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Abstract—The workloads of computing systems have tradition-
ally been characterized in terms of the behavior ofalgorithms
and their embodiments in applications, executing on a variety of
hardware architectures. Algorithms are however only ameansto
the end goal of the solution ofcomputational problems. A quanti-
tative characterization of the constituent computational problems
in contemporary applications is thus of great interest, given the
recent advent of programming languages and system software
platforms which enable performance and energy-efficiency trade-
offs through the exploitation of algorithmic alternativesfor a given
compute problem.

This article quantifies the potential for the exploitation of
algorithmic choice as a means by which applications may
gain performance improvements in return for architectural or
programmer investment. This argument is made through the
quantitative characterization of the dominant computational
problems contained in a suite of 21 applications, representative
of a diverse collection of general-purpose real-world software.
It is demonstrated that almost 40 % of the aggregate execution
time of the applications studied is spent in a set of 16 prob-
lems that can be defined in terms of notation for describing
computational problems independent of algorithms for their
solution. The properties of compute problems which would make
them amenable to representation in the proposed notation are
discussed, and quantified through hardware performance counter
measurements. Based on the insights obtained from the work
presented, a tentative hardware microarchitecture for exploiting
algorithmic choice is introduced.

I. I NTRODUCTION

Over the last four decades, computing systems have wit-
nessed performance growth through a variety ofperformance
growth vehicles. Performance increases in many of the earliest
computing systems were achieved through the use of suc-
cessively more complex instruction set architectures, with the
goal of pushing more work into hardware; these architectures
were ultimately limited by the difficulty of compiling general-
purpose applications to target complex hardware [1], [2], [3]

As an alternative to complex instruction set computing
(CISC) platforms, reduced instruction set computing (RISC)

* Work performed while at IBM Research—Zürich, R̈uschlikon, Switzerland

systems eschewed the hardware implementation complexity
and instruction non-uniformity of CISC architectures for a
strategy of simplified hardware, easier targeting of compilers,
and the possibility of higher clock frequencies facilitated
by the reduced cycle time of (pipelined) simplified hard-
ware [1]. Coupled with semiconductor process technology
scaling and improvements in clock frequencies, the RISC
revolution pushed performance further through the following
two decades. In the last few years however, due to the inability
to cope with the increases in power dissipation and challenges
of heat removal associated with ever-higher clock frequencies,
there has been a move towards obtaining performance through
parallelism [4]. During each of the aforementioned phases of
evolution of computing systems, the respective performance
growth vehicles were viewed as the “one true” solution, only
to be replaced, often disruptively, by a different approachwhen
the erstwhile growth vehicle could no longer scale.

Performance scaling through parallelism, the current growth
vehicle, also has its limits. Scaling through parallelism is
typically classified asstrong scaling, if performance gains
are achieved when problem sizes remain fixed as hardware
concurrency is increased. In contrast, the termweak scaling
is used to refer to the situation when increases in hardware
concurrency alone might yield little performance gains, but
where data-level parallelism can be exploited in making prob-
lem sizes larger as hardware concurrency is increased. Strong
scaling will ultimately be limited by Amdahl’s law [5] and by
the amount of parallelism available in application code, while
weak scaling will be constrained by the data-level parallelism
available in applications paired with input datasets.

All of the aforementioned performance vehicles—complex
hardware or hardware acceleration, clock speed growth, and
parallelism—have the same fundamental goal: making (fixed)
algorithms execute faster. In principle, however, computing
devices are intended to solvecomputational problems, which
are conceptually separate from specific algorithms or im-
plementations thereof in applications. Thus, in principle, if
the semantics of computational problems can be exposed to
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hardware, to the operating system, or to language runtimes,
algorithmic choicecould be made a vehicle for performance
growth. For example, for the computational problem of sorting
a collection of items in lexicographic order, the algorithmor
implementation thereof that achieves best performance (or, say,
energy-efficiency) will depend on the type of elements, the
number of elements, as well as the target execution archi-
tecture. If the computational problem could be specified in a
machine-readable form, in much the same way computational
algorithms are specified in (assembly) machine language, a
choice of algorithms (or the development of new algorithms)
could be used as a new growth vehicle for performance beyond
parallelism.

This work addresses two important questions pertaining to
the potential of algorithmic choice for computational problems
to serve as a future vehicle for performance growth. First,
the types of applications which lend themselves to separation
of their constituent problem definitions from algorithms for
their solution, are studied. Second, the feasibility of identifying
well-defined computational problems, occupying a significant
portion of execution time in existing complex software ap-
plications, is studied. It is conjectured that, if such well-
defined components can be identified even inexistingsoftware,
and if these components are amenable to being described
independent of algorithms for their solution, then providing
problem descriptionfacilities to implementers ofnewsoftware
is likely to be of benefit. Problem descriptions added as
annotation to source code or inserted into existing binaries
could then be used to facilitate hardware- or system-software-
driven algorithmic choice.

Following the discussion of relevant related work in Sec-
tion II , Section III introduces the notion of computational
problems independent of specific algorithmic implementations,
by means of an example. The methodology used to iden-
tify such algorithm-independent computational problems in
applications is introduced in SectionIV, along with a set
of 21 applications which are used to motivate the study of
algorithmic choice as a performance growth vehicle. Section V
presents and discusses the results of the identification of
the dominant algorithm-independent compute problems in the
corpus of applications. SectionVI summarizes the paper and
discusses a tentative architecture for exploiting algorithmic
choice as a performance growth vehicle.

II. RELATED WORK

Workload characterization has traditionally involved ana-
lyzing the properties of compiled applications, paired with
their input datasets, executing on real hardware platforms
such as shared-memory multiprocessors [6] or simulated hard-
ware platforms such as microarchitectural simulators [7]. To
quantify the potential of algorithmic choice as a performance
growth vehicle, however, what is desired is an understanding
of the constituent compute problems (semantics) that occurin
contemporary applications.

Recognizing the potential for great differences in perfor-
mance from various implementations of the same algorithm,
the Berkeley computational motifs [8] are an attempt at a
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Figure 1. Summary of commonalities between four languages / runtime
systems to which the workload characterization presented inthis work is
relevant—PetaBricks, FFTW, SPIRAL, and Elastic Computing.

classification of applications based on the constituent numer-
ical methods of computational problems.Design patterns[9],
a refinement of the ideas of the Berkeley computational
motifs, are a proposed framework for software architecture,
comprising five categories of patterns which can be composed
to describe the architecture of an application. Both design
patterns and the Berkeley motifs move away from classifying
applications based on specific implementations, but however
provide neither a quantitative study of the constituent (or
common) computational problems occurring in applications,
nor a concrete description of the semantics of the problems
whose execution dominate runtime.

One recent attempt to put the dwarf classification on
a more quantitative footing analyzes instruction-level paral-
lelism (ILP) and thread-level parallelism (TLP) of applica-
tions which, based on their dwarf classification, belong to-
gether [10]. This approach, however, treats each application as
a black box, without quantifying whatcomputational problems
dominate the execution time for which ILP and TLP are
reported.

Having a quantitative analysis of the computational prob-
lems that are solved in a specific application enables reasoning
about the potential for the use of algorithmic replacement.
However, to enable a platform to benefit from algorithmic
choice requires a supporting framework. Recent examples
of such frameworks include PetaBricks [11], which offers a
programming language with the ability to specify multiple
execution paths to solve a single computational problem.
The PetaBricks autotuner performs a design space exploration
over these user-supplied implementations, using the resulting
information, at run time, to determine the best-performing
method to solve a problem of a particular size. In a similar
vein, the elastic computing framework [12], provides a library
containing multiple algorithms per computational problem,
permitting a programmer to call a function (by a statically-
defined name binding) to solve the statically-named problem.
The characterization presented in this article provides the
first quantitative analysis of the potential applicabilityof
frameworks such as these.

In contrast to the aforementioned general-purpose
programmer-driven frameworks, FFTW [13] is a domain-
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specific framework which tunes fast Fourier transform (FFT)
algorithms to a target platform. Similarly, the SPIRAL [14]
framework permits a programmer to specify a DSP linear
signal transform which is then optimized and converted into
code targeted to a given platform. Both FFTW and SPIRAL
are, however, domain-specific.

Figure1 illustrates the differences in the work performed by
a programmer, as opposed to the compiler or runtime system,
across the aforementioned frameworks. From an application
programmer’s perspective, it is considered worse if more
implementations have to be programmed as this incorporates
more work. For algorithmic choice, however, having more
more implementations available at compile- or run-time results
in a better tuning of problem implementation to the platform.

When dedicated ASICs are employed in solving computa-
tional problems, they often result in a significant improvement
in compute efficiency in comparison to general-purpose pro-
cessors [15], or in an improvement of the energy-efficiency
under power usage limits [16]. The characterization of the oc-
curring computational problems in contemporary applications
presented in this article provides a much needed quantitative
basis for the potential gains that can be achieved by all the
aforementioned compiler, runtime, and hardware techniques.

III. C OMPUTATIONAL PROBLEMS

In the remainder of this article, the termcomputational
problem (CP)will be used to refer to the semantic properties of
a computation, which determine what relation exists between
the inputs and outputs of the computation, as opposed tohow
that desired relation is achieved.

Definition 1. Computational Problem (CP). A computational
problem, CP(SD, SR, R) is a 3-tuple representing an input
setSD and output setSR, which are related by the relation
R. ♦

SD is the set of possible inputs of interest or thedomainand
SR is the set of possible valid outputs of interest (therange
or co-domain); the relationR definesboth what outputs are
considered valid, as well as the relation between one or more
of the inputs and a valid output. Intuitively, a CP specifies
what the inputs and outputs of a portion of an application
are, and what properties or invariants are satisfied by the
inputs paired with the outputs. For example, for the compute
problem of sorting a list of strings, the input set is a set of
strings; the output is a set of tuples of integers and strings, the
integers corresponding to the ordinal position of the strings
when lexicographically sorted.

In principle, a CP could be defined at any level of granu-
larity, from very fine-grained (e.g., the CP corresponding to
the sum of two integers), to very coarse-grained (e.g., the
CP corresponding to a whole application). In practice, CP
definitions are most meaningful when they correspond to a
non-trivial problem that can be expressed in the context of
Definition 1, in less space than it would take to give an
explicit algorithmic implementation. As will be quantifiedin
SectionV, the execution times of many real-world applications

Programmer-
Provided

Problem 

Specification

Algorithm 

Choice

Code 

Implementation

Mapping 

Strategy

Compiler 

Optimization

Representation

Computational Problem 

(CP) description

Pseudocode

Sourcecode

Target-specific 

sourcecode

Machine code

Computational Problem (CP)

Algorithm 0 Algorithm n

Implementation 0 Implementation m

Mapping 0 Mapping l

Optimization 0 Optimization k

Figure 2. Computational problems: a CP can be solved with one ormore
different algorithms, and for each algorithm, different implementations can be
created. Each implementation can then be mapped to different platforms and
compiled using different compiler optimizations.

are dominated by compute problems that have this property.
There are however also certain types of applications, or
sections thereof, that are a poor fit for description as CPs;
the characteristics of these outlier applications are quantified
in SectionV.

A. Computational problems versus algorithms

The collection of CPs that comprise an application deter-
minewhat the application does. However, the CPs themselves
do not imply the use of a specific algorithm, as the relation
between the inputs and outputs could be achieved by a variety
of algorithms (e.g., quicksort versus mergesort for the sorting
CP).

During the course of implementation of an application, a
programmer makes a variety of architectural choices before
the final binary is available for execution, as illustrated in
Figure 2. Multiple algorithms may exist for solving a given
CP; in implementing a given algorithm, there may likewise
exist several choices, e.g., for data structures. The source code
corresponding to a high-level language implementation canbe
customized (mapped) to different platforms or different subsets
of platforms (e.g., using architecture-specific intrinsics such as
vector-extensions), which leads to targeted source code. The
targeted source code can finally be compiled using several
different compiler optimizations.

Each of the decisions in the levels of the hierarchy below
the CP, shown in Figure2, do not inherently affect the
semantics of an application, but however often have significant
effects on performance or energy-efficiency. Understanding
the constituent CPs in applications, and even possibly having
a means of capturing these CP definitions in the same way
that binaries capture a codification of algorithms, may open
up future opportunities for runtime systems or hardware to
achieve improvements in compute performance without a need
for re-implementation or even re-compilation of applications.
The characterization of CPs in applications presented in this
article shows the potential opportunities for implementation of
such techniques.
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Table I
DESCRIPTION OF THEk-MEANS CP IN TERMS OF THE COMPONENTS

GIVEN IN DEFINITION 1—domain, range, AND relation.

Domain A set of points,P, and required number of clusters,k.
Range A clustering intok setsS = {S1, S2, ..., Sk}.
Relation argmin

S

∑k
i=1

∑

pj∈Si
||pj − µi||

2,

whereµi is the mean of points inSi.

Figure 3. Call graph of thek-means clustering application. Only procedures
relevant to thek-means clustering algorithm are shown. The numbers show
the percentage of execution time spent in a procedure and its children. For
example, themain() procedure accounts for 100 % of the run time, of which
94 % of the time is spent infind_clusters(), 5 % in calc_means()
and less then 1 % ingenerate_points().

B. Example:k-means clustering

The computational problem ofk-means clustering is used in
what follows to illustrate the concepts of CPs in the context
of a real problem, algorithms for solving the problem, and
different implementations of these algorithms. The concept
behindk-means clustering is straightforward: given a setP of
points in ann-dimensional space, the problem is to group the
points intok groups such that the square error of distances
from points in any cluster to the centroid of the cluster is
minimized. The description of thek-means CP in terms of the
components of Definition1 is shown in TableI. For any given
set of input points and output result, the only restriction on a
valid k-means algorithm is that it satisfies the CP definition
given in the table.

Several different algorithms exist for solving thek-means
CP, including algorithms by MacQueen [17], Elkan [18],
Hartigan and Wong [19], as well as algorithms based on ideas
from principle component analysis [20]. Figure 3 shows an
abbreviated procedure call graph obtained from gprof [21]
profiling of one implementation of the MacQueenk-means
algorithm. The implementation in question is the serialk-
means clustering implementation from the test applications of
Phoenix MapReduce runtime system distribution [22]. From
Figure3, the computation in that implementation is dominated
by the routineget_sq_dist(), which computes the Eu-
clidean distance between two points (i.e., the 2-norm). The
CP definition for the Euclidean distance calculation is given
in Table II , and provides an example of a sub-computational
problem which will likely occur in other applications. The
quantitative survey presented in SectionV gives insight into
what coarse- and fine-grained CPs occur in contemporary
applications.

The potential opportunities for taking advantage of different
algorithms and implementations thereof, is illustrated for the
k-means CP in Figure4. The figure plots the execution time
of five different k-means implementations, across a range of

Table II
DESCRIPTION OF THEEUCLIDEAN DISTANCE SUB-CP FROM k-MEANS

CLUSTERING.

Domain Two n-dimensional points,p andq.
Range A distance,d.

Relation d =
√

∑n
i=1

(qi − pi)
2.
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Figure 4. Comparison of performance of single threaded MacQueenk-means
algorithm inPHX, andSS, the parallel versions inS2A, andS2 and the single
threaded Elkan algorithmELK. The execution time is plotted for up to 16 k
points for bothk = 20 clusters (a) andk = 200 clusters (c). To show the
general trend, for both cases the results are also plotted upto 1 M points. The
error bars in the plots show the standard deviation across5 independent runs.

input set sizes (210 to 2
20), and as a function of the number

of target clusters (20 and 200 clusters). The measurements
were taken on a dual-core 2.53 GHz Intel Core i5 system,
running MacOS 10.6.7. Two of the implementations (PHX and
SS) are alternative serial implementations of the same (Mac-
Queen) algorithm. One implementation (ELK) implements the
algorithm by Elkan, which attempts to reduce the number of
2-norm computations, previously shown to dominate compu-
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tation time in the call graph of Figure3. Lastly, two parallel
OpenMP implementations of the MacQueen algorithm (S2A

and S2) were evaluated, parallelized over two threads; the
only difference between these two parallel implementations
was the manner in which threads were synchronized. All five
implementations were run with the same input sets, and the
analyses were replicated to enable calculation of the variances
across timing runs.

From Figure4, there is no single algorithm, or implemen-
tation thereof, which isalways fastest. Comparing the three
different single-threaded implementations (PHX, SS, andELK)
for k = 20 clusters,SS is significantly faster for220 input
points. For smaller input sizes, except for213 input points,
PHX is faster. Fork = 200 clusters, for input sizes larger then
2
18 ELK is the fastest single threaded algorithm, for smaller

input sizesPHX and SS have similar performance,SS being
slightly faster.

The parallel implementationsS2A and S2 use two threads,
and for inputs with greater than217 points, they clearly
outperform all the serial implementations. For small data sets
however, the run times are in some cases worse than a single-
threaded implementation. For example,PHX outperforms both
S2A and S2 for k = 20 clusters and214 points.

To extend analyses such as the above for thek-means
clustering problem to large real-world applications, it ises-
sential to identify which CPs dominate execution time and to
determine whether they can be expressed independent of their
implemented algorithms; such an ability to be described as a
CP is an indicator of the potential availability of alternative
algorithms that solve the same problem, as well as, naturally,
alternative implementations thereof. SectionIV, which fol-
lows, presents the methodology used in the remainder of this
article in performing such quantitative characterization.

IV. M ETHODOLOGY

To quantify the presence of well-defined CPs in real-world
applications that can be expressed independent of algorithms
for their solution, a set of applications, from a diverse range
of domains, was studied.

A. Application suite

The applications used to study the occurrence of well-
defined algorithm-independent CPs in contemporary appli-
cations were taken from the SPEC CPU2006 [23] and
MiBench [24] benchmark suites. The rationale for using well-
known benchmark suites is that these suites have already
been pre-selected as being representative of contemporary
workloads in both the desktop / server market (SPEC) and the
embedded / low-power computing market (MiBench). Since
some of the applications in the MiBench suite are better
regarded askernelsrather than full-fledged applications, only
the larger applications from the MiBench suite were employed.
The 21 applications employed, from the aforementioned two
suites, are listed in TableIII , along with indications of their
general application domain and dominant type of arithmetic
(e.g., integer versus floating-point arithmetic).

Table III
APPLICATIONS FROM THESPEC CPU2006AND M IBENCH SUITES USED

IN STUDY OF CPS IN CONTEMPORARY APPLICATIONS.

Benchmark Domain Dominant
Computation

SPEC CPU2006

400.perlbench (PRLB) Programming language Integer
401.bzip2 (BZIP2) Compression Integer
403.gcc (GCC2K6) Compiler Integer
429.mcf (MCF) Combinatorial optimization Integer
445.gobmk (GOBMK) Artificial intelligence Integer
456.hmmer (HMMR) DNA pattern search Integer
458.sjeng (SJENG) Artificial intelligence Integer
462.libquantum (LIBQ) Physics (quantum computing)Integer
464.h264ref (H264) Video compression Integer
471.omnetpp (OMPP) Discrete event simulator Integer
473.astar (ASTR) Path finding Integer
433.milc (MILC ) Quantum chromodynamics Float
453.povray (POVRAY) Computer visualization Float
470.lbm (LBM ) Computational fluid dynamicsFloat
482.sphinx3 (SPX3) Speech recognition Float
MiBench

JPEG encode (JPGe) Image compression Integer
JPEG decode (JPGd) Image compression Integer
Rijndael encode (RIJNe) Cryptography Integer
Rijndael decode (RIJNd) Cryptography Integer
Susan (SUS) Image processing Integer
Lame (LAME ) Audio compression Float

int

main(void)

{

   return 0;

}
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Figure 5. Methodology used to identify computational problems in appli-
cations. The applications were compiled and profiled, and theresults from
profiling together with manual code inspection were used to identify the CPs.

B. CP identification

The quantification of the constituent CPs in applications
ultimately requires a manual analysis and understanding ofthe
source code of the applications involved. Since the applications
employed in the study comprise, in some cases, hundreds of
thousands of lines of code, a three-pronged approach was
employed. First, the applications were profiled using gprof,
to identify the top five subroutines in the execution time
breakdown. In some applications however, a majority of the
application was contained in a single function, reducing the
utility of the identification of the top five functions in the
previous gprof analysis step. In these cases, the applications
were profiled again, in a second step, using the OProfile [25]
hardware-based profiling facility, to obtain execution time
percentage breakdowns at the individual-program-statement
and loop-nest level. The subroutines identified in the first
two stages were then analyzed, in a third stage, by studying
the source code. From code inspection, a description of the
CP being solved, in the form described in SectionIII , was
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Figure 6. Percentage of execution time analyzed per application on Atom
D510. For example, the source code analyzed for PRLB accountsfor 56 %
of the execution time of that application.

obtained, if possible. Figure5 illustrates the overall flow of
the CP identification methodology employed in the remainder
of this article.

V. QUANTITATIVE CHARACTERIZATION OF CPS

The methodology described in SectionIV was applied to
the applications listed previously in TableIII . For the profiling
steps, the applications were compiled with optimization flags
-O1 -g; higher levels of optimization were not employed, to
ensure that the obtained gprof and OProfile profiles were in
close correspondence with the structure of the original source
code, and that subroutines were not inlined.

The second phase of the characterization (statement-level
analysis) was performed on a 1.6 GHz Intel Atom D510,
running Linux kernel 2.6.35, with the OProfile hardware
performance counter kernel module.

In the third phase of profiling, the top five subroutines and
loop nests, identified in the previous two phases as dominat-
ing execution time, were analyzed by manual source code
inspection. For each of the applications analyzed, Figure6
lists the percentage of execution time covered by all three
phases of the analysis. Thus, for example, for the benchmark
400.perlbench, the region of source code identified for detailed
analysis in the third and final phase occupied 56% of the
total execution time of the application. For several applications
(e.g., 470.lbm and Susan) up to 99 % of the execution time
was covered by the three analysis phases. The smallest fraction
of execution time covered occurred in the case of 403.gcc,
where the analyzed source code only accounted for 33 % of
the total execution time. In general, when a large number of
subroutines contributed to the total execution time, the fraction
of total execution time consumed by the top five subroutines
was lower, and the coverage percentage in such situations
was therefore also lower. In all, the fraction of source code
analyzed for the complete set of applications covers 77 % of
the aggregate execution time of the entire suite of applications.

The degree of difficulty of manual inspection of source code
to identify CPs depends on the structuring of the application
in question, and on programming style. In some cases it
was relatively straightforward to identify the computational
problem being solved, independent of the specific algorithm
implemented in the source; in a few cases, however, neither the
algorithm nor the computational problem solved were easily
determined.

Based on properties of both the source code and the
executed binaries, the applications can be divided into thefour

categories listed in TableIV. The amount of effort required to
specify the CPs implemented in an application, independentof
the algorithms for their solution, varies across the categories
in Table IV. If these identified CPs are also intended to be
candidates for algorithmic replacement, it is desirable tohave
well-defined boundaries within a program (e.g., procedures) at
which such replacement may take place; this is also capturedin
the construction of the four categories. Approximately half of
the applications fall in the two categories (categories 1 and 3)
which have such well-defined CP boundaries. For applications
where multiple CPs occur within a single procedure (category
2), it may still be straightforward to divide such a single
procedure into multiple procedures, if necessary.

A. CP category 1: single CP per procedure

The applications in this category are structured such that
each procedure solves an isolated sub-problem. With code
inspection, these sub-problems can easily be identified as
a well-defined CP. One example of an application in this
category is 433.milc. The top five procedures which dominate
execution time, as well as most leaves of the call graph,
implement an isolated CP, in this case a CP related to matrix
arithmetic. There is, for example, a procedure which per-
forms matrix-matrix multiplication, while another procedure
performs matrix addition.

Applications in this category are typically implemented
using a clear structure, and the algorithms have clear entry
and exit points—the procedure call and return.

B. CP category 2: multiple CPs per procedure

Several applications have compound procedures which solve
multiple CPs consecutively. Other applications solve a single
well-defined CP in a procedure with significant regions of
additional glue logic, such as initialization of data structures,
file I/O, and so on; in what follows, this additional glue logic
is not considered part of the CP. In the applications belonging
to this category however, it is still possible to identify one or
more isolated CPs in a given procedure. For example, in two of
the identified procedures in 464.h264ref, three CPs are solved
consecutively: first a 2 dimensional discrete cosine transform
of type II (2D DCT-II) is performed on the data, followed by
a quantization of the result, and, finally, the computation of
the 2D DCT-III of the transformed and quantized data.

C. CP category 3: multiple procedures per single CP

In this category, CPs are implemented by combinations
of several procedures, making it difficult to identify the CP
solved by a single procedure. For example, in 429.mcf, several
of its procedures do not solve well-defined CPs. However,
when looking at multiple procedures, it becomes apparent that,
together, they solve aminimum-cost network flowproblem
(using anetwork simplexalgorithm).

Similar to category 1, applications in category 3 have
CPs that have well-defined boundaries in the application’s
structure, but in this case with multiple procedures per CP.
Thus, a single procedure can still serve as the entry and exit
point of a CP.
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Table IV
CATEGORIZATION OF APPLICATIONS BASED ON THE PROGRAM STRUCTURE AND TYPE OF COMPUTATIONAL PROBLEMS SOLVED. CATEGORIES2 AND 3
BOTH CONTAIN 401.BZIP2, AS THE COMPRESSION AND DECOMPRESSION PARTS OF THE SOURCE CODE ARE SIGNIFICANTLY DIFFERENT IN STRUCTURE.

Category 1 Category 2 Category 3 Category 4
(Single CP per Procedure) (Multiple CPs per Procedure) (Multiple Procedures per Single CP) (Algorithm-Specific or Control-Dominated CPs:

Little or No Algorithmic Choice)
433.milc 401.bzip2 400.perlbench 403.gcc
453.povray 464.h264ref 401.bzip2 445.gobmk
456.hmmer Lame 429.mcf 458.sjeng
470.lbm Susan 473.astar 462.libquantum
483.sphinx3 471.omnetpp
JPEG encode Rijndael encode
JPEG decode Rijndael decode

D. CP category 4: algorithm-specific or control-dominated

There are multiple applications which have procedures for
which it is difficult to identify the problem being solved
(in terms of Definition1), but which are also not part of a
larger, well-defined CP; such applications account for about
a third of the applications studied. Mostly, these procedures
are program-specific and have an irregular control-dominated
structure. For these procedures, it is expected that there is
not much (if any) algorithmic choice. Applications such as
458.sjeng fit in this category: its procedures are control-
dominated and specific to the semantics of a chess-playing
engine.

E. Insights from categorization

Figure7 shows the instruction mix (branches, loads, stores,
floating-point, and other instruction types) in the applications
studied. It is observed that applications falling in the first two
categories of TableIV also typically have below-average frac-
tions of branch instructions, while applications in categories 3
and 4 have above-average fractions of branches. For category
4, this indeed indicates that the respective applications are
control-dominated, as was observed from manual source code
inspection. As the CPs identified in category 3 are large and
more complex, they were, as a result, naturally split across
multiple procedures; it is thus also not surprising that they
have more branch / control instructions.

There are, however, two exceptions. The JPEG encoder
and decoder (JPGe and JPGd), from Figure 7, have above-
average fractions of control instructions, but are classified in
category 1. The higher fraction of control instructions in this
case is expected to be related to the Huffman coding step
in JPEG. Similarly, for the Rijndael encoding and decoding
applications (RIJNe and RIJNd), there is a below-average
fraction of control instructions, even though the applications
are classified in category 4. In this case, their classification
in category 4 is not because of control-dominance, but rather
because the application is essentially defined by the algorithm
that it implements. It is thus meaningless to define a CP
for Rijndael encode or decode independent of the Rijndael
algorithm, unless, e.g., the CP definition is instead definedin
terms of a data encryption problem, with constraints on, e.g.,
some measure of cryptographic strength.

Overall, approximately two-thirds of the applications stud-
ied fall into categories 1–3, and could potentially benefit
from alternative algorithms for solving the identified CPs.Of

RegEx 2.4

Partial
Sort

1.1

Sort

4.6

Search

1.6

Min. Cost.
Net. Flow

4.0

Min. + Max. Search

1.3

Matrix Operations

8.8

Find Viterbi Path

7.3

Sum of Abs. Diff.

2.9

Mahalanobis Dist.

4.6

DCT, DFT,
and MTF xform.

0.9

Other CPs �
Control �
Unknown

60.6

Figure 8. Percentages of total execution time of the complete set of
applications covered by the identified computational problems.

particular importance, based on the information in TableIV,
such CPs can be relatively easily identified, as they are em-
bodied either in well-defined code regions such as subroutines,
or collections thereof. SectionV-F, which follows, details
the specific CPs identified, and provides quantitative analysis
of the fraction of the total and per-application run-times
dominated by the identified CPs. As will be demonstrated, the
identified CPs occupy a large enough fraction of execution
time to make it worthwhile to find alternative algorithms for
their solution.

F. Identified CPs and their frequencies of occurrence

Table V lists 16 of the CPs identified during the process
of manual code inspection. Listed with each CP are the
applications in which it occurs, the CP’s duration of execution,
and the percentage of the per-application execution time taken
by the CP. In TableV, all CPs related to matrix arithmetic
are grouped under a “Matrix Operations” CP for brevity of
exposition, even though, e.g., matrix multiplication, matrix
addition, etc., are indeed distinct CPs.

Figures8 and9 show the fraction of execution time covered
by the identified CPs in the complete set of applications, and
the MiBench subset, respectively. The DCT, DFT, and move-
to-front transform are condensed in one slice for clarity of
the figure. In total, the small set of 16 identified CPs covers
approximately 39 % of total execution time of all applications.
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Figure 7. Instruction mix breakdown. Applications from category 4 in TableIV generally also have high fractions of control instructions.

Table V
COMPUTATIONAL PROBLEMS IDENTIFIED IN THE SET OF APPLICATIONS

FROM THE SPEC CPU2006AND M IBENCH BENCHMARK SUITES.

Computational Problem Application Execution % of
Time (s) Application

RegEx 400.perlbench 1065 49.0
Sorting 401.bzip2 2006 64.7

429.mcf 43 2.0
445.gobmk 20 0.9

Partial Sorting 453.povray 18 1.1
471.omnetpp 450 24.4

Move-To-Front Transform 401.bzip2 313 10.1
Search 403.gcc 122 8.1

429.mcf 46 2.2
445.gobmk 94 4.1
473.astar 445 20.6

Maximizing Search 458.sjeng 131 4.7
482.sphinx3 65 1.4

Minimizing Search 464.h264ref 374 9.5
Minimum-Cost Network Flow 429.mcf 1776 83.8
Matrix Operations 433.milc 1576 63.5

470.lbm 2339 62.3
Finding Viterbi Path 456.hmmer 3189 96.1

482.sphinx3 61 1.3
Sum of Absolute Differences 464.h264ref 1307 33.3
DCT-II 464.h264ref 25 0.7

JPEG encode 0.008 11.2
DCT-III 464.h264ref 21 0.5

JPEG decode 0.003 12.3
DCT-IV Lame 0.155 10.0
DFT 482.sphinx3 58 1.3

Lame 0.327 21.2
Mahalanobis Distance 482.sphinx3 2071 45.2

DCT-II,
DCT-III,

and DCT-IV 6.0

DFT

11.9

Other CPs �
Control �
Unknown

82.1

Figure 9. Percentages of total execution time of the MiBench subset of
applications covered by the identified computational problems.

Partial and full sorting of data, minimizing and maximizing
search, and Fourier-related transforms (DCT and DFT) are the
most common CPs across the suite in terms of the number of
applications they can be found in, appearing in 5, 7, and 5
different applications respectively. Searching and the Fourier-
related transforms, however, only account for a small fraction

Sorting 2.0

Min.
Cost.
Net.
Flow

83.8

Search

2.2

Other CPs �
Control �
Unknown

12.0

(a) 429.mcf

DFT

21.2

DCT-IV

10.0

Other CPs
Control �
Unknown

68.8

(b) Lame

Min.
Search 9.5

SAD

33.3

DCT-II �
III1.3

Other CPs �
Control �
Unknown

56.0

(c) 464.h264ref

Max.
Search

1.4
Viterbi

1.3

M. Distance

45.2

DFT1.2

Other CPs �
Control �
Unknown

51.1

(d) 482.sphinx3
Figure 10. Per application breakdown of the execution time ofidentified
CPs.

of execution time, while (partial) sorting accounts for at least
5.6 % of the total runtime, making (partial) sorting one of the
most important CPs.

In terms of execution time, CPs related to matrix arithmetic
and the computational problem of finding the Viterbi path
account for the largest fractions, at 8.3 % and 7.3 %, of the
aggregate execution time of the set of applications. Both
problems, however, appear only in two applications each and
are responsible for a large amount of run time in only a
restricted set of applications.

Regular expression matching, the move-to-front transform,
finding the minimum-cost network flow, the sum of absolute
differences, and the Mahalanobis distance only occur in single
applications. While these CPs might seem to be of less interest,
they, individually, can still account for up to 4 % of the total
execution time of applications. However, we can still envision
them to be common to many applications. A straightforward
example is regular expressions matching. This CP is not lim-
ited to 400.perlbench, but is also used in, for example, network
packet analysis. The move-to-front transform can be applicable
to multiple compression algorithms; similar arguments canbe
made for the other CPs.

Figure 10 shows the breakdown of identified CPs in four
of the applications with respect to execution time of just
those applications. Across applications, the fraction of time
for which CPs were identified is different. For example, for
429.mcf about 88 % of the execution time is covered by the
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identified CPs. On the other hand, for lame, only 31 % is cov-
ered. The other two examples, 464.h264ref and 482.sphinx3,
are in between, with 44 % and 49 % of the execution time
covered by the identified CPs.

The potential gain in performance from algorithmic choice
depends on the fraction of execution time for which CPs can
be identified. Applications with a high fraction of execution
time covered by the CPs, can potentially gain more than
applications with a low fraction. The unidentified fractions
of execution time in Figure10, however, are not necessarily
non-candidates for algorithmic choice: there may still be more
potential CPs to be identified in the parts not covered by
manual code inspection. However, based on the insights gained
from the categorization, some applications have large amounts
of glue logic (I/O, setting up data structures, etc.) or may have
highly control-dependent code, precluding their description in
terms of CPs.

Although there are thus obviously portions of the applica-
tions investigated that will not gain from algorithmic choice,
at least 39 % of the total execution time of the applications is
covered by 16 well-defined CPs (which can be described in
the context of Definition1). For these CPs, there may exist
algorithm variants that expose performance, power dissipation,
or energy-efficiency tradeoffs when compared across different
implementations, or executed on different hardware architec-
tures. TableVI gives the domain and range in the context of
Definition 1, for each of the 16 identified CPs. The domains
and ranges given in the table are specified informally, and
not in terms of actual sets (compared to, e.g., TableI). Their
formalization, as well as the complete specification of the third
component of the CP—the relation—are items of ongoing
work.

VI. SUMMARY, DISCUSSION, AND FUTURE DIRECTIONS

This work presented a quantitative characterization of the
constituentcomputational problems (CPs)in 21 real-world
applications. CPs capture thesemanticsof computations (i.e.,
the problem solved), independent of specificalgorithms for
implementing those computations. The quantitative charac-
terization of the occurring CPs in contemporary applications
provides insight into the potential foralgorithmic choice—the
substitution of one algorithm solving a given CP, by another
solving the same CP. The exploitation of algorithmic choice
is a potential path for gaining performance improvements in
future computing systems, in the same manner that clock
frequency improvements from technology scaling provided,
at the height of the RISC era, and in the manner in which
core count is today the dominant means of computing system
performance gains. Despite the recent interest in algorithmic
choice as a means for improving performance [11], [12],
there has hitherto been no quantitative study of contemporary
workloads, to identify the occurring compute problems and
candidates for algorithmic replacement; this article remedies
this deficiency.

It is conjectured that, if CPs can be identified even in
existing legacy applications, then it will be reasonable to
expect implementers of new applications to be able to annotate

Table VI
DOMAIN AND RANGE FOR THE CPS IDENTIFIED IN THE SET OF

APPLICATIONS.

RegEx
Domain A string s

A regular expression in the stringr
Range A modified strings

A Booleanb indicating a match

Sorting and Partial Sorting
Domain A set of elementsS
Range A sorted set of elementsT

Move-To-Front Transform
Domain A string s

A string with the alphabett
Range A sequence of integersM

Search
Domain A set of elementsS

An elementt
Range An index i into the setS

Maximizing/Minimizing Search
Domain A set of elementsS
Range An index i into the setS

Minimum-Cost Network Flow
Domain A flow networkG (V,E)

A sources ∈ V
A sink t ∈ V
A list of capacitiesc (u, v)
A list of costsa (u, v)

Range A list of flows f (u, v)

Matrix Operations
Domain A matrix M

A matrix N
Range A matrix O

Finding Viterbi Path
Domain A hidden Markov modelH

A sequence of observed outputsX
Range A sequence of statesY

Sum of Absolute Differences
Domain An array of integersD
Range An integers

DCT-II, DCT-III, DCT-IV, DFT
Domain A set of time-domain samplesx
Range A set of frequency-domain samplesX

Mahalanobis Distance
Domain An n-dimensional vectorx

An n-dimensional vectorµ
A covariance vectorv

Range A distanced

their applications with CP definitions. Such annotations, if
embedded in application binaries, could be used by future
systems to facilitate performance improvements of applica-
tions, without the need for re-compilation. A language such
as the notation for computational problems (NCP) [26] can be
used for such purposes. The Appendix describes several of the
identified CPs in this work in NCP.

Applications having single CPs per procedure and multiple
procedures per CP, are likely to be best suited for algorithmic
replacement, as the CPs have clear entry and exit points in
the code. These two categories cover approximately half of
the applications analyzed in this article; on the other hand,
applications having multiple CPs per procedure may require
restructuring of the program to isolate the CPs. Algorithm-
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Figure 11. An example of a standard processor pipeline augmented with
cache structures to aid acceleration via algorithmic choice.

specific CPs (such as Rijndael encode and decode) and control-
dominated CPs (such as large portions of the Gcc compiler)
constitute approximately 33 % of the execution time of the ap-
plications studied, and are unlikely to be suited to algorithmic
replacement. It was observed that, in general, applications in
which one or more well-defined CPs could be identified were
not control-dominated.

In the set of applications analyzed, 16 well-defined CPs
were identified, covering almost 40 % of the aggregate exe-
cution time of the complete set. Several of the CPs identi-
fied (various variants of sorting, searching, and DCTs) were
common to up to four different applications. Of the identified
CPs, one single class of CPs, matrix operations, accounted
for more than 8 % of the aggregate execution time. The
aforementioned statistics are naturally dependent on the ap-
plications in question; however, the broad diversity of real-
world applications employed, and the sizes of the execution
times of identified CPs, gives credence to the hypothesis that
there is an opportunity for improving application performance
by algorithmic substitution. One direction of our ongoing
efforts is to quantify the actual speedups that can be achieved,
by identifying multiple alternative algorithms for each CP
in categories 1 through 3 of TableIV, as well as multiple
alternative implementations, as illustrated for thek-means
example in SectionIII , and to evaluate these on a diverse
set of hardware platforms.

The architecture of one potential hardware direction is
illustrated in Figure11. The system associates branch targets
with CP definitions, which must be defined in a machine-
readable format. During execution of the normal instruction
stream, if a branch target for which there is a CP definition in
the CP-definition cache (CP D-$), and for which one (or more)
alternative implementations exist in the CP-implementation
cache (CP A-$), one such alternative implementation may
be executed. This replacement may occur transparent to the
application, yielding the same semantic result as the original
unmodified application. Key to the functioning of such a
system is a machine representation for CPs; we are currently
investigating alternative representations, including building
upon existing work in the research literature.
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APPENDIX

IDENTIFIED CPS DESCRIBED INNCP

A notation for computational problems (NCP) is introduced
by Jongerius et al. [26] and can be used to describe computa-
tional problems in terms of their input, output, and the relation
between these two. Most of the CPs identified in this work we
described in the NCP language and are listed here.

Most descriptions try to match the implementation of the
algorithm in the benchmarks as closely as possible. However,
not all side-effects of an actual implementation—which might
have no relation to the algorithm itself—are captured.

Listing 1. Matrix multiplication from 433.milc or 40.lbm.

typedef ::
complex : struct {
r : real<64>
i : real<64>

}
domain ::
A : complex[3,3]
B : complex[3,3]

range ::
C : complex[3,3]

relation ::
n,m,k : int<32> = <0 to 2>

fun real_complex_mul(a,b : complex) : real<64> ::=
a.r * b.r - a.i * b.i ;

fun imag_complex_mul(a,b : complex) : real<64> ::=
a.r * b.i + a.i * b.r ;

exists C { forall n,m {
C[n,m].r == sum k { real_complex_mul(A[n,k], B[k,m]) }
and

C[n,m].i == sum k { imag_complex_mul(A[n,k], B[k,m]) }
} } ;

Listing 2. DCT-II CP from, for example, JPEG encode.

#define PI 3.141592
fun cos(x : real<32>) : real<32>

domain ::
x : real<32>[8,8] //time domain samples

range ::
X : real<32>[8,8] //freq domain samples

relation ::
Y : real<32>[8,8] // intermediate transform
k,l : int<32> = <0 to 7>
n : int<32> = <0 to 7>

exists Y,X {
forall l, k {
Y[l,k] == sum n { (x[l,n]

* cos(PI / 8 * (n + 0.5) * k)) }
} and
forall l, k {
X[l,k] == sum n { (Y[n,k]
* cos(PI / 8 * (n + 0.5) * l)) }

}
} ;

Listing 3. DCT-III CP as it can be found in, for example, 464.h264ref.

#define PI 3.141592
fun cos(x : real<32>) : real<32>

domain ::
N : int<32> //# samples
x : real<32>[N,N] //time domain samples

range ::
X : real<32>[N,N] //frequency domain samples

relation ::
Y : real<32>[N,N] //intermediate transform
k,l : int<32> = <0 to N-1>
n : int<32> = <1 to N-1>

exists Y,X {
forall l, k {
Y[l,k] == 0.5 * x[l,0]
+ sum n { (x[l,n] * cos(PI / N * (k + 0.5) * n)) }

} and
forall l, k {
X[l,k] == 0.5 * Y[0,k]
+ sum n { (Y[n,k] * cos(PI / N * (l + 0.5) * n)) }

}
} ;

Listing 4. DCT-IV CP as it appears in Lame.

#define PI 3.141592
fun cos(x : real<32>) : real<32>

domain ::
N : int<32>
x : real<32>[N] //time domain samples

range ::
X : real<32>[N] //frequency domain samples

relation ::
k : int<32> = <0 to N-1>
n : int<32> = <0 to N-1>

exists X {
forall k {
X[k] == sum n { (x[n] * cos((PI / N)

* (n + 0.5) * (k + 0.5))) }
}

} ;
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Listing 5. DFT CP from Lame or 482.sphinx3.

#define PI 3.141592
fun cos(x : real<32>) : real<32>
fun sin(x : real<32>) : real<32>

typedef ::
complex : struct {
r : real<32>
i : real<32>

}
domain ::
N : int<32>
x : complex[N] //time domain samples

range ::
X : complex[N] //frequency domain samples

relation ::
k : int<32> = <0 to N-1>
n : int<32> = <0 to N-1>
exp_res : complex[N,N]

fun real_complex_mul(a,b : complex) : real<32> ::=
a.r * b.r - a.i * b.i ;

fun imag_complex_mul(a,b : complex) : real<32> ::=
a.r * b.i + a.i * b.r ;

exists X, exp_res {
forall k, n {
exp_res[k, n].r == cos(-2 * PI * n * k / N) and
exp_res[k, n].i == sin(-2 * PI * n * k / N)

} and
forall k {
X[k].r == sum n {
real_complex_mul(x[n], exp_res[k, n])

} and
X[k].i == sum n {
imag_complex_mul(x[n], exp_res[k, n])

}
}

} ;

Listing 6. CP to calculate the Mahalanobis distance as foundin 482.sphinx3.

fun sqrti(x : int<32>) : int<32>

domain ::
N : int<32>
x : int<32>[N] //multivariate vector
mu : int<32>[N] //means
S : int<32>[N,N] //covariance matrix

range ::
d : int<32> //distance

relation ::
n,m : int<32> = <0 to N-1>
T : int<32>[N] //temporary

exists d, T {
forall m {
T[m] == sum n { (x[n] - mu[n]) * S[n,m] }

} and
d == sqrti( sum m { T[m] * (x[n] - mu[n]) } )

} ;

Listing 7. Maximizing search CP from, for example, 458.sjeng.

domain ::
N : int<32>
move_ordering : int<32>[N]

range ::
marker : int<32> = <0 to N-1>

relation ::
i : int<32> = <0 to N-1>
best : int<32>

exists marker, best { move_ordering[marker] == best
and best == max for i { move_ordering[i] } } ;

Listing 8. Minimizing search from 464.h264ref.

domain ::
N : int<32>
block_sad : int<32>[N]
M : int<32>

range ::
min_mcost : int<32>
best_pos : int<32> = <0 to N-1>

relation ::
pos : int<32> = <0 to N-1>

exists best_pos, min_mcost {
block_sad[best_pos] == min_mcost and
min_mcost == min for pos { block_sad[pos] }

};

Listing 9. Sum of absolute differences CP from 464.h264ref.

fun absi(x : int<32>) : int<32>

domain ::
N : int<32>
diff : int<32>[N]

range ::
sad : int<32>

relation ::
n : int<32> = <0 to N-1>
exists sad { sad == sum n { absi(diff[n]) } } ;

Listing 10. Search CP as it can be found in various benchmarks.

domain ::
N : int<32>
element_bits : int<32>[N]

range ::
found : bool<1>

relation ::
n : int<32> = <0 to N-1>

exists found {
found == exists n { element_bits[n] == 0 }

};

Listing 11. Sorting CP as found in 445.gobmk.

typedef ::
t_moves : struct {
score : int<32>
pos : int<32>

}
domain ::
N : int<32>
in : t_moves[N]

range ::
out : t_moves[N]

relation ::
n : int<32> = <0 to N-2>

exists out { forall n { out[n].score <= out[n+1].score }
and out >=< in } ;
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Listing 12. Minimum-cost network flow CP from 429.mcf.

typedef ::
MCF_arc : struct {
tail : int<32> //index of tail node
head : int<32> //index of head node
cost : real<64> //cost of arc
upper : real<64> //flow upper bound of arc
lower : real<64> //flow lower bound of arc

}
MCF_node : struct {
balance : real<64> //Supply/demand of the node

}
MCF_network : struct {
N : int<32> //Number of nodes
M : int<32> //Number of arcs
nodes : MCF_node[N] //input nodes
arcs : MCF_arc[M] //input arcs

}
domain ::
network : MCF_network

range ::
feasible : bool<1> //Primal feasible indicator, if the network is infeasible (and there is thus no satisfying

flow/optcost) this is set to false
flow : real<64>[network.M] //flow from MCF_arc
optcost : real<64> //cost from MCF_network

relation ::
i : int<32> = <0 to network.N-1>
k : int<32> = <0 to network.M-1>
a : int<32>

//Flow conservation constraint:
fun flow_conservation(flow : real<64>[network.M]) : bool<1> ::= forall i { network.nodes[i].balance == sum k with

network.arcs[k].head == i { flow[k] } - sum k with network.arcs[k].tail == i { flow[k] } } ;

//Flow capacities:
fun flow_capacities(flow : real<64>[network.M]) : bool<1> ::= forall k { network.arcs[k].lower <= flow[k] and flow[k]

<= network.arcs[k].upper } ;

//Objective function
exists feasible { feasible == exists optcost { optcost == min for flow with flow_conservation(flow) and flow_capacities

(flow) { sum k { network.arcs[k].cost * flow[k] } } } } ;

Listing 13. CP for finding the Viterbi path as used in 456.hmmer or 482.sphinx3.

domain ::
N : int<32> //Number of states (excluding start=0/end=N+1 states)
M : int<32> //Number of observations (excluding start/end states
a : int<32>[N+2,N+2] //State transition probability matrix (including transitions from/to start/end states)
x : int<32>[M] //Observations
p : int<32>[N+2,N+2] //Emission probabilities, p[i,k] = P(Xi | Yk)

range ::
y : int<32>[M+2] //Likely sequence of states, including start/end states

relation ::
P : int<32>[M+2] //Likelyhood of likely states, including start/end states

m : int<32> = <1 to M+1>
l : int<32> = <1 to N+1>

exists y { exists P { exists m {
y[0] == 0 and //First sequence is always start=0 state
P[0] == 1 and //Likelyhood to start in the start state = 1
P[m] == p[x[m],y[m]] * a[y[m-1],y[m]] * P[m-1] and
P[m] == max for l { p[x[m],l] * a[y[m-1],l] * P[m-1] }

} } } ;
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