targeting of coerpil

hardware architectures. Algorithms are however only ameansto S - : .
the end goal of the solution ofcomputational problemsA quanti- and the possibility of higher clock frequencies facilitate

tative characterization of the constituent computational prodems by the reduced cycle time of (pipelined) simplified hard-
in contemporary applications is thus of great interest, given the ware [l]. Coupled with semiconductor process technology
recent advent of programming languages and system software scaling and improvements in clock frequencies, the RISC
platforms which enable performance and energy-efficiency trade revolution pushed performance further through the foltayi
offs through the exploitation of algorithmic alternativedor a given . -
compute problem. two decades. In t'he last fevy years hovyeyer, QUe to the ibabili
This article quantifies the potential for the exploitation of t0 cope with the increases in power dissipation and chadieng
algorithmic choice as a means by which applications may of heat removal associated with ever-higher clock fregigsnc
gain performance improvements in return for architectural or there has been a move towards obtaining performance through
programmer investment. This argument is made through the aiq1elism f]. During each of the aforementioned phases of
quantitative characterization of the dominant computational - h .
problems contained in a suite of 21 applications, representative evolution O_f computlng. systems, the respective per'forreanc
of a diverse collection of general-purpose real-world software. growth vehicles were viewed as the “one true” solution, only
It is demonstrated that almost 40 % of the aggregate execution to be replaced, often disruptively, by a different approatlen
time of the applications studied is spent in a set of 16 prob- the erstwhile growth vehicle could no longer scale.
lems that can be defined in terms of notation for describing Performance scaling through parallelism, the current grow

computational problems independent of algorithms for their hicl | h its limits. Scali th h leli .
solution. The properties of compute problems which would make vehicle, also has 1ts imits. >caling through paralleliss |

them amenable to representation in the proposed notation are typically classified asstrong scaling if performance gains
discussed, and quantified through hardware performance cousr are achieved when problem sizes remain fixed as hardware

measurements. Based on the insights obtained from the work concurrency is increased. In contrast, the temrak scaling
presented, a tentative hardware microarchitecture for exploitng is used to refer to the situation when increases in hardware
algorithmic choice is introduced. . - . .
concurrency alone might yield little performance gainst bu
where data-level parallelism can be exploited in makindpro
|. INTRODUCTION lem sizes larger as hardware concurrency is increaseddstro

Over the last four decades, computing systems have wigling will ulimately be limited by Amdahl's laws] and by
nessed performance growth through a varietpefformance the amount of parallelism available in application codeilevh
growth vehiclesPerformance increases in many of the earlie${eak scaling will be constrained by the data-level parishel
computing systems were achieved through the use of s@@ilable in applications paired with input datasets.
cessively more complex instruction set architectureshwie Al Of the aforementioned performance vehicles—complex
goal of pushing more work into hardware; these architesturg@rdware or hardware acceleration, clock speed growth, and
were ultimately limited by the difficulty of compiling gerads paral!ellsm—have the same fun(_:lar_nental goal: making (f|>_<ed)
purpose applications to target complex hardwaie 2], [3] algqnthms e>.<ecute faster. In prlnC|pI_e, however, com.putlng

As an alternative to complex instruction set computin§€vices are intended to soleemputational problemswhich

(CISC) platforms, reduced instruction set computing (RISGre conceptually separate from specific algorithms or im-
plementations thereof in applications. Thus, in pringigfe

“Work performed while at IBM Research—iHch, Rischlikon, Switzerland the semantics of computational problems can be exposed to

hardware, to the operating system, or to language runtim Programmer- _ FFTW; Elastic Computing
algorithmic choicecould be made a vehicle for performanct Implementations M spral

) . Smaller is bett N)
growth. For example, for the computational problem of sati (Smalleris betien I Petabricks

a collection of items in lexicographic order, the algoritlom
implementation thereof that achieves best performan¢csdgr
energy-efficiency) will depend on the type of elements, tt
number of elements, as well as the target execution arc
tecture. If the computational problem could be specified in
machine-readable form, in much the same way computatiol
algorithms are specified in (assembly) machine languageRuntime- Compile-Time
choice of algorithms (or the development of new algorithm:ﬂ‘:,’e";g‘,;fations , N e tions
could be used as a new growth vehicle for performance beyc(-argeris better) (Larger is better)
paral_lellsm. Figure 1. Summary of commonalities between four languages Inmant
This work addresses two important questions pertaining dgstems to which the workload characterization presentethig work is
the potential of algorithmic choice for computational deshs relevant—PetaBricks, FFTW, SPIRAL, and Elastic Computing.
to serve as a future vehicle for performance growth. First,

the types of applications which lend themselves to Serﬂmatlclassification of applications based on the constituenterum

of their constituent problem definitions from algorithmg fo. : .
their solution, are studied. Second, the feasibility ohtifging ical methods of computational problentsesign patterng9],

. . . 2= a refinement of the ideas of the Berkeley computational
well-defined computational problems, occupying a significa__ .

.) . . g motifs, are a proposed framework for software architegture

portion of execution time in existing complex software ap-

L) X . ; . comprising five categories of patterns which can be composed
plications, is studied. It is conjectured that, if such well) . N ;
: . o L to describe the architecture of an application. Both design
defined components can be identified eveaxistingsoftware, . o
. . -patterns and the Berkeley motifs move away from classifying
and if these components are amenable to being described . . s)
) : ; : . . applications based on specific implementations, but howeve
independent of algorithms for their solution, then prowgli

- . provide neither a quantitative study of the constituent (or
problem descriptioriacilities to implementers afiewsoftware ; L L
Co . I common) computational problems occurring in applications
is likely to be of benefit. Problem descriptions added as - .
. .) - __nor a concrete description of the semantics of the problems
annotation to source code or inserted into existing bisarie . :)
I Wwhose execution dominate runtime.
could then be used to facilitate hardware- or system-softwa .
driven algorithmic choice One recent attempt to put the dwarf classification on

Following the discussion of relevant related work in Senlel more quantitative footing analyzes instruction-levetapa
tion I, Sectionlll introduces the notion of compu'tationaleIIsm (ILP) and thread-level parallelism (TLP) of applica

problems independent of specific algorithmic implemente; tions which, k_)ased on their dwarf classification, bglon_g to-
by means of an example. The methodology used to ideyether LOJ. This approach, however, treats each application as

tify such algorithm-independent computational problems f;bla,Ck boxhwithoutqyantifyingfwhabr?]phutational groblems
applications is introduced in Sectiolv, along with a set dominate the execution time for which ILP and TLP are

of 21 applications which are used to motivate the study g?ported.

algorithmic choice as a performance growth vehicle. Sadfio ~ Having a quantitative analysis of the computational prob-
presents and discusses the results of the identification 1®Ms that are solved in a specific application enables réagon
the dominant algorithm-independent compute problemsén tAbout the potential for the use of algorithmic replacement.
corpus of applications. Sectiol summarizes the paper andiowever, to enable a platform to benefit from algorithmic

discusses a tentative architecture for exploiting alparit choice requires a supporting framework. Recent examples
choice as a performance growth vehicle. of such frameworks include PetaBrick$l], which offers a

programming language with the ability to specify multiple
execution paths to solve a single computational problem.
The PetaBricks autotuner performs a design space exmorati
Workload characterization has traditionally involved -anaver these user-supplied implementations, using the thegul
lyzing the properties of compiled applications, pairedhwitinformation, at run time, to determine the best-performing
their input datasets, executing on real hardware platforméethod to solve a problem of a particular size. In a similar
such as shared-memory multiprocesséif simulated hard- Vvein, the elastic computing framework?], provides a library
ware platforms such as microarchitectural simulatdfs To containing multiple algorithms per computational problem
quantify the potential of algorithmic choice as a perforaen permitting a programmer to call a function (by a statically-
growth vehicle, however, what is desired is an underst@]dideﬁned name binding) to solve the statically-named problem
of the constituent compute problems (semantics) that docurThe characterization presented in this article provides th
contemporary applications. first quantitative analysis of the potential applicabilibf
Recognizing the potential for great differences in perfoffameworks such as these.
mance from various implementations of the same algorithm,In contrast to the aforementioned general-purpose
the Berkeley computational motifs8][are an attempt at a programmer-driven frameworks, FFTWLJ is a domain-

II. RELATED WORK

specific framework which tunes fast Fourier transform (FF1programmer Represantation

algorithms to a target platform. Similarly, the SPIRAL4]

framework permits a programmer to specify a DSP linei

signal transform which is then optimized and converted in

code targeted to a given platform. Both FFTW and SPIRA 5, inm o :

are, however, domain-specific. Choice 't |Mooritnm] Pseudocode
Figurel illustrates the differences in the work performed b

a programmer, as opposed to the compiler or runtime Syste Code N implementation 0

across the aforementioned frameworks. From an applicatj ™emeate"

programmer’s perspective, it is considered worse if mo .

implementations have to be programmed as this iNCorpora syogs

more work. For algorithmic choice, however, having mor

more implementations available at compile- or run-timeitss compiter ——

in a better tuning of problem implementation to the platfor Optimization TN
When dedicated ASICs are employed in solving computa-

tional problems, they often result in a significant improegiin Figure 2. Computational problems: a CP can be solved with onaae

in compute eficiency in comparison to general-purpose pfffeent 9ot o exch agertn, dferen piatns can e

cessors 15], or in an improvement Of the energy-eﬁicienc)ﬁomp”ed using different Comp”er optimizationsl

under power usage limitd §]. The characterization of the oc-

curring computational problems in contemporary applaradi

presented in this article provides a much needed quauétatf® dominated by compute problems that have this property.

basis for the potential gains that can be achieved by all th8ere are however also certain types of applications, or

aforementioned compiler, runtime, and hardware techsiqueSections thereof, that are a poor fit for description as CPs;
the characteristics of these outlier applications are tifiesch

in SectionV.

Computational Problem

Problem
(CP) description

P i | Probl P,
Specification Computational Problem (CP) l

Sourcecode

L | Implementation m

. Target-specific
Mapping / sourcecode

Optimization k | Machine code

I1l. COMPUTATIONAL PROBLEMS

problem (CP)will be used to refer to the semantic properties of

; .) . . The collection of CPs that comprise an application deter-
a computation, which determine what relation exists betwee . .
. . mine whatthe application does. However, the CPs themselves
the inputs and outputs of the computation, as opposdmio

. L . do not imply the use of a specific algorithm, as the relation
that desired relation is achieved. : ' ;
between the inputs and outputs could be achieved by a variety

— - — of algorithms (e.g., quicksort versus mergesort for theirsgpr
Definition 1. Computational Problem (CP). A computatlonabp)_

problem, CP{p, Sk, R) is a 3-tuple representing an input pyring the course of implementation of an application, a
setSp and output setSr, which are related by the relation yrogrammer makes a variety of architectural choices before
R. the final binary is available for execution, as illustrated i
Figure 2. Multiple algorithms may exist for solving a given
Sp is the set of possible inputs of interest or themainand CP; in implementing a given algorithm, there may likewise
Sr is the set of possible valid outputs of interest (fta@ge exist several choices, e.g., for data structures. The samode
or co-domain); the relationR definesboth what outputs are corresponding to a high-level language implementationbzn
considered valid, as well as the relation between one or mangstomized (mapped) to different platforms or differerisets
of the inputs and a valid output. Intuitively, a CP specifiesf platforms (e.g., using architecture-specific intrissstich as
what the inputs and outputs of a portion of an applicatiorector-extensions), which leads to targeted source code. T
are, and what properties or invariants are satisfied by ttergeted source code can finally be compiled using several
inputs paired with the outputs. For example, for the computkfferent compiler optimizations.
problem of sorting a list of strings, the input set is a set of Each of the decisions in the levels of the hierarchy below
strings; the output is a set of tuples of integers and stritigss the CP, shown in Figure2, do not inherently affect the
integers corresponding to the ordinal position of the g8in semantics of an application, but however often have sigmific
when lexicographically sorted. effects on performance or energy-efficiency. Understandin
In principle, a CP could be defined at any level of granudhe constituent CPs in applications, and even possiblynigavi
larity, from very fine-grained (e.g., the CP correspondiag ta means of capturing these CP definitions in the same way
the sum of two integers), to very coarse-grained (e.g., theat binaries capture a codification of algorithms, may open
CP corresponding to a whole application). In practice, Qip future opportunities for runtime systems or hardware to
definitions are most meaningful when they correspond toaahieve improvements in compute performance without a need
non-trivial problem that can be expressed in the context fufr re-implementation or even re-compilation of applioas.
Definition 1, in less space than it would take to give aThe characterization of CPs in applications presentedis th
explicit algorithmic implementation. As will be quantified article shows the potential opportunities for implementabf
SectionV, the execution times of many real-world applicationsuch techniques.

Table |
DESCRIPTION OF THEk-MEANS CPIN TERMS OF THE COMPONENTS
GIVEN IN DEFINITION 1—domain range AND relation.

Table Il
DESCRIPTION OF THEEUCLIDEAN DISTANCE SUB-CP FROM k-MEANS
CLUSTERING.

Domain A set of points,P, and required number of clusters, Domain Two n-dimensional pointsp andg.

Range A clustering intok setsS = {S1, Sa, ..., Sk }. Range A distance,d.
i g k 2 .
Relation arg min 2i=12pses; [Ps — il Relation d= /3", (g —pi)*
where u; is the mean of points ib;.
0.4f ' 20 Clusters]
main 0:SS ArS2 @ ELK mPHX x:S2A
gos |
= -
<]
o =
[}
L
generate_points find_clusters calc_means o
<1% 94% 5% §

‘ get@se;%7dist ‘ ‘ addf;g);sum ‘ 5000 10000 15000
2 & Number of Points

Figure 3. Call graph of thé-means clustering application. Only procedures (@) k-means variants, 20 target cluste2d; to 2'* points.
relevant to thek-means clustering algorithm are shown. The numbers show 500 ‘
the percentage of execution time spent in a procedure andiitren. For
example, therai n() procedure accounts for 100 % of the run time, of which
94 % of the time is spent ifii nd_cl usters(), 5% incal c_nmeans()

and less then 1% igener at e_poi nts().

" 20 Clusters ‘ ‘/‘,
0:SS A1S2 @ ELK mPHX x S2A-

40f

N W
[==)

Time (seconds)

=
o

B. Example:k-means clustering

o

400000 600000 800000 1x10°

Number of Points

0 200000
The computational problem @ means clustering is used in

what follows to illustrate the concepts of CPs in the context
of a real problem, algorithms for solving the problem, and " ‘ 00 Clnstors
different implementations of these algorithms. The cohcep 0:SS a1S2 @ELK mPHX x
behindk-means clustering is straightforward: given a Bedf
points in ann-dimensional space, the problem is to group the
points into & groups such that the square error of distances
from points in any cluster to the centroid of the cluster is F05;
minimized. The description of the-means CP in terms of the 0.0
components of Definitiod is shown in Tabld. For any given
set of input points and output result, the only restrictionao
valid k-means algorithm is that it satisfies the CP definition
given in the table.

Several different algorithms exist for solving tliemeans
CP, including algorithms by MacQueerl?], Elkan [1§],
Hartigan and Wong19], as well as algorithms based on ideas
from principle component analysi(]. Figure 3 shows an 200f
abbreviated procedure call graph obtained from gpgif [0
profiling of one implementation of the MacQueénmeans
algorithm. The implementation in question is the setal
means clustering implementation from the test applicatioh
Phoenix MapReduce runtime system distributi@2][From gigure 4. Comparison of performance of single threaded Mae@keneans
Figure3, the computation in that implementation is dominatealgorithm inpHx, andss, the parallel versions is2a, ands2 and the single

; ; ; _ threaded Elkan algorithreLk. The execution time is plotted for up to 16k
by the routineget _sq_di st (), which computes the Eu oints for bothk = 20 clusters (a) and: = 200 clusters (c). To show the

clidean distance between two points (i.e., the 2-norm). TG@neral trend, for both cases the results are also plott¢d L points. The
CP definition for the Euclidean distance calculation is giveerror bars in the plots show the standard deviation acsdsslependent runs.

in Tablell, and provides an example of a sub-computational
problem which will likely occur in other applications. Theinput set sizesZ'° to 22°), and as a function of the number
quantitative survey presented in Sectidngives insight into of target clusters20 and 200 clusters). The measurements
what coarse- and fine-grained CPs occur in contemporargre taken on a dual-core 2.53GHz Intel Core i5 system,
applications. running MacOS 10.6.7. Two of the implementatiopsiX and
The potential opportunities for taking advantage of dédfar s<) are alternative serial implementations of the same (Mac-
algorithms and implementations thereof, is illustratedtfee Queen) algorithm. One implementatioBLK) implements the
k-means CP in Figurd. The figure plots the execution timealgorithm by Elkan, which attempts to reduce the number of
of five different k-means implementations, across a range @fnorm computations, previously shown to dominate compu-

(b) k-means variants, 20 target cluste23? to 220 points.

5000 10000 15000
Number of Points

(c) k-means variants, 200 target cluste2$) to 24 points.

1000F ‘ 200 Clusters ‘ T
8001 0:SS A!S2 @ ELK mPHX x:S24°

600} o
400}]

Time (seconds)

400000 600000 800000 1x10°

Number of Points

0 200000

(d) k-means variants, 200 target cluste28? to 220 points.

tation time in the call graph of Figurg Lastly, two parallel
OpenMP implementations of the MacQueen algoritrsfA(

Table Il

APPLICATIONS FROM THESPEC CPU200@BND MIBENCH SUITES USED
IN STUDY OF CPS IN CONTEMPORARY APPLICATIONS

and s2) were evaluated, parallelized over two threads; th&enchmark

Domain Dominant
only difference between these two parallel implementation Computation
was the manner in which threads were synchronized. All fiv SPEC CPU2006
implementations were run with the same input sets, and tl 400.perlbenchiRrLE) Programming language Integer
analyses were replicated to enable calculation of the vegi® 401.bzip2 6zir2) Compression Integer
across timing runs. 403.gcc (GCC2K6) Compiler Integer

. 429.mcf MCF) Combinatorial optimization Integer

From Figure4, there is no single algorithm, or implemen- 445 gobmk ¢osmk) Artificial intelligence Integer
tation thereof, which isalwaysfastest. Comparing the three 456.hmmer gMMR) DNA pattern search Integer
458.sjeng $JENG Artificial intelligence Integer

different single-threaded implementatiomsi§, ss, andeLK)

L . 462.libquant
for k = 20 clusters,ss is significantly faster for22° input ibquantum (15Q)

Physics (quantum computing

Integer

. ; h . ' 464.h264ref (1264) Video compression Integer
points. For smaller input sizes, except ¥ input points, 471.omnetpp ¢mpF) Discrete event simulator Integer
PHX is faster. Fork = 200 clusters, for input sizes larger then 473-3star ASTr) Path finding __ Integer

18 is the fastest sinale threaded algorithm. f I 433.milc (viLc) Quantum chromodynamics Float
2°% ELK Is the fastest single threaded algorithm, for smalle 453 povray povray) Computer visualization Float

input sizesPHX and ss have similar performancess being 470.Iom (BMm) Computational fluid dynamic: Float
slightly faster. T\lﬁé:ﬁ:}:nxs $PX3) Speech recognition Float

The parallel implementations2A and s2 use two threads,

and for inputs with greater thaR'” points, they clearly JPEG encodespc) Image compression Integer
outperform all the serial implementations. For small datss s éﬁ}ﬁfagleggggég‘:l)me) g;;‘gg gr‘;r;ﬁ;ess'on :mggg
however, Fhe run time§ are in some cases worse than a sin¢ rijjndael decoderiind) Cryptography Integer
threaded implementation. For exampeix outperforms both Susan ¢us) Image processing Integer
s2a ands2 for k = 20 clusters an@'* points. Lame (AME) Audio compression Float

To extend analyses such as the above for thmeans
clustering problem to large real-world applications, iteis- Sg:;‘;e Apgi':;ar‘f" SL‘,’,‘ﬂﬁ
sential to identify which CPs dominate execution time and 7, — Compilation \ [- _ Application,
determine whether they can be expressed independent of t|"... ., e L Pr{omeeio s proiling |+ "% with
implemented algorithms; such an ability to be described as- o nlining) Identified
CP is an indicator of the potential availability of alterimat 4+ — [cPa]

algorithms that solve the same problem, as well as, najura
alternative implementations thereof. Sectith, which fol-
lows, presents the methodology used in the remainder of tl

CPB

Manual
Source

Code

article in performing such quantitative characterization

Inspection

Figure 5. Methodology used to identify computational prafdein appli-
cations. The applications were compiled and profiled, andréiselts from

To quantify the presence of well-defined CPs in real-worl‘&fc’ﬁ"”g together with manual code inspection were used ¢atifly the CPs.
applications that can be expressed independent of algwith
for their solution, a set of applications, from a diversegan
of domains, was studied.

IV. METHODOLOGY

B. CP identification

The quantification of the constituent CPs in applications
ultimately requires a manual analysis and understandirnigeof
source code of the applications involved. Since the apiiics

The applications used to study the occurrence of wekmployed in the study comprise, in some cases, hundreds of
defined algorithm-independent CPs in contemporary appiirousands of lines of code, a three-pronged approach was
cations were taken from the SPEC CPU200B3][and employed. First, the applications were profiled using gprof
MiBench [24] benchmark suites. The rationale for using wellto identify the top five subroutines in the execution time
known benchmark suites is that these suites have alredmgakdown. In some applications however, a majority of the
been pre-selected as being representative of contemporapplication was contained in a single function, reducing th
workloads in both the desktop / server market (SPEC) and thidlity of the identification of the top five functions in the
embedded / low-power computing market (MiBench). Singerevious gprof analysis step. In these cases, the appliati
some of the applications in the MiBench suite are bettarere profiled again, in a second step, using the OPrdli¢ [
regarded agernelsrather than full-fledged applications, onlyhardware-based profiling facility, to obtain execution &im
the larger applications from the MiBench suite were empioyepercentage breakdowns at the individual-program-stateme
The 21 applications employed, from the aforementioned tvemd loop-nest level. The subroutines identified in the first
suites, are listed in Tabl#l, along with indications of their two stages were then analyzed, in a third stage, by studying
general application domain and dominant type of arithmetibe source code. From code inspection, a description of the
(e.g., integer versus floating-point arithmetic). CP being solved, in the form described in Sectitin was

A. Application suite

oo -] categories listed in Tabl®/. The amount of effort required to
' 1 specify the CPs implemented in an application, indepenatent
] the algorithms for their solution, varies across the caiego
in Table IV. If these identified CPs are also intended to be
’ candidates for algorithmic replacement, it is desirablbaee
[well-defined boundaries within a program (e.g., proceguaes
i which such replacement may take place; this is also captared
. Benchmark) the construction of the four categories. Approximatelyf lo&l
Eig%e S. Perce?tagi];:‘ of executio(rjl time |analglfzfed g;rl_ gpiolfrcgm g&;ﬂ the applications fall in the two categories (categories d 3n
of the execution time of that application. aceBan=>" " which have such well-defined CP boundaries. For application
where multiple CPs occur within a single procedure (catggor
obtained, if possible. Figur illustrates the overall flow of 2), it may still be straightforward to divide such a single
the CP identification methodology employed in the remaindprocedure into multiple procedures, if necessary.
of this article.

8l

=]

[§

=]

4

o

2

Percentage of Execution Time
Covered by CP Analysis
o

JPGd
RIJNe
RIINd
Sus
LAME

A. CP category 1: single CP per procedure
V. QUANTITATIVE CHARACTERIZATION OF CPs The applications in this category are structured such that

The methodology described in Sectitvi was applied to each procedure solves an isolated sub-problem. With code
the applications listed previously in Tatlé. For the profiling inspection, these sub-problems can easily be identified as
steps, the applications were compiled with optimizatiogslaa well-defined CP. One example of an application in this
-Ql - g; higher levels of optimization were not employed, tg¢ategory is 433.milc. The top five procedures which dominate
ensure that the obtained gprof and OProfile profiles were éecution time, as well as most leaves of the call graph,
close correspondence with the structure of the originatceou implement an isolated CP, in this case a CP related to matrix
code, and that subroutines were not inlined. arithmetic. There is, for example, a procedure which per-

The second phase of the characterization (statement-lef@ms matrix-matrix multiplication, while another procee
analysis) was performed on a 1.6GHz Intel Atom D5i@erforms matrix addition.
running Linux kernel 2.6.35, with the OProfile hardware Applications in this category are typically implemented
performance counter kernel module. using a clear structure, and the algorithms have clear entry

) .)) and exit points—the procedure call and return.
In the third phase of profiling, the top five subroutines and

loop nests, identified in the previous two phases as domingt_— CP category 2: multiple CPs per procedure

ing execution time, were analyzed by manual source code T)
inspection. For each of the applications analyzed, Fidiire ngeral applications have compound pro_cedures Whlch.solve
lists the percentage of execution time covered by all thr8ultiple CPs consecutively. Other applications solve @lsin
phases of the analysis. Thus, for example, for the benchm#fR!I-defined CP in a procedure with significant regions of
400.perlbench, the region of source code identified forilgeta 2dditional glue logic, such as initialization of data stues, |
analysis in the third and final phase occupied 56% of tifile /O, and so on; in what follows, this additional glue logi
total execution time of the application. For several aggians 'S NOt considered part of the CP. In the applications befungi
(e.g., 470.lbm and Susan) up to 99% of the execution tinf this category however, it is still possible to identifyeoar
was covered by the three analysis phases. The smallesofracf0re isolated CPs in a given procedure. For example, in two of
of execution time covered occurred in the case of 403.gdR€ identified procedures in 464.h264ref, three CPs aredolv

where the analyzed source code only accounted for 33 o, G@Nsecutively: first a 2 dimensional discrete cosine ti@nsf
the total execution time. In general, when a large number 8f tyPe Il (2D DCT-1I) is performed on the data, followed by
subroutines contributed to the total execution time, thetfon & duantization of the result, and, finally, the computatién o
of total execution time consumed by the top five subroutind2€ 2D DCT-lII of the transformed and quantized data.
was lower, and the coverage percentage in such situations
was therefore also lower. In all, the fraction of source code- CP category 3: multiple procedures per single CP
analyzed for the complete set of applications covers 77 % ofIn this category, CPs are implemented by combinations
the aggregate execution time of the entire suite of apjticat of several procedures, making it difficult to identify the CP
The degree of difficulty of manual inspection of source codsolved by a single procedure. For example, in 429.mcf, s¢ver
to identify CPs depends on the structuring of the applicati@f its procedures do not solve well-defined CPs. However,
in question, and on programming style. In some caseswhen looking at multiple procedures, it becomes apparexif th
was relatively straightforward to identify the computaié together, they solve aninimum-cost network floyaroblem
problem being solved, independent of the specific algorith(asing anetwork simplexalgorithm).
implemented in the source; in a few cases, however, neitieert Similar to category 1, applications in category 3 have
algorithm nor the computational problem solved were easifPs that have well-defined boundaries in the application’s
determined. structure, but in this case with multiple procedures per CP.
Based on properties of both the source code and thbus, a single procedure can still serve as the entry and exit
executed binaries, the applications can be divided intdahe point of a CP.

Table IV
CATEGORIZATION OF APPLICATIONS BASED ON THE PROGRAM STRUCTRE AND TYPE OF COMPUTATIONAL PROBLEMS SOLVEDCATEGORIES2 AND 3
BOTH CONTAIN 401BZIP2, AS THE COMPRESSION AND DECOMPRESSION PARTS OF THE SOURCE DBRE SIGNIFICANTLY DIFFERENT IN STRUCTURE

Category 1 Category 2 Category 3 Category 4
(Single CP per Procedure) (Multiple CPs per Procedure) f{{plal Procedures per Single CP) (Algorithm-Specific or CalrBfominated CPs:
Little or No Algorithmic Choicg

433.milc 401.bzip2 400.perlbench 403.gcc
453.povray 464.h264ref 401.bzip2 445.gobmk
456.hmmer Lame 429.mcf 458.sjeng
470.lbm Susan 473.astar 462.libquantum
483.sphinx3 471.omnetpp
JPEG encode Rijndael encode
JPEG decode Rijndael decode

D. CP category 4: algorithm-specific or control-dominated

There are multiple applications which have procedures for Matrix Operations [FindViterbi Path _

. . g . . . N Sum of Abs. Diff.
which it is difficult to identify the problem being solved win. + max. search : \ 7 Mahalanobis bist
(in terms of Definitionl), but which are also not part of a et~ g8 | 72/, of DCT, DFT,
. . . B p, | 3 an xrorm

larger, well-defined CP; such applications account for abou search —._(= | / 46 X

\ K \\\

|

a third of the applications studied. Mostly, these procedur Sort \
are program-specific and have an irregular control-dorathat Partial ixr‘e\
structure. For these procedures, it is expected that theere i regex ‘ \
not much (if any) algorithmic choice. Applications such as ‘\ ‘

458.sjeng fit in this category: its procedures are control- ’
dominated and specific to the semantics of a chess-playing \ y y

\\
\ - ~
engine. \ L y
\\\ 60.6 // '

E. Insights from categorization o
— L Other CPs /
Figure7 shows the instruction mix (branches, loads, stores, Control/

Unknown

float?ng-poi_nt, and other inStrUCt_ion_typeS) i_n th_e appl'maas Figure 8. Percentages of total execution time of the completeo$
studied. It is observed that applications falling in thetfivgo applications covered by the identified computational proisle

categories of Tablé/ also typically have below-average frac-

tions of branch instructions, while applications in catég® 3

and 4 have above-average fractions of branches. For cgtegerticular importance, based on the information in Table

4, this indeed indicates that the respective applicatioes &Uch CPS can be relatively easily identified, as they are em-
control-dominated, as was observed from manual source c&fslied either in well-defined code regions such as subresitin
inspection. As the CPs identified in category 3 are large aRf collections thereof. Sectiol-F, which follows, details
more complex, they were, as a result, naturally split acro¥ Specific CPs identified, and provides quantitative aisly
multiple procedures; it is thus also not surprising thatythef the fraction of the total and per-application run-times
have more branch / control instructions. dominated by the identified CPs. As will be demonstrated, the

There are, however, two exceptions. The JPEG encod@gntified CPs occupy a large enough fraction of execution
and decoder Jpc and Jpad), from Figure 7, have above- time to make it worthwhile to find alternative algorithms for

average fractions of control instructions, but are clasgifn their solution.

category 1. The higher fraction of control instructions st

case is expected to be related to the Huffman coding Stgpldentified CPs and their frequencies of occurrence

in JPEG. Similarly, for the Rijndael encoding and decoding Table V lists 16 of the CPs identified during the process

applications RIJNe and RIJNd), there is a below-averageof manual code inspection. Listed with each CP are the

fraction of control instructions, even though the applma$ applications in which it occurs, the CP’s duration of examut

are classified in category 4. In this case, their classificatiand the percentage of the per-application execution titkenta

in category 4 is not because of control-dominance, but ratigy the CP. In Tablev, all CPs related to matrix arithmetic

because the application is essentially defined by the éfgori are grouped under a “Matrix Operations” CP for brevity of

that it implements. It is thus meaningless to define a G¥position, even though, e.g., matrix multiplication, mat

for Rijndael encode or decode independent of the Rijndaaddition, etc., are indeed distinct CPs.

algorithm, unless, e.g., the CP definition is instead defined Figures8 and9 show the fraction of execution time covered

terms of a data encryption problem, with constraints on,, e.tpy the identified CPs in the complete set of applications, and

some measure of cryptographic strength. the MiBench subset, respectively. The DCT, DFT, and move-
Overall, approximately two-thirds of the applicationsdstu to-front transform are condensed in one slice for clarity of

ied fall into categories 1-3, and could potentially benefihe figure. In total, the small set of 16 identified CPs covers

from alternative algorithms for solving the identified CR¥. approximately 39 % of total execution time of all applicato

100

@
S

60
40

20

Figure 7.

PRLB BZP2 GCC2K6 MCF GOBMK HMMR SJENG LIBQ

Table V

H264 OMPP ASTR

COMPUTATIONAL PROBLEMS IDENTIFIED IN THE SET OF APPLICATIOI$
FROM THE SPEC CPU200@ND MIBENCH BENCHMARK SUITES

MILC POVRAY LBM

Computational Problem Application Execution % of
Time (s) Application
RegEx 400.perlbench 1065 49.0
Sorting 401.bzip2 2006 64.7
429.mcf 43 2.0
445.gobmk 20 0.9
Partial Sorting 453.povray 18 11
471.omnetpp 450 24.4
Move-To-Front Transform 401.bzip2 313 10.1
Search 403.gcc 122 8.1
429.mcf 46 2.2
445.gobmk 94 4.1
473.astar 445 20.6
Maximizing Search 458.sjeng 131 4.7
482.sphinx3 65 14
Minimizing Search 464.h264ref 374 9.5
Minimum-Cost Network Flow 429.mcf 1776 83.8
Matrix Operations 433.milc 1576 63.5
470.lbm 2339 62.3
Finding Viterbi Path 456.hmmer 3189 96.1
482.sphinx3 61 1.3
Sum of Absolute Differences 464.h264ref 1307 33.3
DCT-II 464.h264ref 25 0.7
JPEG encode 0.008 11.2
DCT-III 464.h264ref 21 0.5
JPEG decode 0.003 12.3
DCT-IV Lame 0.155 10.0
DFT 482.sphinx3 58 1.3
Lame 0.327 21.2
Mahalanobis Distance 482.sphinx3 2071 45.2
/r—\\‘
DFT V/ i \

11.¢ PR s

DCT-II, / \

DCT-III, i \

and DCT-IV ‘

‘ \
\ |
\ \\ / 82.1
SN Other CPs /
\ Control /
N Unknown
Q

Figure 9.

Percentages of total execution time of the MiBendbsst of

applications covered by the identified computational pnoisle

u Branch
m Load
= Store
r Float
- Other

SPX3 JPGe JPGd RIJNe RIIJNd

ESS]

LAME Arith.

Mean

Instruction mix breakdown. Applications from eamigy 4 in TablelV generally also have high fractions of control instructions

~DCT-IV

10. /\ \
]

68.€
Other CPs
Control /

Unknown

DFT—

Sorting

Other CPs/ |
Control / —

Unknown o '
Search—"“_ /,/ \ :

(a) 429.mcf (b) Lame
/,,*Z,SA\D\ - _[M. Distance
332z AT
' N DCT-Il/ /[\
Min.
Search

Viterbi |

\
< \

ax. / | —DFT
S’\élarch \) /
\ 4 ‘
\
. r CPs /

Unknown

(c) 464.h264ref (d) 482.sphinx3
Per application breakdown of the execution timedeftified

/,,,\\%i It [o
\‘ \

~ ' cControl/
Unknown

Figure 10.
CPs.

of execution time, while (partial) sorting accounts for eagt
5.6 % of the total runtime, making (partial) sorting one of th
most important CPs.

In terms of execution time, CPs related to matrix arithmetic
and the computational problem of finding the Viterbi path
account for the largest fractions, at 8.3% and 7.3 %, of the
aggregate execution time of the set of applications. Both
problems, however, appear only in two applications each and
are responsible for a large amount of run time in only a
restricted set of applications.

Regular expression matching, the move-to-front transform
finding the minimum-cost network flow, the sum of absolute
differences, and the Mahalanobis distance only occur iglesin
applications. While these CPs might seem to be of less iriferes
they, individually, can still account for up to 4% of the tota
execution time of applications. However, we can still eioris
them to be common to many applications. A straightforward
example is regular expressions matching. This CP is not lim-
ited to 400.perlbench, but is also used in, for example, ow
packet analysis. The move-to-front transform can be agipléec
to multiple compression algorithms; similar arguments ban

Partial and full sorting of data, minimizing and maximizingnade for the other CPs.
search, and Fourier-related transforms (DCT and DFT) ae th Figure 10 shows the breakdown of identified CPs in four
most common CPs across the suite in terms of the numberobfthe applications with respect to execution time of just
applications they can be found in, appearing in 5, 7, andtlsose applications. Across applications, the fractioniwfet
different applications respectively. Searching and thaerieo- for which CPs were identified is different. For example, for
related transforms, however, only account for a small foact 429.mcf about 88 % of the execution time is covered by the

Table VI

identified CPs. On the other hand, for lame, only 31 % is cov-
ered. The other two examples, 464.h264ref and 482.sphinx3,

DOMAIN AND RANGE FOR THE CPS IDENTIFIED IN THE SET OF
APPLICATIONS.

are in between, with 44% and 49 % of the execution time
covered by the identified CPs.

The potential gain in performance from algorithmic choic
depends on the fraction of execution time for which CPs c¢ Range

RegEXx
Domain

A string s

A regular expression in the string
A modified strings

A Booleanb indicating a match

be identified. Applications with a high fraction of executio : : :
time covered by the CPs, can potentially gain more tharggmgigna”d Partial Sorting
applications with a low fraction. The unidentified fractson

A set of elementsS
A sorted set of element§

Range
of execution time in Figure 0, however, are not necessarily ’
non-candidates for algorithmic choice: there may still baren
potential CPs to be identified in the parts not covered L
manual code inspection. However, based on the insightedair

Move-To-Front Transform
Domain

Range

A string s
A string with the alphabet
A sequence of integerd/

Search

from the categorization, some applications have large amtsou Seard
omain

of glue logic (I/0, setting up data structures, etc.) or mayeh
highly control-dependent code, precluding their desiipin

Range

A set of elementsS
An elementt
An index: into the setS

terms of CPs.
Although there are thus obviously portions of the applice
tions investigated that will not gain from algorithmic cbej

Maximizing/Minimizing Search
Domain
Range

A set of elementsS
An index i into the setS

at least 39 % of the total execution time of the applicatians i Minimum-Cost Network Flow
covered by 16 well-defined CPs (which can be described DPomain

the context of Definitionl). For these CPs, there may exisi

algorithm variants that expose performance, power ditisipa

or energy-efficiency tradeoffs when compared across difiter Range

A flow network G (V, E)
A sources € V'

Asinkt eV

A list of capacitiesc (u, v)
A list of costsa (u, v)

A list of flows f (u,v)

implementations, or executed on different hardware achit
tures. TableVl gives the domain and range in the context of
Definition 1, for each of the 16 identified CPs. The domain

and ranges given in the table are specified informally, ar_Range

Matrix Operations
Domain

A matrix M
A matrix N
A matrix O

not in terms of actual sets (compared to, e.g., Tapl&@heir Finding Viterbi Path
formalization, as well as the complete specification of thelt ~ Domain

component of the CP—the relation—are items of ongoirwRange

A hidden Markov modelH
A sequence of observed outputs
A sequence of states’

work.
0 Sum of Absolute Differences

An array of integersD
An integers

Domain

VI. SUMMARY, DISCUSSION AND FUTURE DIRECTIONS ~ —12nge
. o o DCT-II, DCT-IIl, DCT-IV, DFT

This work presented a quantitative characterization of tt Domain

constituentcomputational problems (CPsh 21 real-world _Range

A set of time-domain samples
A set of frequency-domain samplés

Mahalanobis Distance
Domain

applications. CPs capture tlsemanticof computations (i.e.,
the problem solved), independent of specifadgorithms for
implementing those computations. The quantitative chare -
terization of the occurring CPs in contemporary appligaio Range

An n-dimensional vector:
An n-dimensional vectop
A covariance vecton

A distanced

provides insight into the potential f@gorithmic choice—the
substitution of one algorithm solving a given CP, by another
solving the same CP. The exploitation of algorithmic choice

is a potential path for gaining performance improvements their applications with CP definitions. Such annotatiorfs, i
future computing systems, in the same manner that clogRibedded in application binaries, could be used by future
frequency improvements from technology scaling provide@ystems to facilitate performance improvements of applica
at the height of the RISC era, and in the manner in whidiPns, without the need for re-compilation. A language such
core count is today the dominant means of computing systé the notation for computational problems (NCEg] [can be
performance gains. Despite the recent interest in algoiith Used for such purposes. The Appendix describes severat of th
choice as a means for improving performandd] [12], identified CPs in this work in NCP.
there has hitherto been no quantitative study of contennpora Applications having single CPs per procedure and multiple
workloads, to identify the occurring compute problems angrocedures per CP, are likely to be best suited for algoithm
candidates for algorithmic replacement; this article rdie® replacement, as the CPs have clear entry and exit points in
this deficiency. the code. These two categories cover approximately half of
It is conjectured that, if CPs can be identified even ithe applications analyzed in this article; on the other hand
existing legacy applications, then it will be reasonable tapplications having multiple CPs per procedure may require
expect implementers of new applications to be able to atmotaestructuring of the program to isolate the CPs. Algorithm-

Application

Binary Image Branch targets

with associated
CP definitions

Lookup of branch target, comparison of
target's CP definition (if any, and possibly
cached in CP D-cache) to alternative
implementation in CP A-cache

010
oLl <

Potentially-multiple FUs

per thread, or multiple
... cores, used to execute
CP code from CP-A$

- Other branch
targets

[o0] <
01

Cache of CP
definitions for
branch targets

v eo

Cache of code sections
implementing platform-specific
algorithms for solving a given CP

Figure 11. An example of a standard processor pipeline augtemith
cache structures to aid acceleration via algorithmic choice

(1]
(2]

(3]

(4]
(5]

(6]

specific CPs (such as Rijndael encode and decode) and control
dominated CPs (such as large portions of the Gcc compileﬁ]
constitute approximately 33 % of the execution time of the ap

plications studied, and are unlikely to be suited to aldonic

replacement. It was observed that, in general, application

(8]

which one or more well-defined CPs could be identified were

not control-dominated.

In the set of applications analyzed, 16 well-defined CP]
were identified, covering almost 40 % of the aggregate exe-
cution time of the complete set. Several of the CPs idenfip
fied (various variants of sorting, searching, and DCTs) were

common to up to four different applications. Of the identfie
CPs, one single class of CPs, matrix operations, accounfeg

for more than 8% of the aggregate execution time. The
aforementioned statistics are naturally dependent on phe a
plications in question; however, the broad diversity ofl+ea
world applications employed, and the sizes of the executiguz]
times of identified CPs, gives credence to the hypothesis tha

there is an opportunity for improving application performea

by algorithmic substitution. One direction of our ongoing
efforts is to quantify the actual speedups that can be aetijev(13!
by identifying multiple alternative algorithms for each CFfM]

in categories 1 through 3 of Tabl/, as well as multiple
alternative implementations, as illustrated for themeans

example in Sectiorll, and to evaluate these on a diversgs,

set of hardware platforms.

The architecture of one potential hardware direction is
illustrated in Figurell The system associates branch targetss]
with CP definitions, which must be defined in a machine-
readable format. During execution of the normal instructio
stream, if a branch target for which there is a CP definition in
the CP-definition cacheCP D-$), and for which one (or more) [17]

alternative implementations exist in the CP-implemeaotati

cache CP A-%), one such alternative implementation may1g]

be executed. This replacement may occur transparent to the

application, yielding the same semantic result as the malgi [19]
unmodified application. Key to the functioning of such a
system is a machine representation for CPs; we are curren

investigating alternative representations, includinglding
upon existing work in the research literature.

[

1

10

REFERENCES

D. A. Patterson, “Reduced instruction set compute@ymmunications
of the ACM vol. 28, pp. 8-21, 1985.

J. S. Emer and D. W. Clark, “A characterization of procesgerfor-
mance in the vax-11/780," iR5 years of the international symposia
on Computer architecture (selected papetS)CA '98, (New York, NY,
USA), pp. 274-283, ACM, 1998.

D. Bhandarkar and D. W. Clark, “Performance from arcHitee:
comparing a risc and a cisc with similar hardware organizdtion
Proceedings of the fourth international conference on Aettural
support for programming languages and operating systeh&°LOS-
IV, (New York, NY, USA), pp. 310-319, ACM, 1991.

S. Borkar and A. A. Chien, “The future of microprocessbiGommu-
nications of the ACMvol. 54, no. 5, 2011.

G. M. Amdabhl, “Validity of the single processor approa@hachieving
large scale computing capabilities,” Proceedings of the April 18-20,
1967, spring joint computer conferend&-1PS '67 (Spring), (New York,
NY, USA), pp. 483-485, ACM, 1967.

P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A.r@&so,
“Performance of database workloads on shared-memory systetins wi
out-of-order processors,” ifProceedings of the eighth international
conference on Architectural support for programming laages and
operating systemaASPLOS-VIII, (New York, NY, USA), pp. 307-318,
ACM, 1998.

M. A. Postiff, D. A. Greene, G. S. Tyson, and T. N. Mudge,h&"
limits of instruction level parallelism in spec95 applicats,” SIGARCH
Comput. Archit. Newsvol. 27, pp. 31-34, March 1999.

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. théumls,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. Wil\fins, and
K. A. Yelick, “The landscape of parallel computing researghview
from Berkeley,” Technical Report No. UCS/EECS-2006-18ECS
Department, University of California, Berkeley, 2006.

K. Keutzer and T. Mattson, “A design pattern language dogineering
(parallel) software,Intel Technology Journalvol. 13, no. 4, pp. 6-18,
2009.

V. Caparbs Cabezas and P. Stanley-Marbell, “Quantitative analysis
parallelism and data movement properties across the bergetaputa-
tional motifs,” in Proceedings of the 8th ACM international conference
on Computing Frontiers2011.

J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, Aelidan, and
S. Amarasinghe, “Petabricks: a language and compiler forrigthgoic
choice,” in Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementati®h.DI '09, (New
York, NY, USA), pp. 38-49, ACM, 2009.

J. R. Wernsing and G. Stitt, “Elastic computing: A frameldor
transparent, portable and adaptive multi-core heterogeneamputing,”
in Proceedings of the 2010 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers and Tools for Embedded Systpmsl15-124,
2010.

M. Frigo, “A fast fourier transform compilerSIGPLAN Noticesvol. 39,
no. 4, 1999.

M. Puschel, J. M. F. Moura, J. R. Johnson, D. Padua, M. M. Veloso,
B. W. Singer, J. Xiong, F. Franchetti, A. Ga, Y. Voronenko, K. Chen,
R. W. Johnson, and N. Rizzolo, “SPIRAL: Code Generation f&PD
Transforms,Proceedings of the IEE®oOI. 93, no. 2, pp. 232-273, 2005.
R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikdv,C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Undansting
sources of inefficiency in general-purpose chips,Pioceedings of the
37th ACM International Symposium on Computer Architect@ge0.

G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. 8irnykl. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation corelucing
the energy of mature computations,” Rroceedings of the 15th ACM
International Conference on Architectural Support for §ramming
Languages and Operating Systemp. 205-218, 2010.

J. B. MacQueen, “Some methods for classification and arsatyf mul-
tivariate observations,” ifProceedings of the 5th Berkeley Symposium
on Math, Statistics and Probabilityl 967.

C. Elkan, “Using the triangle inequality to accelerdtemeans,” in
Proceedings of the 20th International Conference on Maehiearning
pp. 147-153, 2003.

J. A. Hartigan and M. A. Wong, “A k-means clustering aligfom,”
Journal of the Royal Statistical Society: Series C (Appl@dltistics)
vol. 28, no. 1, 1979.

C. Ding and X. He, “K-means clustering via principal compat anal-
ysis,” in Proceedings of the 21st International Conference on Maehin
Learning 2004.

[21] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof: @lgraph
execution profiler,” inProceedings of the 1982 SIGPLAN Symposium on

11

Compiler construction1982. Listing 2. DCT-II CP from, for example, JPEG encode.
[22] C. Ranger, A. Raghuraman, A. Penmetsa, G. Bradski, ancd@yrikis, #define Pl 3.141592
“Evaluating mapreduce for multi-core and multiprocessoreyst” in fun cos(x : real <32>) real <32>
Proceedings of the 13th International Symposium on HigtieP@ance
Computer Architecture2007. donain ::)]
[23] J. L. Henning, “SPEC CPU2006 benchmark descriptio@gmputer x : real<32>[8,8] //time domain sanples
Architecture Newsvol. 34, no. 4, 2006. r;"_ge oal <3258 81 //f donai |
[24] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,Mudge, rel étirgi - (e 8l req domain sanpl es
and R. B. Brown, “Mibench: A free, commercially representatam- Y : real<32>[8,8] // intermediate transform
bedded benchmark suite,” Proceedings of the 4th IEEE International k,I : int<32> = <0 to 7>

Workshop on Workload CharacterizatioO01.

W. E. Cohen, “Tuning programs with oprofilefWide Open Magazine
2004. Premier issue.

R. Jongerius and P. Stanley-Marbell, “Language dédinifor a notation
of computational problems,” rz 3828, IBM Research, 2012.

[25]

[26]

APPENDIX
IDENTIFIED CPs DESCRIBED INNCP

A notation for computational problems (NCP) is introduced

n: int<32> =<0 to 7>

exists Y, X {

forall I, k {
Y[1,k] == sumn { (x[I,n]
* cos(Pl / 8 * (n + 0.5) * k)) }
} and
forall I, k {
X1,k] == sumn { (Y[n,K]

* cos(Pl / 8 * (n+ 0.5) = 1)) }

}
Yo

by Jongerius et al.Z6] and can be used to describe computa-
tional problems in terms of their input, output, and thetieta
between these two. Most of the CPs identified in this work we
described in the NCP language and are listed here.

Most descriptions try to match the implementation of thgsting 3. DCT-l CP as it can be found in, for example, 46BHef.
algorithm in the benchmarks as closely as possible. However,q.tine p 3. 141592

not all side-effects of an actual implementation—which migh fun cos(x : real <32>) : real <32>
have no relation to the algorithm itself—are captured. domain - -
N : int<32> I'1# sanpl es
x : real <32>[N,N] //tine donain sanples
Listing 1. Matrix multiplication from 433.milc or 40.lbm. range ::)
X : real <32>[N,N] //frequency domain sanpl es
typedef relation ::
conplex : struct { Y : real <32>[N,N| //internediate transform
r: real <64> k.l : int<32> = <0 to N-1>
}' © real <64> n:oint<32> = <1 to N-1>
donain ::

A : conpl ex[3, 3]

B : conpl ex[3, 3]

range ::

C : conplex[3, 3]

relation ::

n,mk : int<32> =<0 to 2>
fun real _conplex_mul (a,b : real <64> ::=
a.r = b.r - a.i * b.i ;

fun inmag_conplex_mul (a, b :

conpl ex) :

conpl ex) : real <64> ::=

exists Y, X {

forall I, k {

Y[I,k] == 0.5 = x[1,0]

+ sumn { (x[l,n] * cos(Pl / Nx (k + 0.5) » n)) }
} and

forall I, k {

X[I,k] == 0.5 = Y[0, k]

+ sumn { (Y[n,k] * cos(Pl / Nx (I +0.5) » n)) }

Yo

a.r *» b.i +ai * b.r;

exists C{ forall n,m{

dn,n.r == sumk { real _conplex_mul (Al n, k], B[k,nl) }
and

dn,n.i == sumk { img_conplex_mul (Al n, k], B[k,nl) }

Pl

Listing 4. DCT-IV CP as it appears in Lame.

#define Pl 3.141592
fun cos(x : real <32>) real <32>
donmmin ::
N : int<32>
X @ real<32>[N //time domain sanples
range ::
X : real <32>[N] //frequency donmin sanples
relation ::
k : int<32> = <0 to N-1>
n: int<32> =<0 to N1>
exists X {
forall k {
X[k] == sumn { (x[n] * cos((PI / N

* (n +0.5) * (k +0.5))) }
}
Y

12

Listing 5. DFT CP from Lame or 482.sphinx3.

#define Pl 3.141592 Listing 8. Minimizing search from 464.h264ref.
fun cos(x : real <32>) : real <32> P
fun sin(x : real <32>) : real <32> dﬁ,@' |nnt <32>
. bl ock_sad : int<32>[N|

typedef :: M: int<32>

conpl ex : struct { range

r rea: zgg; m n_nctost : int<32>

Ioorea best_pos : int<32> = <0 to N-1>
di)main" relation ::

N int<32> pos : int<32> = <0 to N-1>

x : conmplex[N] //time domain sanples exists best_pos, nin_ncost {
range " . bl ock_sad[best _pos] == nmi n_ntost and
X : conplex[N //frequency domai n sanpl es mn_ncost == mn for pos { bl ock_sad[pos] }
relation :: ¥ - =

k @ int<32> = <0 to N-1>
n: int<32> = <0 to N-1>
exp_res : conplex[N, N

fun real _conplex_nul (a,b : conplex) : real<32> ::=
a.r » b.r - ai * b.i ;
fun inmag_conplex_mul (a,b : conplex) : real<32> ::=
a.r = b.i +a.i * b.r ;
Listing 9. Sum of absolute differences CP from 464.h264ref.

exists X, exp_res {

forall k, n { fun absi(x : int<32>) : int<32>
exp_res[k, n].r == cos(-2 * Pl * n* k/ N and
exp_res[k, n].i ==sin(-2 * Pl * n* k/ N) donamin ::
} and N : int<32>
forall k { diff @ int<32>[N
X[k].r == sumn { range ::
real _conpl ex_mul (x[n], exp_res[k, n]) sad : int<32>
} and relation ::
X[k].i == sumn { n: int<32> =<0 to N1>
i mag_conpl ex_mul (x[n], exp_res[k, n]) exists sad { sad == sumn { absi(diff[n]) } }
}
}

Listing 6. CP to calculate the Mahalanobis distance as fon@®2.sphinx3. Listing 10. Search CP as it can be found in various benchmarks.

fun sqrti(x : int<32>) : int<32> domain ::
N @ int<32>

domain :: elenent_bits : int<32>[N
N : int<32> range ::

X 1 int<32>[N //multivariate vector found : bool <1>

m o oint<32>[N| /I means relation ::

S : int<32>[N N //covariance matrix n: int<32> =<0 to N-1>
range :: .

d: int<32> /1 di stance exists found {
relation :: found == exists n { elenent_bits[n] == 0}
n,m: int<32> =<0 to N-1> I

T : int<32>[N !/ tenporary

exists d, T {

forall m{

T[m == sumn { (x[n] - m[n]) « S[n,n }

} and

d==sqgrti(summ{ T[m » (X[n] - mu[n]) })
i Listing 11. Sorting CP as found in 445.gobmk.

typedef
t_nmoves : struct {
score : int<32>
. A . pos : int<32>
Listing 7. Maximizing search CP from, for example, 458.sjeng. }
i donmin ::
donain :: !
N : int<32> _N._lnt<32>
nove_ordering : int<32>N| in: t_moves[N
range :: range ::
marker : int<32> = <0 to N-1> rglu;ti.o;_@veS[M
relation :: i A
i © int<32> = <0 to N-1> n: int<32> =<0 to N2>
©int<32>)
pest s exists out { forall n { out[n].score <= out[n+l].score }
exi sts marker, best { nove ordering[marker] == best and out >=<in} ;

and best == max for i { nove_ordering[i] } } ;

13

Listing 12. Minimum-cost network flow CP from 429.mcf.

typedef
MCF_arc : struct {
tail : int<32> /lindex of tail node
head : int<32> //index of head node
cost : real <64> //cost of arc
upper : real <64> /1l ow upper bound of arc
| ower : real <64> /1flow | ower bound of arc

}
MCF_node : struct {

bal ance : real <64> /1 Suppl y/ demand of the node
}
MCF_network : struct {
N : int<32> /1 Nunber of nodes
M: int<32> // Nunber of arcs
nodes : MCF_node[N| //input nodes
arcs : MCF_arc[M /linput arcs
}
donamin ::
network : MCF_networ k
range ::
feasible : bool <1> /1Primal feasible indicator, if the network is infeasible (and there is thus no satisfying

flow optcost) this is set to false
flow : real <64>[network.M //flow from MCF_arc

optcost : real <64> // cost from MCF_networ k
relation ::

i 1 int<32> = <0 to network.N 1>

k : int<32> = <0 to network.M 1>

a : int<32>

/1 Fl ow conservation constraint:
fun flow conservation(flow : real <64>[network.M) : bool<1> ::= forall i { network.nodes[i].balance == sumk with
network.arcs[k].head == i { flowk] } - sumk with network.arcs[k].tail ==1i { flowk] } } ;

/1 Fl ow capaci ties:
fun flow capacities(flow : real <64>[network.M) : bool<1> ::= forall k { network.arcs[k].lower <= flow k] and flow k]
<= network. arcs[k] . upper } ;

/| Obj ective function
exists feasible { feasible == exists optcost { optcost == min for flowwi th flow conservation(flow) and flow capacities
(flow { sumk { network.arcs[k].cost = flowk] } } } } ;

Listing 13. CP for finding the Viterbi path as used in 456.hmmeA&2.sphinx3.

donain ::
N : int<32> /I Nunber of states (excluding start=0/end=N+1 states)
M: int<32> /I Nunmber of observations (excluding start/end states
a : int<32>[N+2, N+2] //State transition probability matrix (including transitions fromto start/end states)
X : int<32>[M /| Cbservati ons
p @ int<32>[N+2, N+2] /1 Emission probabilities, p[i,k] = P(Xi | Yk)
range ::
y o int<32>[M+2] //Likely sequence of states, including start/end states
relation ::
P : int<32>] Mt2] /'1Li kel yhood of likely states, including start/end states
m: int<32> <l to Mtl>

I : int<32> = <1 to N+1>

exists y { exists P { exists m{

y[0] == 0 and /I First sequence is always start=0 state
P[0] == 1 and /lLi kel yhood to start in the start state = 1
Plm == p[x[nl,y[mM] * aly[m1],y[nm] * P[m1] and

P[mM == nmax for | { p[x[m,I] » a[y[m1],1] = P[m1] }

}

P

	tech_iiswc_2011b.pdf
	Introduction
	Related Work
	Computational Problems
	Computational problems versus algorithms
	Example: k-means clustering

	Methodology
	Application suite
	CP identification

	Quantitative Characterization of CPs
	CP category 1: single CP per procedure
	CP category 2: multiple CPs per procedure
	CP category 3: multiple procedures per single CP
	CP category 4: algorithm-specific or control-dominated
	Insights from categorization
	Identified CPs and their frequencies of occurrence

	Summary, Discussion, and Future Directions
	References
	Appendix: Identified CPs described in NCP

