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Abstract—Multi-tiered storage, where each tier comprises one
type of storage device, e.g., SSD, HDD, is a commonly used
approach to achieve both high performance and cost efficiency in
large-scale systems that need to store data with vastly different
access characteristics. By aligning the access characteristics of
the data to the characteristics of the storage devices, higher
performance can be achieved for any given cost. This article
presents ExaPlan, a method to determine both the data-to-
tier assignment and the number of devices in each tier that
minimize the system’s mean response time for a given budget
and workload. In contrast to other methods that constrain
or minimize the system load, ExaPlan directly minimizes the
system’s mean response time estimated by a queueing model.
Minimizing the mean response time is typically intractable
as the resulting optimization problem is both non-convex and
combinatorial in nature. ExaPlan circumvents this intractability
by introducing a parameterized data-placement approach that
makes it a highly scalable method that can be easily applied
to exascale systems. Through experiments that use parameters
from real-world storage systems, such as CERN and LOFAR, it
is demonstrated that ExaPlan provides solutions that yield lower
mean response times than previous works. It is also capable of
determining a data-to-tier assignment both at the level of files
and at the level of fixed-size extents. For some of the workloads
evaluated, file-level placement exhibited a significant performance
improvement over extent-level placement.

I. INTRODUCTION

Today’s storage systems are challenged by the ever increas-
ing demand for data storage and retrieval. Their complexity has
grown in terms of both the heterogeneity and the number of
storage devices required to satisfy user requirements. Multi-
tiered storage systems are composed of storage devices with
different characteristics in terms of capacity, access time,
and sustained throughput. Fast storage devices, such as solid
state drives (SSDs) and hard disk drives (HDDs), are more
expensive than slow devices, such as magnetic tape drives. On
the other hand, slow devices tend to provide higher amounts
of storage capacities for a given cost. Consequently, for cost
reasons, not all of the data can be stored in fast devices.
Clearly, the overall performance of multi-tiered systems can be
optimized by storing the least accessed data (cold data) on the
slower and cheaper devices, and the most frequently accessed
data (hot data) on the faster, albeit more expensive devices
[1]. At a scale as large as the storage system planned for the
Square Kilometre Array (SKA) [2] radio telescope, where an
estimated 1 PB per day will need to be stored, an access-
pattern-aware multi-tiered storage system has the potential to
dramatically reduce cost while providing high performance
compared with using only a single type of device, e.g., hard
disk drives. Building and operating a data center with multiple

tiers requires assessing the number of devices in each tier (tier
dimensioning or storage provisioning) as well as the way data
is placed across the tiers (data placement). Data placement
with a good match between the access patterns and the device
characteristics together with an appropriately chosen device
mix for the workload is key to achieving efficiency.

In this article, we present ExaPlan, a queueing-based data
placement and provisioning method for large-scaled tiered
storage systems. ExaPlan is envisioned to support system
administrators and planners by suggesting, for a given budget
and expected I/O workload, the number of devices of each
type and the data placement that minimizes the system’s mean
response time.

Most existing approaches addressing data placement and/or
provisioning seek to minimize the total system cost while
meeting volume and load constraints [3-7]. The load con-
straint is usually described by enforcing that the number of
devices be large enough to collectively provide the service
capacity needed for handling the given workload. The load
as a measure of congestion can be considered a performance
metric as it affects the queueing time. However, using load
as the performance metric has limitations as it provides no
estimates or guarantees about the actual time to serve user
requests. Each of the references cited above has a different
way of enforcing the equivalent of “load does not exceed
one” in queueing terminology. This allows solutions with the
load being arbitrarily close to one, which in turn implies an
arbitrarily large mean queueing time for the I/O requests.

We address these limitations by directly minimizing the
mean system response time subject to volume, load, and
system cost constraints. To the best of our knowledge, the data
placement and tier dimensioning issues addressing response
time optimization under a cost constraint have not yet been
studied. Our work is the first to analyze the multi-tier dimen-
sioning and data placement issue in this context.

A straightforward formulation of the optimization problem
with the system’s mean response time as the objective function
is non-convex and combinatorial; non-convex because of the
form of the mean response time function and combinatorial
because of the numerous data placement options. This problem
is much harder to solve than other mathematical programming
approaches that do not account for the queueing effects, such
as [7], where minimizing the system cost subject to volume
and load constraints results in a mixed integer linear program.

The main contribution of our work is the transformation
of this seemingly intractable storage provisioning and data
placement problem into a tractable one. We achieve this by
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exploiting the property that, for a given data placement, the
problem of finding an optimal number of devices in each
tier, with the corresponding mean response time, under the
constraints considered is convex, for which a closed-form
solution can be obtained. To explore the data placement
options and determine the one that yields the least mean
response time, we use a black-box optimization framework.
To perform this exploration in a scalable and systematic way,
we parameterize data placement and seek an optimal set of
parameters through a black-box optimization algorithm. Well-
known black-box optimization algorithms include simulated
annealing and genetic algorithms. In this case, the “black box”
considered takes as input a set of parameters that specifies a
data placement option and yields as output the optimal number
of devices in each tier and the corresponding mean response
time for that data placement.

We use an M/G/1 queueing model for approximating the
mean response time of solutions proposed and the covariance
matrix adaptation evolution strategy (CMA-ES) [8] as the
black-box optimization algorithm for finding an optimal data-
to-tier placement. We note that ExaPlan is modularized regard-
ing these aspects in the sense that advances in the research
fields of stochastic processes and evolutionary algorithms
could be integrated into our framework with ease.

In the existing literature, the data units subject to a place-
ment decision are either fixed-size extents [6, 7] or variable-
size logical stores (e.g., files) [3-5]. ExaPlan supports data
units of both fixed and variable size. This flexibility allowed
us to compare the performance of using variable-size units and
fixed-size units. For some of the workloads evaluated, file-level
placement exhibited a significant performance improvement
over extent-level placement. Through experiments that use
parameters from real-world storage systems, such as CERN
and LOFAR, it is demonstrated that ExaPlan provides solutions
that yield lower mean response times than previous works.

The remainder of the paper is organized as follows. Section
II provides a survey of the relevant literature on capacity
planning and data placement. Section III describes the def-
initions and notation used in this article and the modeling
assumptions. The ExaPlan architecture is described in Section
IV. In particular, it presents the classification framework which
takes into account device characteristics, namely volume and
service capacities, as well as cost. Subsequently, the number
of devices for each tier is evaluated analytically such that
the mean system response time is minimized under budget
constraints. Section V presents experimental results which
demonstrate the efficiency of the proposed scheme. Finally,
we conclude in Section VI.

II. RELATED WORK

A general framework for provisioning a storage system
using a utility function that considers various metrics, such
as purchase cost, performance, reliability, availability, power,
etc., was proposed in [9]. The optimization is performed by
using a genetic algorithm that explores the space of candidate
system configurations, which is determined by the placement
and redundancy of up to 50 datasets over a set of nodes.
In contrast, we focus on the performance objective expressed
by the system’s mean response time by considering a cost

budget and other constraints. In particular, we propose a
scalable method for systematically exploring the huge space
of candidate solutions with up to 1 billion chunks placed over
different types of devices.

The data placement issue was considered in [10] and
the corresponding data allocation problem was formulated as
a knapsack problem, where a total benefit value is to be
maximized while respecting volume constraints. This problem
was subsequently solved using a greedy algorithm. In [1],
the data allocation problem was formulated as a multiple
choice knapsack problem which is NP-complete, and therefore
solving it in the context of real systems that contain millions
of files is infeasible. Instead, an optimal solution was found
using a simple heuristic that treats the multiple-tier problem
as multiple single-tier problems that can then optimally be
solved using dynamic programming. These approaches do not
directly consider the queueing of I/O requests and its impact
on the request response time.

The use of a queueing model with the objective to minimize
the response time by optimally assigning files to a fixed set of
disks was considered in [11]. The I/O subsystem, including
the CPU, channels, controllers, heads of strings, and disk
actuators, was modeled as a memoryless queueing network,
from which the optimal proportion of requests assigned to
each disk that minimizes the response time can be determined.
Then a heuristic is used to assign files to disks so that
the optimal proportion found can be realized as closely as
possible. Compared to ExaPlan, this is a micro-scale model
that implicitly assumes that requests are of equal size and
small, and that therefore the response time is dominated by the
time a request spends contending for various system resources
as it traverses the I/O subsystem. Finding an optimal proportion
of requests from the queueing network model is an iterative
process whose complexity depends on the size of the network,
and therefore it is not expected to scale to the large-scale
systems considered by ExaPlan.

The Extent-based Dynamic Tiering (EDT) tool [6] has a
configuration adviser (EDT-CA) that uses a fixed utility func-
tion to determine a priori the placement of its extents, fixed-
size partitions of the volume space, to the various tiers. In EDT-
CA, once a placement decision has been made, the number of
devices is chosen so that it satisfies the offered load. Similar to
the utility function of EDT-CA, ExaPlan also uses a resource
cost function to assign data to different tiers. The difference
is that we consider a parameterized family of resource cost
functions that gives more control over data placement, and
then seek an optimal resource cost function within that family.
Of the existing works, HybridStore [7] is the method that
is the most comparable to ExaPlan with respect to context
(tiered storage) and approach (mathematical programming).
We provide a detailed overview of the HybridStore approach
along with comparison results in Section V.

Other notable approaches for data placement and storage
provisioning that minimize cost subject to volume and load
constraints start with finding an initial feasible configuration
and use iterative heuristics to move to a better solution [3-5].

Many works have considered the problem of grouping
files that are likely to be accessed together, so that they can
be placed next to each other to improve the access latency
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and reduce power consumption (see [12], [13] and references
therein). These works are orthogonal to the issues addressed
in this article and can be used in conjunction with ExaPlan
to improve system performance even further. Similarly, data
prefetching has also been widely studied (see [14] and refer-
ences therein). These methods can be used to prefetch data
that is likely to be accessed in the near future to faster tiers.
In this article, it is assumed that data is read directly from the
tier in which it is stored.

III. WORKLOAD AND SYSTEM MODEL

The notation used herein is detailed in Table I. A workload
is represented by a set of tuples

W = {(Qj , rj , vj) | j = 1, . . . , N} . (1)

Each element of W represents a unit of data and its access
characteristics. We refer to this unit of data as a chunk, indexed
by j, whose volume is denoted by vj . Requests for data
residing within chunk j are assumed to arrive at a rate of rj .
The sizes of requests to chunk j are assumed to be independent
and identically distributed, represented by the random variable
Qj . As related sequential requests do not incur more than one
seek time on a storage device, we represent these requests by
one large request. The degree of sequentiality of requests to
a given chunk j is therefore reflected in its mean request size
E[Qj ].

In this article, we only consider those requests that are
not cached and have to be directly served by the devices.
This is to factor out the effects of caching, which is beyond
the scope of this work, when evaluating the performance of
the underlying mass storage system. Note also that correlated
request arrivals to the same chunk are most likely absorbed
by cache at some level of the storage hierarchy. Consequently,
the request arrivals that eventually reach the storage devices
are assumed independent. Also, in large-scale systems with
multiple users, it is likely that the combined workload of all
users is a Poisson process. [15]. Consequently, the arrivals are
also assumed to be Poisson.

In many systems, for example webservers, the I/O is domi-
nated by read requests. For systems with significant write I/O,
it is likely that a dedicated write buffer is used before writing
it out when the system is under low I/O load. Therefore, this
study exclusively focuses on read I/O, by assuming that write
I/O either is negligible handled separately, or that read I/O has
priority over write I/O.

We define the workload space as the three-dimensional
space of (q, r, v) where q is the mean request size, r is
the request rate, and v is the chunk size. A storage tier,
indexed by k, is defined as a collection of devices with the
same characteristics in terms of seek time, bandwidth, volume
capacity, and price. This definition is not to be confused with
alternate definitions of the term “tier” used in the context of
“hierarchy”, as there is no inherent hierarchy in this definition.

The device model considers that a request of size q to a
device in tier k incurs a fixed seek time of sk and a transfer
time of q/bk, such that the total time to serve it is equal to
sk + q/bk. Device cache, if any, is assumed to be accounted
for by the seek time and bandwidth specifications of each tier.
Note also that the analysis presented can be extended in a
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Fig. 1. The stability region of each tier is the area underneath the
corresponding curve. A tier may only host chunks that are within its stability
region; otherwise the violating chunk will single-handedly saturate the service
capacity of the host device within that tier.

TABLE I. NOTATION

Tier k k = 1, . . . , K
sk device seek time
bk device bandwidth
Ck device capacity
Vk device cost
γk cost per unit data volume (= Vk/Ck)
zk number of devices
Ik index set of chunks assigned
λk request rate (=

∑
j∈Ik

rj )
1/µk mean service time of requests
σ2
k variance of the service time
ρk load (= λk/(µkzk))
Wk waiting time random variable (r.v.)
Sk service time r.v.
Tk response time r.v. (= Wk + Sk)
α = (α1, . . . , αK)
β = (β1, . . . , βK)

Chunk j j = 1, . . . , N
rj arrival request rate
Qj request size r.v.
vj chunk volume
ρj,k contributed load (= rj(sk + qj/bk))

Systemwide
λ system request rate (=

∑
k λk)

T system response time r.v. (=
∑

k λkTk/λ)
B budget

straightforward manner to account for variable seek times. If
chunk j with attributes (Qj , rj , vj) were to be assigned to tier
k, its corresponding contributed load to this tier, ρj,k, which
indicates the proportion of time a device of tier k would be
busy serving requests to chunk j, is given by the quantity
rj(sk + E[Qj ]/bk). Evidently, a chunk cannot be assigned to
a device of a tier in which the contributed load exceeds one, as
otherwise the mean queueing time would be infinite. Hence,
we define the stability region, Ψk, in the (q, r, v) workload
space for each tier k as

Ψk = {(q, r, v) : r(sk + q/bk) < 1} . (2)

Note that, as shown in Figure 1, the stability regions for the
various tiers correspond to the areas under the hyperbolas
defined in the (q, r) plane by r(sk + q/bk) = 1.

IV. EXAPLAN ARCHITECTURE

The overall process of finding the optimal number of
devices in each tier and the data placement that minimizes the
mean response time is illustrated in Figure 2. It is a black-box
optimization framework wherein the black box takes as input
a set of parameters that specifies a data placement option and
yields as output the optimal number of devices in each tier and
the corresponding mean response time for that data placement.
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Fig. 2. ExaPlan architecture. Optimization inputs: workload characteristics,
device characteristics, cost budget. Outputs: optimized number of devices in
each tier, chunk-to-tier placement, estimated response time.

The black box consists of the ‘Workload Classifier’ and
the ‘Dimension Optimizer’ modules. The Workload Classifier
specifies a chunk-to-tier assignment (data placement) based on
a set of input parameters by using a parameterized family of
resource cost functions that take into account the chunk access
and device characteristics. The chunk-to-tier assignment is fed
to the Dimension Optimizer module, where an optimal number
of devices for each tier along with the resulting mean response
time are assessed subject to a cost constraint. The resulting
mean response time is then reported to the ‘Classifier Recon-
figuration Unit’, where the next set of classifier parameters is
determined according to the selection rule of the black-box
optimization algorithm used. This iterative process continues
until a specified stop condition is met. We detail the individual
components of ExaPlan in this section.

A. Workload Classifier

The role of the Workload Classifier is to provide a chunk-
to-tier assignment to the Dimension Optimizer using a family
of parameterized resource cost functions ck(q, r, v), k =
1, . . . ,K, referred to as cost functions hereafter, whose pa-
rameters are provided by the Classifier Reconfiguration Unit.
In particular, by denoting the set of parameters provided for
tier k by αk and βk, a specific choice for the resource cost
ck(q, r, v) incurred by placing a chunk with mean request size
q, request rate r, and volume v on tier k is given by

ck(q, r, v) = βk[(1− αk)v/Ck + αkr(sk + q/bk)] . (3)

A chunk with attributes (q, r, v) is assigned to the tier in which
it incurs the least resource cost, that is, the tier determined by

arg min
k
ck(q, r, v) . (4)

Note that the aim of the cost function is to parameterize the
various data placement options and explore them in a scalable
and systematic manner regardless of the actual costs of the
devices involved. Therefore, the resource cost function does
not explicitly consider the device costs Vk. These costs are
taken into consideration by the Dimension Optimizer when
estimating the optimal number of devices for a given chunk-
to-tier assignment (see Section IV-B).

The rationale for considering such a family of cost func-
tions parameterized by (αk, βk) is as follows. A single storage
device has a volume resource and a service resource. For hard
disk drives, the volume resource corresponds to the available

Fig. 3. Impact of the α classifier parameters in the case of a small-scale two-
tier system: the mean response time as function of the classifier parameters
α1 and α2, for a fixed β1 and β2.

space on the disk platter and the service resource corresponds
to the read-write head. The resource cost associated with
assigning a chunk to a tier must therefore have separate
components reflecting the consumption of these respective
resources. When considering placing a chunk with workload
(q, r, v) on tier k, the volume component of the resource cost
incurred should reflect the volume it consumes on the host
device (v/Ck). The service component of the resource cost
should reflect the proportion of time the device (head) is busy
serving requests to that chunk (r(sk + q/bk)). Observe that
these two components can respectively be interpreted as the
volume and service utilizations that take values between 0
and 1. The resource cost of placing a chunk to tier k is
defined to be proportional to the weighted average of these two
components, where the parameter αk (0 ≤ αk ≤ 1) defines
the weights. For a given tier k, if the emphasis is placed on
the volume component relative to the service component (i.e.
small αk), it may result in a placement that overloads the
tier with service requests. As seen from Figure 3, the value
of the optimal response time at α1∗ = 0.965, α2∗ = 0.595
is T∗ = 0.012452, which is about two orders of magnitude
lower than the response time at α1 = 0, α2 = 0. Thus, the αk
parameters provide a mechanism to adjust the balance between
volume and service utilization, thereby allowing us to find
configurations with better response times. As we eventually
intend to assign chunks to the tier with the lowest cost,
another natural parameter for the resource cost function is
βk (βk ≥ 0), which reflects a relative preference or bias
between tiers. The αk and βk parameters are adjusted by the
black-box optimization algorithm according to the workload
and the available budget. By the shorthand notations α and
β, we denote the collections (α1, . . . , αK) and (β1, . . . , βK),
respectively, to account for all K tiers.

Note that, by assigning each chunk to the tier in which
it incurs the least resource cost, we effectively partition the
(q, r, v) space by boundaries determined by the equations

ck(q, r, v) = ck′(q, r, v) (k 6= k′) . (5)

All chunks that fall into a certain partition are assigned to the
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and slow HDD, respectively.

same tier. Thus, the chunk-to-tier assignment can be controlled
by modifying these boundaries using different values for the α
and β parameters. The parameterization of the data placement
allows us to circumvent the computational challenges typically
associated with formulating assignment problems using binary
decision variables.

An example of how a cross section of the workload space
at fixed chunk size v is partitioned using cost functions with
given parameters α, β is illustrated in Figure 4. Each point of
the workload space is assigned to the tier that yields the lowest
cost function value. The resulting regions that are assigned to
SSD, fast HDD, and slow HDD are shaded red, green, and
blue, respectively. The two sub-regions of the fast HDD (green)
partition labeled I and II, respectively, represent the regions
that would be assigned to SSD and to slow HDD in the absence
of a fast HDD tier. In this example, frequent small (random)
requests on the upper-left tend to favor SSD. The eventual
placement of chunks must honor the stability regions depicted
in Figure 1. Therefore, a chunk is eventually placed on the tier
that yields the lowest cost function value among those tiers that
satisfy the stability condition (2).

B. Dimension Optimizer

The Dimension Optimizer module of Figure 2 serves as a
module for evaluating a chunk-to-tier assignment specified by
the α and β parameters. The evaluation of a placement decision
involves an internal optimization step, which determines the
number of devices for each tier that minimizes the mean
response time. In this section, we present the assumptions of
the queueing model and present the details of this internal
optimization step.

We model read operations by representing each device
in the system as a single server queue. Once chunks have
been assigned to a tier, a good load-balancing algorithm, e.g.,
LPT [16], is used to distribute the chunks across the constituent
devices of a tier. Therefore, for a large number of chunks,
the load is roughly equally distributed across the devices in
each tier. Consequently, the corresponding queues in each tier
are assumed statistically equivalent, having the same arrival
process and the same service time distribution. We therefore

model each of the zk devices within a tier as an independent
M/G/1 queue. Proposition 1 gives the system’s mean response
time, E[T ], for a given chunk-to-tier assignment and for a
given number of devices in each tier.

Proposition 1: Assume that request arrivals to chunk j
are a Poisson process with rate rj . For a given workload
W = {(Qj , rj , vj) | j = 1, . . . , N}, device characteristics
(sk, bk), number of devices for each tier zk, and a chunk-to-
tier placement Ik for all tiers k, the mean response time is
approximated by

E[T ] ≈ 1

λ

∑
k

[
(λk/µk)2

zk − λk/µk
· 1 + σ2

kµ
2
k

2
+
λk
µk

]
, (6)

where

λk =
∑
j∈Ik

rj , (7)

1

µk
=
∑
j∈Ik

(
sk +

E[Qj ]

bk

)
rj
λk

, (8)

σ2
k =

1

b2k

∑
j∈Ik

E[Qj ]
2 · rj
λk
−

∑
j∈Ik

E[Qj ] ·
rj
λk

2


+
∑
j∈Ik

1

b2k
Var(Qj)

rj
λk

, (9)

provided that zk > λk/µk for all k. Otherwise, E[T ] =∞.

Proof: See Appendix A.

Note that the M/G/1 assumption can be generalized to a
G/G/1 model using Kingman’s formula [17] provided that it
is possible to precompute the squared coefficient of variation
of the request inter-arrival times for each tier. For each given
chunk-to-tier assignment, the arrival process to a tier is a
superposition of independent arrival processes to chunks of that
tier. For superpositioned general arrival processes, it is fairly
straightforward to compute the mean inter-arrival time, but
computing the variance of the inter-arrival times of the merged
process from the individual inter-arrival times is challenging.
There has been work on using renewal approximations of
superpositioned general arrival processes to estimate the mean
and the variance of the inter-arrival times [18], but using
this requires an additional renewal approximation step for
each tier of a given chunk assignment and can be time
consuming. Nevertheless, we emphasize that this problem can
be decoupled from ours, and any advances in this area can be
directly applied to our framework.

The Dimension Optimizer minimizes the system-wide
mean response time (6) for a given chunk-to-tier assignment,
which is specified through the sets Ik of assigned chunk
indices for tiers k = 1, . . . ,K. Note that for a fixed chunk-
to-tier assignment, the mean service time portion of the mean
response time of requests is also fixed and does not depend
on the number of devices chosen for each tier. Therefore, it
suffices to minimize the mean queueing time portion in order
to minimize the mean response time given by (6). Indeed, we
see that after omitting terms that do not affect the optimal
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solution from expression (6), we get the mean queueing time:∑
k

(λk/µk)2

zk − λk/µk
· 1 + σ2

kµ
2
k

2 λ
. (10)

Note, however, that this does not imply that ExaPlan provides
the same solution if instead of the mean response time, the
mean queueing time were minimized. As will be discussed in
Section IV-C, this is because at each iteration the Classifier
Reconfiguration Unit chooses the α, β parameters, and hence
the chunk-to-tier assignment, based on the mean response time
criterion, and not the mean queueing time criterion.

Denoting the coefficient (1 + σ2
kµ

2
k)/(2λ) by ak, we

formulate the response-time minimization problem as follows:

(P1) min
zk

∑
k

(λk/µk)2ak
zk − λk/µk

(11)

subject to
∑
k

zk Vk ≤ B (12)

zkCk ≥
∑
j∈Ik

vj k = 1, . . . ,K (13)

zk ≥
λk
µk

k = 1, . . . ,K . (14)

Constraint (12) is the budget constraint, (13) is the volume
constraint, and (14) is the load constraint. As the chunk-to-
tier assignments Ik are determined, all coefficients λk, µk, σ2

k
of (10) can be precomputed by using (7), (8) and (9). Note
that problem (P1) above has a convex objective function and
linear constraints.

Proposition 2: For problem (P1), let A be the set of tier
indices for which constraint (13) is binding at an optimal
solution. Then the optimal number of devices corresponding
to set A is given by

z∗k =

∑
j∈Ik

vj/Ck , if k ∈ A
(
B −

∑
i∈A

Hi −
∑
i 6∈A

λi

µi
Ciγi

)
√
ak

√
Ckγk

∑
i 6∈A

λi

µi

√
aiCiγi

+ 1

 λk

µk
, if k 6∈ A

(15)

with
Hk ,

∑
j∈Ik

vjγk . (16)

Proof: See Appendix B.

For a given chunk-to-tier assignment, it is not known a
priori which of the volume constraints are binding at an opti-
mal solution, nor is it known whether the problem is feasible.
Fortunately in practice, the number of tiers is typically a small
number (less than 10). Therefore, it is tractable to enumerate
all possibilities for set A and evaluate the corresponding zk
values for each case. The next step is to test if the derived zk
values satisfy the KKT conditions (detailed in Appendix B). As
the problem is convex, the KKT conditions are both necessary

Fig. 5. ExaPlan convergence.

and sufficient for optimality. Therefore, any set A that satisfies
these conditions yields an optimal zk for the assumed data
placement, and the first such set A found is chosen. If there
is no set A for which the KKT conditions are satisfied, the
problem is infeasible for the given chunk-to-tier assignment.

C. Classifier Reconfiguration Unit

The Classifier Reconfiguration Unit chooses the next set of
classification parameters α, β to evaluate based on the results
of the previous iteration. Functionally, this corresponds to the
neighbor selection rule of the black-box optimization algorithm
used.

We have implemented and tested several evolutionary and
hill-climb algorithms, including simulated annealing, genetic
algorithms, gradient descent, and coordinate descent, and
concluded that a specific evolutionary algorithm called the
covariance matrix adaptation evolution strategy (CMA-ES) [8]
works best. To gain insight into the classifier parameter opti-
mization problem, we discretized the space of the classifier
parameters for a small-scale two-tiered system, found the
optimal solution at these discrete points using brute-force
search, and visualized the resulting mean response time as
function of one or multiple of the parameters. For instance,
Figure 6 shows the mean response time as a function of the
classifier parameter β2 after fixing β1 and optimizing over
α1, α2. Given the many local minima seen in Figure 6, it is
not surprising that pure descent algorithms do not perform
well. We have observed from many test cases that there are
multiple α, β points that are far away from one another and
yield similar objective function values, and for this reason,
simulated annealing usually gets stuck at a local optimum.

CMA-ES, which can be seen as a “soft” gradient descent,
samples and evaluates candidate solutions from a multivariate
normal distribution at each iteration, and updates the mean
and covariance matrix to favor the sampling region that was
successful in the previous iteration. Thus, if there are several
local optima placed far apart, it, unlike simulated annealing,
tends to maintain a relatively broad sampling region that
encompasses many good-quality local minima until the region
to focus on becomes clear. In our specific implementation
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Fig. 6. Impact of the classifier parameters in the case of a small-scale two-
tier system: the mean response time as function of the classifier parameter β2,
after optimizing over α1, α2 for fixed β1.

of CMA-ES, we search for an initial feasible (α, β) solution
by scaling up both the covariance matrix and the sample
size until one is found. Once an initial feasible solution is
identified, a standard CMA-ES iteration begins. If there is no
improvement of the objective function for a predefined number
of consecutive iterations, it jumps to the best solution found
so far and starts over with an enlarged sampling region. The
total number of objective function evaluations including the
search for the initial feasible solution is limited by a predefined
parameter that represents the computational budget allowed.

As is the case for most randomized algorithms, there are
no known performance guarantees for the CMA-ES algorithm
for general objective functions. In fact, there is no guarantee
of convergence to a global optimum unless we exhaust the
solution space. So the only way to examine the quality of
the solution and how fast the solution is found is through
empirical results. To demonstrate these points, we used a
smaller-scale problem of placing 10000 chunks over two tiers,
where it is tractable to find an optimal solution by brute force,
and compared it against ExaPlan using 100 different random
seeds. It turned out that all seeds succeeded in finding the
optimal solution after a median of 21242 objective function
evaluations. The best and worst case number of evaluations
among the 100 seeds before the optimal solution was found
was 1623 and 101435, respectively. Figure 5 shows the median
and the 5th and 95th percentile values of the objective function
across all 100 seeds as a function of the number of objective
function evaluations.

D. Clustering chunks for scalability

The bottleneck of the solution process is the Workload
Classifier module, where the cost function values of each
chunk need to be evaluated for every tier in each iteration.
If the number of chunks exceeds the order of tens of millions,
the run time becomes too long for it to be practically useful. To
maintain scalability, we group chunks with similar workload
characteristics into clusters and solve the optimization problem
on the clusters (treated as “super-chunks”). By doing so, we
solve a smaller problem at the cost of executing a one-time
clustering step. Even relatively simple clustering algorithms,

such as k-means, do not scale well with the number of chunks,
suffering from the same scalability problem that we try to solve
by clustering. We have evaluated the k-means algorithm on
small-scale problems against a simple algorithm that grids the
projection of the workload space onto the (q, r) plane, and then
clusters chunks that fall into the same grid. We observed that
k-means has little to no advantage in terms of the end result
over the simple gridding algorithm, but took much more time
to run. So we chose to use a simple gridding algorithm with
log-spaced separation lines in the (q, r) plane, which results
in up to 104 clusters.

As many chunks are now represented by a single cluster, we
proceed to evaluate the request rate, and the mean and variance
of the request size that will represent the cluster. The request
rate of the cluster is fairly straightforward to define: the sum
of the individual request rates of all of its constituent chunks.
The request size distribution of the cluster is defined as the
mixture of the constituent chunks’ request size distributions,
with the mixture probabilities proportional to the respective
request rates. By denoting the size of a request to cluster C
by QC , we use the following expressions to evaluate the mean
and variance of QC from the request rate and size statistics of
its constituent chunks:

E[QC ] =
∑
j∈C

qjpj , (17)

Var(QC) =
∑
j∈C

q2j pj −

∑
j∈C

qjpj

2

+
∑
j∈C

Var(Qj)pj ,

(18)

where pj = rj/
∑
j∈C rj , qj is equal to the mean E[Qj ] of

the request size of chunk j, and Var(Qj) denotes the corre-
sponding variance. Var(QC) is computed using the variance
decomposition formula, as detailed in Appendix C.

E. Intended use cases

ExaPlan can be used for planing a new storage system, as-
suming the expected workload characteristics are known or can
be well estimated. ExaPlan can also be applied on top of either
an observed or a projected workload in an existing system to
suggest upgrading the number of devices in some or all of
the tiers, when either the current or the projected performance
is not satisfactory with the current system size. Next, when
running an existing multi-tiered system with certain (fixed)
number of devices in each tier, ExaPlan could be used for
periodically and adaptively changing the data placement based
on the observed changes in the workload characteristics. In this
case, the Dimension Optimizer does not compute an optimal
number of devices, but simply uses the existing number of
devices.

V. EXPERIMENTS

We proceed to assess the performance (mean system re-
sponse time) of ExaPlan for various price points on a set
of synthetic workloads generated with parameters from real
workloads whenever available. Price points are defined as the
cost-per-GB value of the stored data, not to be confused with
the cost per GB of the total available storage capacity. For
each of the workloads considered, we assess the performance
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TABLE II. TIER PARAMETERS

Tier SSD HDD 10K HDD 7.2K
Seek Time (ms) 0.5 4.6 8
Bandwidth (MB/s) 350 200 175
Cost ($/GB) 1.5 0.30 0.10
Cost of Device ($) 600 360 400
Capacity (GB/device) 400 1200 4000

of an all-SSD system with a high price point and compare it
with the results of the ExaPlan for a variety of price points.
For these workloads, we also illustrate the difference between
using files and using fixed-size extents as chunks. Finally, we
demonstrate the scalability of ExaPlan as the number of chunks
increases. We also show how the performance of ExaPlan
compares with that of HybridStore [7] for the various price
points and workloads considered. Note that HybridStore is an
integrated storage management system that includes a capacity
planning and a data placement module called HybridPlan.
As ExaPlan only addresses the capacity planning and data
placement problem in a static setting, we compare it only with
the HybridPlan part of HybridStore.

We set a computational budget for the CMA-ES algorithm
so that a solution is found in less than a few minutes, which
is comparable to how long it takes for HybridStore to output
a solution. The experiments were done on a Linux R© cluster
that comprises mostly Intel R© Xeon R© CPUs of different gen-
erations. We used a centralized load leveler to submit parallel
jobs to evaluate the various data points for the comparison.
As it is not a controlled environment, but rather a shared
one with jobs sharing common resources often running on
heterogeneous machines, it would be unfair to directly compare
the raw execution times of the methodologies considered. But
typically, we observed that ExaPlan running in single-threaded
mode took about twice as long to finish as HybridStore.

We assumed having three storage tiers: SSD eMLC (enter-
prise multi-level cell), HDD 10K rpm, and HDD 7.2K rpm.
The device characteristics of each tier are given in Table II.
Cost values assumed correspond to the year 2013. To measure
the accuracy of the mean response time estimations evaluated
analytically, we implemented a tiered storage system simulator
using the OMNEST simulation library, and recorded various
statistics.

A. HybridStore extensions

For the experiments, it was necessary to extend Hybridstore
so that it can be directly compared with ExaPlan. HybridStore
seeks the minimum cost yielding tier dimensions and data
placement that meet the imposed service capacity and volume
capacity constraints by formulating the problem as a mixed
integer linear program. To be able to compare the mean
response time yielded by HybridStore with that yielded by
ExaPlan at different cost-per-GB price points, and to validate
the results through simulation, we made three adjustments
to HybridStore, and we refer to this extended version as
HybridStore+.

First, we introduce an additional parameter which we call
a load factor. In contrast to HybridStore that outputs the
minimum required budget, ExaPlan takes the budget as an
input to the problem and seeks to minimize the mean response
time, so it is straightforward to evaluate ExaPlan at various

price points. To enable HybridStore to also be evaluated at dif-
ferent price points, we (indirectly) control the response time by
strengthening the load constraints, and observing the resulting
cost. Analogously to the volume utilization parameter, which is
used to control the excess volume desired for individual tiers,
we use the load factor to constrain the maximum load allowed
for the different tiers. Rewriting HybridStore’s service capacity
constraint [7, Eq. (3)] in terminology using rates instead of
aggregate values during a fixed time horizon, we have the
following:∑

j

(total load induced by cluster j if placed in tier k)

× (proportion of chunk in cluster j placed in tier k)

/(number of devices in tier k) ≤ load factor . (19)

The load factor (≤ 1) is used as a lever to indirectly control
the response time by using the relationship between load and
response time of (25). In many test cases, we observed that
constraint (19) with a load factor equal to 1 is binding at the
solution given by HybridStore, resulting in an infinite queueing
time. We could avoid these cases by forcing a slack in the
original load constraint through the use of load factors. We use
the same load factor for all tiers for the experiments because
HybridStore does not provide a mechanism to optimize the
load for each tier. In fact, the ability to appropriately distribute
the load across the tiers to optimize the response time is a
novelty of ExaPlan that sets it apart from other solutions. We
also experimented with using the built-in volume utilization
parameters as a lever to adjust price points. However, this
still did not prevent HybridStore from choosing a configuration
with binding load constraints, which results in infinite mean
response times.

The second extension is the specification of individual
chunk-to-tier assignments. In the solution provided by Hybrid-
Store, only the proportion of chunks in each cluster that are
to be placed in each tier is specified. To evaluate the mean
response time of the proposed placement using a simulator,
we also need to specify precisely to which tier and to which
device each chunk is assigned. We do this by randomly
assigning chunks of each cluster to tiers according to the
optimal proportions provided by HybridStore. We specify the
actual device within a tier to which the chunk is assigned using
the same load-balancing algorithm (LPT) as in ExaPlan.

The third extension is the number of clusters used com-
pared with what was used in the HybridStore paper. To account
for the wider range of request sizes and rates in the workloads
considered, we increased the number of clusters from 33 to
3201, as using 33 clusters gave bad performance results for
HybridStore. If we use an excessively large number of clusters,
there are many clusters that have only one or two chunks, and
we observed artifacts from trying to allocate these few chunks
to tiers based on the recommended proportion, which ends up
degrading the performance.

In contrast to HybridStore, which gives integer solutions
for the number of devices for each tier, ExaPlan gives solutions
which are then rounded up. Rounding up a fractional solution
is expected to have a negligible effect when trying to design a
large scale storage system typically having hundreds of devices
per tier. We use the CPLEX solver to implement HybridStore’s
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mixed integer linear program formulation. Thus, we compare
ExaPlan to HybridStore+, which is the HybridStore model with
the three extensions listed above.

B. File-level and extent-level workloads

Recall from Section III that the workload is represented
in terms of requests to chunks. This means that depending
on how chunks are defined, the same access pattern may
have different workload representations. We are specifically
interested in comparing the case of using files as chunks and
using fixed-size extents as chunks. The relationship between
file chunks and extent chunks is illustrated in Figure 7. When
using files as chunks, a traced request can be considered
equivalent to what is specified in an I/O system call, e.g., read
X bytes starting at Y bytes from the beginning of file Z. This
is typically how a user or an application would specify an
I/O request, and thus the response time of such a request may
be considered an “end-to-end” response time. We therefore
refer to requests when chunks are defined as files as user
requests. In contrast, requests where chunks are defined as
extents are referred to as modeled requests. If a file spans
multiple extents, e.g., file 1 spans extents 1, 2, and 3 in
Figure 7, large sequential user requests to the file may be
split into smaller modeled requests that are contained within
each of those extents. This is due to the fact that extents set
up artificial boundaries in the logical block address (LBA)
space that ignore file boundaries, which results in user requests
that span multiple extents being split at the extent boundaries.
Therefore, when comparing one workload representation with
another (e.g., file vs. extent), what constitutes a request in each
case has a different interpretation, and consequently, the mean
response time of the requests cannot be directly compared.

To compare the performance of using file-level chunks
with that of using extent-level chunks, we propose a method
to translate the mean response time of modeled requests to
a quantity comparable to the mean response time of user
requests during the same trace interval. To achieve this, the
trace of modeled requests is directly derived from the trace
of user requests by splitting it at extent boundaries. Having
the two traces covering the same time interval, we assume
that the sum of the response times of the trace of modeled
requests represents the time it takes to finish the total amount
of work generated by the user requests during the same period.
Denoting the mean response time of user requests by E[TUR],
the mean response time of the modeled requests by E[TMR],
and the number of user requests and modeled requests during
the trace period by nu and nm, respectively, we propose the
following translation formula

E[TUR] = E[TMR] · nm/nu . (20)

In all workloads we have considered in the experiments,
however, there was no noticeable difference between the mean
response times before and after this translation while using
extent-level chunks. Therefore, we only show and compare the
response time values before translation. This, however, may not
hold in general, especially for workloads in which extents are
much smaller than the average request size.

Note that this way of comparing the response times does
not take into account potentially achievable concurrency by
placing certain extents on different devices, nor does it take

file
extent

1
1

2
2

3
3 4

4 5
5

6
6
7

7 8
8

LBA space

user request

modeled requests

Fig. 7. A file may span multiple extents (file 1), or an extent may span
multiple files (extent 4). A user request to file 1 is split into 3 modeled requests
at the extent boundaries. Extent size is v(e).

into account the exact timing of when the split requests are
needed, as it is possible that not all parts of a big single request
are needed at once. These aspects regarding concurrency
as well as other commonly used performance improvement
techniques, such as file striping, are beyond the scope of this
article. Consequently, we simplify the comparison method by
assuming that the split requests are requested at once, but are
transferred one after the other.

For the experiments, we make the comparison between
using file-level chunks and using extent-level chunks, with
the number of chunks being the same in both cases. As the
execution time of ExaPlan depends primarily on the number
of chunks, setting the number of extents equal to the number
of files is necessary for a fair comparison. For the CERN
workload, which we will describe in further detail in the
sections below, we set the size of an extent to be equal to
the mean file size of 843 MB. This size is consistent with the
extent sizes of 0.5 to 1 GB for IBM R© Easy Tier R© [19] and
EMC R© FAST

TM
VP [20] used in practice.

Whether it is better to use files or extents as chunks for a
given workload depends on the tradeoff between the efficiency
of having a finer granularity of placement for large files and the
inefficiency of grouping together several small files with vastly
different access characteristics into a single chunk. When there
are isolated “hot” regions of a large file that spans multiple
extents, given that space on expensive tiers is scarce, the
ability to selectively assign only the hot extents to devices
of a fast/expensive tier would be preferable over assigning
the complete large file to a device of only one of the tiers.
Conversely, when multiple small files with vastly different
access characteristics are packed into a single extent, the extent
will have hot and cold regions, where the option to assign
separate constituent files separately to different devices/tiers
would be preferable. As we use the same number of extents
as the number of files in our experiments, we will generally
have both cases. It is then a matter of whether the large files
account for most of the workload, that determines which option
yields better performance. Another case is when large files
are accessed in a uniform fashion, not creating relatively hot
regions. There would not be much incentive in this case to
use extents to break up a single large file and to assign them
separately. In practice, the number of extents need not be
equal to the number of files and the user may decide how
many extents to use depending on the computational budget
available.

C. Workload generation procedure

Denote the file-level workload by W(f) =

{(Q(f)
j , r

(f)
j , v

(f)
j ) | j = 1, . . . , N (f)}, and the extent-level
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workload by W(e) = {(Q(e)
j , r

(e)
j , v(e)) | j = 1, . . . , N (e)}.

We set N (f) = N (e) = 106 for the experiments and use
the following procedure to generate the workload using
parameters, whenever available, from real-world systems,
such as CERN [21] and LOFAR [22]. For CERN, only the
file-size distribution was available, but for LOFAR, also the
request size and request rate for each file were also available,
in addition to the file-size distribution.

1) Generate v
(f)
j , j = 1, . . . , N (f), according to the

empirical file-size distribution.
2) Set Q(f)

j = Bj v
(f)
j , where Bj is a beta random variable

chosen according to the workload (see Sections V-D and
V-E).
3) Sample r

(f)
j from a log-uniform distribution within the

stability region of the fastest device (see Eq. (2)).
4) Using the W(f) generated by the preceding steps, generate
an LBA-level trace, which consists of tuples of the form (time
stamp, start address, request size) as follows:

a) Generate time stamps by sampling interarrival times
from an exponential distribution with rate

∑N(f)

j=1 r
(f)
j

(generate a Poisson arrival process).
b) Sample file j with probability proportional to r(f)j .

c) Sample a request size from Q
(f)
j .

d) Generate the start address relative to the beginning
block of the file according to a chosen distribution,
such as uniform or skewed.

5) Partition the LBA space into extents of size v(e), as shown
in Figure 7.
6) Translate the LBA-level trace obtained in step 4 into extent-
level trace W(e) by splitting requests that span multiple extent
boundaries and keeping the same time stamps.

The same workload can be characterized in terms of
user requests at the end of step 3, and in terms of mod-
eled requests at the end of step 6. We compare the two
alternatives, file vs. extent, for all workloads considered. We
represent the experiments where we used ExaPlan on the file
chunk and the extent chunk scenario by ExaPlan(file) and
ExaPlan(extent), respectively. The experiments where we used
HybridStore+ in the extent chunk scenario are represented as
HybridStore+(extent).

The arrival of requests in the file-level workloads used
for the experiments is assumed to be a Poisson process.
This assumption was made because of the lack of large-scale
realistic workloads (or the lack of methods for scaling up
smaller-scale workloads in a realistic manner). Furthermore, as
discussed in Section III, in large-scale systems with multiple
users, it is likely that the combined workload of all users is
Poisson. Consequently, the extent-level workloads, which are
obtained by splitting the file-level workloads, are also Poisson.
As discussed in Section III, we do not consider the effects
of cache. Therefore, the workload is assumed to be directly
served by the devices without any caching, which would have
otherwise absorbed some of the repeated requests.

D. Workload 1: Synthetic Poisson based on CERN file-size
distribution

We examine the mean response time and the number of
devices for each tier at nine different cost-per-GB price points

and compare the results with HybridStore+. Each price point
is determined by varying the load factor for HybridStore+,
from 0.1 to 0.9, and examining the optimal solution (minimum
system cost) at each of the load factors. The corresponding
ExaPlan experiment is conducted by using the minimum
system cost provided by HybridStore+ as the budget.

We sample the file sizes of step 1 of the workload gener-
ation procedure using the file-size distribution of CERN [21]
illustrated in Figure 8. For this case, the mean file size is
843 MB, with the largest file being 2.1 TB. The request
rates to each file are sampled from a log-uniform distribution
between 10−6 and 1/50 of the upper limit of the fastest (i.e.
SSD) device’s stability region at the given mean request size
value for the file. We consider two sub-workloads of this case,
representing two extremes of the workload spectrum regarding
the distribution of the request size and the request-starting
block location.

The first case (seq) represents highly sequential workloads
where the request size to a file is almost as large as the file
itself, with the starting block of the request being uniformly
distributed among eligible blocks. This is realized by setting
the parameters of the beta distribution (Section V-C, step 2) to
a = 5 and b = 1, where the pdf is proportional to xa−1(1 −
x)b−1. This implies that the average request size to a file is
a/(a+ b) = 5/6 of the file size, thus highly sequential.

The second case (rnd) assumes that request sizes are small
relative to the size of the file and that the starting block of the
request is skewed towards the beginning part of a file. This is
to emulate a type of workload where small random requests are
concentrated on isolated “hot” regions of the LBA space. To
specify this workload, the parameters of the beta distribution
used to describe the request size are set to a = 1 and b = 100.
This implies that the average request size is 1/101 of the file
size.

The highest price points in Figures 9(a) and 9(c), are
$12.93/GB and $9.66/GB, respectively, and are used as the
budget for the all-SSD reference system. As can be seen,
the mean response times of an all-SSD system with these
price points are much higher than the corresponding mean
response times obtained by ExaPlan. We also observe that the
performance of these all-SSD systems can be achieved at much
lower costs by using a mixture of all devices, as suggested by
ExaPlan.

From Figures 9(b) and 9(d), we observe that ExaPlan uses
fewer SSDs than an all-SSD system (12,430 instead of 17,357
SSDs and 10,925 instead of 12,967 SSDs, for sequential and
random workloads, respectively). Owing to the difference in
the costs of devices, a number of SSDs can be traded for
a higher number of HDDs. It turns out that with ExaPlan
many of the chunks with larger request sizes get assigned to
a disk tier and the resulting mean response time is decreased
compared to an all-SSD system. This is an interesting result
that shows that using as many SSDs as the budget allows is
not always the best choice from a performance perspective.

To compare the relative performance between using file-
level chunks and using extent-level chunks, we compare
ExaPlan(file) with ExaPlan(extent) in Figures 9(a) and 9(c).
For both workloads, ExaPlan(file) has significantly smaller
mean response time than ExaPlan(extent). We can see that
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(a) Mean Response Time (seq) (b) Number of Devices (seq)

(c) Mean Response Time (rnd) (d) Number of Devices (rnd)

Fig. 9. CERN workload results with sequential (seq) and random (rnd) access patterns. In (a) and (c), lines represent model estimates and markers simulation
results at the corresponding price points. The error bars represent the response time standard deviation divided by 30. For each workload, the all-SSD system
(with file-level or extent-level data placement) correspond to the highest price point shown in the corresponding figures.

Fig. 8. CERN file-size distribution

the sequential vs. random access patterns represented by the
two workloads do not affect this result. Therefore, from the
discussion of Section V-B, we could deduce that most of
the requests are directed towards the smaller files. Indeed,
the stability region from which we sample the request rates,

as detailed in Section V-C, gets narrower as the request
size increases. Consequently, larger files tend to have smaller
request rates than smaller files.

Comparing ExaPlan(extent) with HybridStore+(extent), see
Figures 9(a) and 9(c), we observe that for all price points
considered, ExaPlan significantly outperforms HybridStore+.
This is true for both the estimated and simulated mean response
time values. The reason why the simulation results may differ
from estimated results in some cases is due to the imperfect
load balancing when distributing the chunks assigned to a
specific tier to the individual devices of that tier, or to the
use of a trace with a duration which is too small compared
with the estimated response time. Nevertheless, the simulated
values confirm that the estimated values are accurate, albeit not
perfect, indicators of performance even when the ideal load-
balancing assumption no longer holds.

A notable difference between how ExaPlan and Hybrid-
Store+ uses the three available tiers, see Figures 9(b) and
9(d), is that HybridStore+’s device mix is predominantly SSDs,
whereas ExaPlan uses a balanced mix among the three tiers.
For storing the same volume of data, Figures 9(b) and 9(d)
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(c) EP file (seq, low budget)
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(d) HS+ extent (seq, high budget)
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(e) EP extent (seq, high budget)
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Fig. 10. Data placement for CERN experiments for 1000 randomly sampled chunks for the highest and lowest budgets considered in Section V-D. Note that
chunks with 0 request rate cannot be plotted on a log-log scale. The diameter of the circles in the file cases represent the size of the file (in log scale).

show that the device mix difference between sequential work-
load and random workload when using ExaPlan is in accor-
dance with intuition, i.e., more slow HDDs and fewer fast
SSDs will be used in the sequential case than the random
case.

The data placements for ExaPlan and HybridStore+ are
shown in Figure 10 for a few select price points. We note that
the cost-per-GB values considered in this experiment are much
higher than current market rates for cost per GB of storage. We
emphasize that the price points of the experiments are the cost

per GB of stored data as opposed to cost per GB of available
capacity. In addition to this, as the request rate information
was unavailable from CERN, we had to select a rule to
generate the request rates for the individual files. The eventual
rates selected corresponded to a very load-heavy (as opposed
to volume-heavy) workload scenario, and consequently many
devices were needed, not for the volume but for the required
service capacity. As a result, there was a considerable amount
of unused storage capacity, leading to remarkably high cost
per GB of stored data.
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Fig. 11. LOFAR imaging-pipeline file-access characteristics. Cumulative
proportion of number of requests and bytes transmitted for the top 13 files.

E. Workload 2: Imaging in astronomy

We traced a full imaging pipeline for the LOFAR radio
telescope array [22] on real observation data that resulted in
a 113-minute trace involving 1044 files accounting for 15 GB
in volume. The total number of requests observed during this
period was 20,214,062, resulting in a total of 40.4 GB read
and written. We recorded the I/O system calls with strace in
a isolated environment in which only the LOFAR imaging
pipeline was running. For this workload, we observed that
79.2% of the number of requests, accounting for 30.4% of
the bytes transferred, are to the largest file of size 11 GB.
Moreover, 1% of the files account for 98.1% of the requests
and 69.2% of the total bytes transferred. Further details of the
workload are illustrated in Figure 11.

From the trace, we obtained file-level access characteristics,
including the mean and variance of request size, and the
request rate for each file. By observing the ratio between the
request size and the corresponding file size, we were able
to estimate the parameters of the beta distribution used to
characterize the request size distributions that correspond to
the individual files. It turned out that the solution provided
by ExaPlan for this workload with a total volume of 15
GB involved small fractions as the number of devices, e.g.,
0.01 hard disk drives. Therefore, simulating this workload
based on that solution would be problematic as the simulator
only accepts integer device numbers, which implies that we
would have to round the solution to integers. Instead, we
considered a modified scaled-up version of the workload for
which the solution obtained involves roughly integer device
numbers. More specifically, we scaled up the workload 1000
times, which inflated the volume to 15 TB, by duplicating
the characteristics of the 1044 files 1000 times to effectively
consider 1,044,000 files. For this inflated workload, we then
generated a synthetic trace with Poisson arrivals which we used
as input to the simulator.

Similar to Workload 1, we note from Figure 12(a) that
ExaPlan can offer a significant advantage in terms of cost
and performance, when compared with an all-SSD system.
As observed earlier, by reducing the number of SSDs, Exa-
Plan is able to afford a greater number of HDDs (see Fig-
ure 12(b)), which helps offload chunks with larger request
sizes from SSDs and therefore improves performance. In

Fig. 14. Execution time of ExaPlan decomposed into cluster time and
optimization time for Workload 1 with file-level extents. Scales from 1 million
files (0.8 PB) to 1 billion files (0.8 EB).

contrast to Workload 1, Figure 12(a) demonstrates that file-
level placement perform worse than extent-level placement.
This is attributed to the fact that there is a large dominating
file that accounts for the majority of the requests. As discussed
in Section V-B, a few large files accounting for most of the
requests will make it advantageous to split larger files into
extents and assign these extents separately.

Figure 12(a) demonstrates that ExaPlan(extent) outper-
forms HybridStore+(extent) for all price points considered for
this workload. It is not as pronounced as for Workload 1,
but from Figure 12(b), we can see HybridStore+’s inclination
towards favoring SSDs by comparing the number of other
devices used in the device mix.

The data placements for ExaPlan and HybridStore+ are
shown in Figure 13 for a few select price points. As was the
case in Workload 1, we also see in this workload that the
cost-per-GB values considered are extremely high compared
to current market rates on cost per GB of storage. This is due
to the fact that the files considered are exclusively files that
appeared in the trace that was part of an active pipeline run.
These files have relatively high access rates, and as the trace
was scaled-up by a factor of 1000 to obtain the workload,
the workload is artificially inflated in terms of request rates.
The results shown in Figure 12 should be interpreted in terms
of what to expect if all data in the system were constantly
accessed for long periods of time.

F. Scalability

To demonstrate the scalability of ExaPlan, we ran it with
the sequential case of Workload 1 using file placements (1
million files) as a baseline and increased the number of files by
a factor of 10, 100, and 1000, recording the time each run spent
in the clustering and optimization phases. This allowed us to
observe how ExaPlan scales from running on a data volume
ranging from 0.8 PB to 0.8 EB. This was done in a single
threaded mode on an Intel R© Xeon R© E5-2680 CPU clocked
at 2.70 GHz with 4 GB of memory quota. The results are
summarized in Figure 14. The optimization time ranges from
12.5 sec for 0.8 PB to 43.4 sec for 0.8 EB. The optimization
time depends only on the number of clusters, so we can
roughly estimate that the 0.8 EB workload has four times more
clusters than the 0.8 PB workload. Using the grid clustering
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(a) Mean Response Time (seq) (b) Number of Devices (seq)

Fig. 12. LOFAR imaging pipeline results. In (a), lines represent model estimates and markers represent simulation values at the corresponding price points. The
error bars represent the response time standard deviation divided by 30. For each workload, the all-SSD system (with file-level or extent-level data placement)
corresponds to the highest price point shown in the corresponding figures.
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(d) HS+ extent (high budget)
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Fig. 13. Data placement for LOFAR experiments for 1000 randomly sampled chunks for the highest and lowest budgets considered in Section V-E. Note that
chunks with 0 request rate cannot be plotted on a log-log scale. The diameter of the circles in the file cases represent the size of the file (in log scale).

algorithm of Section IV-D, the number of clusters is bounded
by a user-specified value so the optimization time is bounded
for any workload size.

The bulk of the execution time is spent parsing the
workload file and clustering the chunks, where each row
corresponds to each chunk and its access characteristics. The
clustering time increases from 5.2 sec for the 0.8 PB workload
to 3127 sec for the 0.8 EB workload. In practice, we envision
that the clustering of files can be performed periodically as
regular maintenance and kept as part of file metadata so that
the next time the data placement needs to be optimized or the
storage layout modified, it suffices to perform only the quick

optimization part.

VI. CONCLUSIONS

Access-pattern-aware multi-tiered storage systems com-
posed of storage devices with different capacity, access time,
and sustained throughput characteristics can provide high-
performance operation and reduce costs. Assessing the number
of devices provided per tier and determining an efficient way
of placing vast volumes of data across tiers pose a great
challenge. A straightforward formulation of an optimization
problem for the task of determining the data-to-tier assignment
that minimizes the mean system response time is typically
intractable.
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This article presented ExaPlan, a method that circumvents
these challenges and determines both the data-to-tier assign-
ment and the number of devices in each tier that minimize the
system’s mean response time for a given budget and workload.
It achieves this by parameterizing the data placement that,
for fixed parameter values, leads to the derivation of closed-
form expressions for the optimal dimension of each tier.
It subsequently explores the data-placement parameter space
using a black-box optimization module to identify efficient
solutions. Experimental results demonstrated that ExaPlan was
able to provision exascale systems efficiently by providing
device mixes and data placement for a variety of workloads.
It was observed that ExaPlan outperforms HybridStore+ in
all cases we have tested, and that there is a strong evidence
that, for workloads that have data with vastly different access
characteristics, file-level data placement is superior to extent-
level data placement.
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APPENDIX A
PROOF OF PROPOSITION 1

The total arrival rate λk of all requests to tier k is the
sum of the arrival rates of requests for data residing within the
chunks in this tier, that is,

λk =
∑
j∈Ik

rj . (21)

We use Kingman’s formula [17] with the coefficient of varia-
tion of the inter-arrival time set to 1 to approximate the mean
waiting time for the M/G/1 queue:

E[Wk] '
(

ρk
1− ρk

)(
1 + c2s

2

)
E[Sk]. (22)

Assuming perfect load balancing within a tier, the request
arrival rate at a device in tier k is equal to λk/zk and its
mean service time is equal to 1/µk. The load ρk of a single
device of tier k is therefore given by

ρk = λk/(zkµk) . (23)

The approximate mean waiting time of a request served by tier
k is

E[Wk] ' ρk
1− ρk

· 1

µk
· 1 + c2s

2
. (24)

Adding the mean service time to (24), the mean response time,
E[Tk], is

E[Tk] ' ρk
1− ρk

· 1

µk
· 1 + c2s

2
+

1

µk
. (25)

Taking the average of (25) weighted by the request rates
λk over all tiers k, the mean response time at the system level,
E[T ], is given by

E[T ] =
∑
k

λk
λ
E[Tk]

' 1

λ

∑
k

[
(λk/µk)2

zk − λk/µk
· 1 + c2s

2
+
λk
µk

]
=

1

λ

∑
k

[
(λk/µk)2

zk − λk/µk
· 1 + σ2

kµ
2
k

2
+
λk
µk

]
, (26)

where 1/µk and σ2
k are the mean and the variance of the

service time distribution of tier k respectively. Denote the
service time random variable of tier k by Sk, the chunk
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containing the request in service by J(∈ Ik), and the mean
request size to chunk j E[Qj ] by qj . Then

P (J = j) =
rj
λk

, (27)

E[Sk|J = j] = sk +
qj
bk

, (28)

and

1/µk =
∑
j∈Ik

E[Sk|J = j]P (J = j)

=
∑
j∈Ik

(
sk +

qj
bk

)
rj
λk

. (29)

Conditioning on the chunk and using the variance decomposi-
tion formula

σ2
k = Var(Sk) = Var(E[Sk|J ]) + E[Var(Sk|J)] , (30)

where

Var(E[Sk|J ]) = Var

(
sk +

qJ
bk

)

=
1

b2k

∑
j∈Ik

q2j ·
rj
λk
−

∑
j∈Ik

qj ·
rj
λk

2
 ,

(31)

E[Var(Sk|J)] =
∑
j∈Ik

Var

(
sk +

Qj
bk

)
P (J = j)

=
∑
j∈Ik

1

b2k
Var(Qj)

rj
λk

. (32)

Substituting (31) and (32) into (30) yields

σ2
k =

1

b2k

∑
j∈Ik

q2j ·
rj
λk
−

∑
j∈Ik

qj ·
rj
λk

2


+
∑
j∈Ik

1

b2k
Var(Qj)

rj
λk

. (33)

APPENDIX B
PROOF OF PROPOSITION 2

The objective function (11) is a sum of convex rational
functions and the constraint set is a convex polyhedron,
which makes the minimization problem convex. Thus, in the
formulation, a local minimum implies a global minimum. Let
ζk, ηk denote the Lagrange multipliers corresponding to the
constraints of this minimization problem and consider the
Lagrangian function

L(z, ω, ζ, η) =∑
k

(λk/µk)2ak
zk − λk/µk

+ ω

(
K∑
k=1

zkCkγk −B

)

+

K∑
k=1

ζk

∑
j∈Ik

vj − zkCk

+

K∑
k=1

ηk

(
λk
µk
− zk

)
.

(34)

At a local minimum point, the following first-order necessary
conditions (KKT conditions) need to be satisfied:

∂L

∂zk
= 0 (k = 1, . . . ,K) (35)

ω

(∑
k

zkCkγk −B

)
= 0 (36)

ζk

∑
j∈Ik

vj − zkCk

 = 0 (k = 1, . . . ,K) (37)

ηk

(
λk
µk
− zk

)
= 0 (k = 1, . . . ,K) (38)

∑
k

zkCkγk ≤ B (39)

zk ≥

∑
j∈Ik

vj

Ck
(k = 1, . . . ,K) (40)

zk ≥
λk
µk

(k = 1, . . . ,K) (41)

ω ≥ 0 (42)
ζk ≥ 0 (k = 1, . . . ,K) (43)
ηk ≥ 0 (k = 1, . . . ,K) (44)

To find the optimal number of devices for each tier, it suffices
to solve this system of 3K+ 1 equations (35, 36, 37, 38) with
3K + 1 unknowns (ω, ζ1, . . . , ζK , η1, . . . , ηK , z1, . . . , zK) and
verify that the solution also satisfies the inequality conditions.

Consider the non-trivial case where λk > 0 for at least one
tier k. From (34) and condition (35), it follows that

−ak
(

λk
µkzk − λk

)2

+ ωCkγk − ζkCk − ηk = 0 . (45)

Thus, for λk > 0 and ω = 0, (45) implies that ζkCk +ηk < 0,
which contradicts (43) and (44). Therefore, we conclude ω > 0
at an optimal point. It is necessary that constraint (14) be non-
binding for the objective function to have a finite value. We
therefore set ηk = 0 for all k. Also note that for k 6∈ A, which
implies a strict inequality in (13), and considering (37), we
get that ζk = 0. If λk = 0 was true for k 6∈ A, then from the
preceding, (45) would imply that ω = 0, which is false. Thus,
λk > 0 for k 6∈ A. Conversely, this means that for a tier with
zero request rates, i.e., λk = 0, the volume constraint should
always be binding, i.e., k ∈ A.

As we assume that constraint (13) is binding for k ∈ A,

z∗k =
∑
j∈Ik

vj
Ck

(k ∈ A). (46)

We solve the following system of equations with unknowns
{zk, ω|k 6∈ A} to find z∗k for k 6∈ A:

− ak
(

λk
µkzk − λk

)2

+ ωCkγk = 0 (k 6∈ A) (47)∑
k 6∈A

zkCkγk = B −
∑
k∈A

∑
j∈Ik

vjγk. (48)
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Equation (47) is a direct result of condition (35) and equa-
tion (48) is derived from the result (46) plugged into∑

k 6∈A

zkCkγk +
∑
k∈A

z∗kCkγk = B (49)

from condition (36) with the previously derived result that ω >
0 at an optimal solution.

Essentially, we are removing the tiers with binding volume
constraints from the problem by adjusting the budget and
setting the Lagrange multipliers ζk to 0 for the remaining tiers
k 6∈ A. Assuming that at an optimal solution, ζk = 0 for k 6∈ A
indeed holds, and using (16), the optimal number of devices
for tier k is given by

z∗k =

∑
j∈Ik

vj/Ck if k ∈ A
(
B −

∑
i∈A

Hi −
∑
i 6∈A

λi

µi
Ciγi

)
√
ak

√
Ckγk

∑
i6∈A

λi

µi

√
aiCiγi

+ 1

 λk

µk
if k 6∈ A.

(50)

APPENDIX C
REQUEST SIZE VARIANCE FOR A CLUSTER OF CHUNKS

As QC is a mixture of the random variables Qj for j ∈ C,
with mixture probabilities rj/

∑
i∈C ri, we obtain Var(QC) by

conditioning on chunk J and using the variance decomposition
formula.

Var(QC) =Var(E[QC |J ]) + E[Var(QC |J)] ,

where

Var(E[QC |J ]) =
∑
j∈C

(E[QC |J = j])
2 rj∑

i∈C ri

−

∑
j∈C

E[QC |J = j]
rj∑
i∈C ri


2

=
∑
j∈C

(E[Qj ])
2 rj∑

i∈C ri

−

∑
j∈C

E[Qj ]
rj∑
i∈C ri


2

,

E[Var(QC |J)] =
∑
j∈C

Var(QC |J = j)
rj∑
i∈C ri

=
∑
j∈C

Var(Qj)
rj∑
i∈C ri

.
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