
RZ 3888 (# ZUR1501-056) 01/23/2015
Electrical Engineering 5 pages

Research Report

Symmetry-Based Subproduct Codes

Thomas Mittelholzer, Thomas Parnell, Nikolaos Papandreou and Haralampos Pozidis

*IBM Research – Zurich
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some re-
ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich

Symmetry-Based Subproduct Codes
Thomas Mittelholzer, Thomas Parnell, Nikolaos Papandreou and Haralampos Pozidis

IBM Research – Zurich
8803 Rüschlikon, Switzerland

Email: {tmi,tpa,npo,hap}@zurich.ibm.com

Abstract—Recently, a new type of product-like codes, known
as half-product codes, have been studied for OTN applications.
Motivated by these codes, new classes of symmetry-invariant sub-
product codes are proposed and investigated under iterative hard-
decision decoding. A subset of the new class of quarter product
codes has lower error floors than comparable half-product codes
in terms of length, rate and performance.

I. INTRODUCTION

With the shift towards longer codes in applications such as
optical transport networks (OTN), product codes have been
re-considered and new product-like codes proposed [1], [2],
[3], [4], [5]. A key feature of these codes is that their bit-
error rate (BER) performance under iterative decoding can be
analytically analyzed for low BERs [6].

In Section II, we study specific product-like codes that are
motivated by half-product codes (HPC) as defined in [3], [6].
HPCs are derived from symmetry-invariant subcodes of n×n
product codes. By extending the symmetries, we arrive at
two new classes of symmetry-invariant subcodes, the quarter
product codes (QPC) and the octal product codes (OPC).
Constructions and encoders for the new codes are given in
Section III. In Section IV, the BER performance of iterative
hard-decision decoding of the new codes is assessed based on
similar techniques used for product codes. In particular, it is
shown that a certain class of QPCs has higher rate and a lower
error floor than comparable HPCs.

II. SYMMETRIES OF THE SQUARE AND
SYMMETRY-INVARIANT CODES

We will construct subcodes of 2-dimensional product codes
that are invariant to certain symmetry operations. To this end,
we consider product codes that are based in a single linear
component code C, which is the same for the rows and
columns, i.e., the codewords

X = [xij], i, j = 1, 2, . . . , n

are n×n square arrays whose rows and columns are codewords
of C.

The transpose operation is a symmetry of the square array
X , which is characterized by the reflection along the diagonal.
The class of square product codes that is invariant under
transposition has been considered in [3], [6]. The square
admits additional symmetry operations, namely, the reflection
along the anti-diagonal and reflections along the vertical and
horizontal mid-segments. These symmetry operations generate
the symmetry group of the square, the dihedral group of

order 8. We will study subproduct codes that are invariant
under these additional symmetries. For example, one can
consider “octal” product codes, which are invariant under the
dihedral group. As illustrated in Fig. 1, such a code would be
determined by one eighth of the square array as the remaining
seven eighths are obtained by symmetry operations.

Fig. 1. An octal code is determined by 1/8 of the square array by applying
the symmetries of the square.

As usual, transposition (reflection along the diagonal) of the
square array X will be denoted by XT . Moreover, XA and
XV will denote reflection at the anti-diagonal and reflection
at the vertical mid-segment, respectively. For a given (square)
product code CP , based on a component code C, the corre-
sponding half-product code (HPC) CH is defined by the set of
upper triangular matrices in the set of anti-symmetric matrices
(see [6])

C̃H = {X −XT : X ∈ CP }. (1)

To obtain a subcode of the product code it is necessary
that the component code for the rows and the columns be
the same, which ensures that the transpose of a codeword is
again a codeword. This condition on the component codes is
not sufficient when applying the other two symmetries. For
example, given any codeword X , the left-right flipped word
XV is also a codeword if and only if the row component code

is a reversible code, that is, a code that is invariant under a
reversal of the coordinates in each codeword [8]. Thus, for
the two following definitions, we will require that the (square)
product code CP is based on a reversible component code C of
even length n = 2n′. The corresponding quarter product code
(QPC) CQ is obtained from the symmetry-invariant subcode

C̃Q =
{
X −XT − (X −XT)A : X ∈ C

}
. (2)

By virtue of the symmetry of C̃Q, the set of n′(n′ − 1) code
symbols corresponding to locations in each triangular subarray
confined between the diagonal and anti-diagonal are the same.
These n′(n′−1) code symbols thus define the quarter product
codeword, whereby the quarter product code has an effective
length of NQ = n′(n′ − 1). Thus, CQ = ρQ(C̃Q), where
ρQ(·) denotes the restriction operator to a triangular subarray
between the diagonal and anti-diagonal.

Similarly, the octal product code (OPC) CO is obtained from
the symmetry-invariant subcode

C̃O = {X −XT − (X −XT)A −(
X −XT − (X −XT)A

)V
: X ∈ CP }. (3)

The OPC is determined by a “fundamental domain” of the
dihedral group, e.g., by the n′(n′−1)/2 components between
the diagonal and the vertical mid-segment as illustrated in
Fig. 1, and thus its effective length is NO = n′(n′−1)/2. More
formally, one defines CO = ρO(C̃O), where ρO(·) denotes the
restriction to this fundamental domain.

By definition, C̃Q is invariant under the symmetry group of
order 4 generated by the reflections along the two diagonals.
Similarly, C̃O is invariant under the full symmetry group of
the square (of order 8). By construction, the codewords of
C̃Q or C̃O have an all-zero diagonal and an all-zero anti-
diagonal. This property of having zero diagonals is important
for the associated graph structure of the codes, which will be
discussed below.

Example 1: Consider the binary (n = 8, k = 7, d = 2)
single parity check code C, which clearly is reversible. The
codewords of the QPC-related symmetry-invariant subcode C̃Q
are of the form

0 x12 x13 x14 x15 x16 x17 0
x12 0 x23 x24 x25 x26 0 x17

x13 x23 0 x34 x35 0 x26 x16

x14 x24 x34 0 0 x35 x25 x15

x15 x25 x35 0 0 x34 x24 x14

x16 x26 0 x35 x34 0 x23 x13

x17 0 x26 x25 x24 x23 0 x12

0 x17 x16 x15 x14 x13 x12 0

. (4)

The QPC CQ is determined by the n′(n′−1) = 12 components
in the upper triangle, which are marked in non-italic typeface.

The graphical model for the HPC is the complete graph
with n vertices, where n is the length of the component code
[6]. The n vertices correspond to check nodes, which impose
the constraints of the component code. The n(n− 1)/2 edges
of the complete graph correspond to the n(n−1)/2 codeword

components in the upper triangular matrices. The QPC has
a similar graphical model, namely, it consists of a complete
graph with n′ = n/2 vertices and double edges between
any two vertices. The n′ vertices correspond to check nodes
imposing the constraints of the component code C and the
n′(n′ − 1) edges correspond to the codeword components.

Fig. 2. Graphical model of QPC in Example 1.

We will illustrated the graphical structure of the QPC by the
above example for the case of n′=4 vertices. Each vertex
can be assigned a codeword of the component code C in the
following way. The first vertex corresponds to the first row in
(4), which starts and ends with a zero – note that all com-
ponents are in non-italic typeface except for the two zeros.
The second vertex corresponds to the doubly-folded word
[x12 0 x23 x24 x25 x26 0 x17], which starts at entry (1, 2) of
(4), is folded (by 90 degrees) at the second zero of the diagonal
and at the second zero from above of the anti-diagonal.
By construction this is a codeword of the component code.
Similarly, the third vertex corresponds to the doubly-folded
word [x13 x23 0 x34 x35 0 x26 x16] with the two foldings at
the third zero of the diagonal and the anti-diagonal. The n′=4-
th vertex corresponds to [x14 x24 x34 0 0 x35 x25 x15] with
the two foldings at the n′-th zero of the diagonal and the anti-
diagonal. For any two vertices, say i and j, 1 ≤ i < j ≤ n′,
the corresponding folded words intersect in two locations in
array (4), namely, at the entries (i, j) and (i, 2n′− j+1). The
corresponding graph is shown in Fig. 2.

Given a (n, k, d) component code, the HPC has length
NH = n(n − 1)/2 and dimension KH = k(k − 1)/2 [6].
The minimum distance formula dH = d(d− 1)/2 as given in
[6] does not hold because there is the lower bound dH ≥ d2/2.
This bound follows from the fact that the symmetry-invariant
subcode C̃H ⊂ CP of the product code has at least minimum
distance d2. Recently, the much tighter bound dH ≥ 3d2/4
has been proved in [7].

Remark 1: The graphical structure of the QPC is the same
as that of an HPC with 2-bit grouping of symbols and an all-
zero diagonal (similar to the 4-bit grouping of symbols shown
in Figure 4 in [3]). However, starting with the same reversible
component code, the resulting codes are different; in particular,
the QPC has larger dimension in general.

III. CONSTRUCTION OF QPCS AND OPCS

Construction and encoding of HPCs are straightforward as
they are based on the construction and encoding of product
codes with symmetrical inputs [6]. For QPCs and OPCs

encoding and determination of the code dimension are less
obvious. The basis for these codes are reversible even-length
component codes, which are reviewed in subsection III-A. In
subsection III-B, code constructions and encoding of QPCs
and OPCs will be studied based on reversible component
codes.

A. Reversible Codes

Reversible codes have been introduced and extensively stud-
ied by Massey [8]. It was shown that reversible cyclic q-ary
codes are characterized by having a generator polynomial with
‘symmetric roots’ β and β−1, β ∈ GF(qm). In particular, there
are reversible q-ary (ñ, k̃, d̃) BCH codes of length ñ = qm−1
characterized by the roots α−t, . . . , α−1, 1, α, . . . , αt with
d̃ ≥ 2t + 2. In applications, the desired code length n is
often shorter than that of the cyclic code. To obtain a shorter
code, we consider the subcode that consists of all codewords
x1, x2, . . . , xñ whose middle components are zero, i.e., xi = 0
for i = n′ + 1, . . . , ñ− n′ − 1. By construction, this subcode
C is reversible, its effective length (by removing the middle
zeros) is n = 2n′ and it has dimension k = k̃ − (ñ − n),
where k̃ denotes the dimension of the cyclic code. Moreover,
this shortened code has a systematic generator matrix G
with systematic symbols at the center. In particular, G is
obtained by shortening a systematic generator matrix of the
cyclic reversible code with k̃ systematic symbols at the center,
⌊(ñ−k̃)/2⌋ parity symbols to the left and ⌊(ñ−k̃+1)/2⌋ parity
symbols to the right. This provides a large and interesting class
of reversible codes that can be used as component codes for
the symmetry-invariant product codes.

B. Encoding of QPCs and OPCs

For QPCs, encoding can be based on the graphical structure.
We illustrate this procedure for the QPC of Example 1. Each
of the n′ − 1 = 3 folded words must be a codeword of the
single parity check code. We place a single parity symbol at
the end of each of these three codewords, i.e., at x15,x16,x17,
and the other 9 of the 12 symbols are data symbols. Encoding
starts with vertex n′ = 4: meeting the code constraint of the
component code C determines the parity symbol x15. Next
encoding proceeds at node n′ − 1 = 3, which determines
the parity symbol x16. Finally, the last parity symbol x17 is
determined from the constraint at node 2.

More generally, for a given reversible q-ary (n=2n′, k, d)
component code having a systematic generator matrix G with
k systematic symbols at the center, we distinguish two cases.

For odd k = 2k′ + 1, the parity part at the beginning of a
component codeword has length n′−k′−1, and the parity part
at the end has length n′ − k′. In this case, the QPC supports
k′2 = k′(k′−1)+k′ data symbols. k′(k′−1) of these symbols
are filled in the upper triangle between the two diagonals as
illustrated in upper right square in Fig. 1. The additional k′

data symbols are placed consecutively at the left of the vertical
mid-segment in the n′ − k′-th row above that data symbol
triangle, i.e., at locations xn′−k′,n′−k′+1, . . . ,xn′−k′,n′−1. En-
coding proceeds in a sequential manner as described above:

First the innermost doubly-folded codeword corresponding to
vertex n′ is encoded using G; then, the next doubly-folded
codeword corresponding to vertex n′−1 is encoded by G, etc.
Note that at each encoding step, the systematic encoder of the
component code uses as input data either data symbols of the
QPC or parity symbols of previous encodings and, therefore,
all n′ − 1 encoding steps can be completed.

For even k = 2k′, the parity parts at the beginning and
end of a component codeword both have length n′ − k′. In
this case, the QPC supports k′(k′ − 1) data symbols, which
are filled at the center of the upper triangle as in the previous
case. Again encoding proceeds in a sequential manner.

For OPCs, the encoding is similar to the encoding of
QPCs, but with the additional constraint that the input data
is placed symmetrically with respect to the mid-segment of
the square array. For instance, in Example 1, one can choose
all 6 components to the left of the mid-segment freely and
mirror them to the right of the mid-segment; then all single
parity checks are satisfied. This octal code is the trivial
(NO = 6,KO = 6, dO = 1) code. The graphical structure
of this OPC corresponds to the complete graph with n′ = 4
vertices, namely, to the modified graph in Fig. 2, where the
double edges with labels x15, x25, x35, x16, x26 and x17 have
been removed. In general, the associated graph of an OPC of
length NO = n′(n′ − 1)/2 is the complete graph with n′

vertices.
From these encoding schemes for the QPC and OPC, one

can determine the code dimensions, which are stated below.
Theorem 1: Let C be a reversible (n=2n′, k, d) q-ary

component code that has a systematic generator matrix with
the systematic symbols in the center of the codeword.
(i) The corresponding QPC of length NQ = n′(n′ − 1) has

dimension

KQ =

{
k′(k′ − 1) if k = 2k′

k′2 if k = 2k′ + 1
(5)

(ii) The corresponding OPC of length NO = n′(n′ − 1)/2
has dimension

KO =

{
k′(k′ − 1)/2 if k = 2k′

k′(k′ + 1)/2 if k = 2k′ + 1
(6)

IV. PERFORMANCE OF SUBPRODUCT CODES

Product codes can be iteratively decoded using the asso-
ciated graphical structures (bipartite graphs). Hard-decision
iterative decoding is performed based on the graph by applying
bounded-distance decoding to all row codewords, then apply-
ing bounded-distance decoding to all column codewords. Each
time a codeword is successfully decoded, the edges leaving
the appropriate node are corrected. The process iterates until
decoding is complete, i.e., either all syndromes are zero or
the decoder makes no further progress. In the first case, the
decoder output is a codeword and decoding is successful or
produces a miscorrection. In the second case, the decoder fails
to decode.

In the following two subsections, we review the perfor-
mance limits of iterative decoding, which is based on iterative

decoding thresholds and approximate bit-error-rate (BER) per-
formance analysis in the waterfall and the error floor region.
In the last subsection, this performance analysis is applied to
selected codes.

A. Iterative Decoding Threshold

For component codes of increasing lengths but with a
fixed error-correction capability t, iterative decoding has been
analyzed using various techniques [1]. If miscorrections are
neglected the different approaches have matching results. In
[6], the analysis has been extended to HPCs using the threshold
behavior of the appearance of k-cores in a random graph [9].
We argue that for QPCs a similar approach holds because
(i) the associated graph of a QPC is a complete graph with
double edges (instead of single edges for the HPC) and (ii)
the threshold behavior of k-cores holds for multi-graphs (see
[9]). We briefly review this result.

Starting from a given code graph, say for the complete graph
of a QPC with V = n′ vertices and E = n′(n′ − 1) (double)
edges, one obtains an error graph by transmitting a codeword
through a binary symmetric channel (BSC) with crossover
probability p. The channel will flip each edge label (codeword
component) with probability p. The subgraph of the flipped
edges (components) is known as error graph. On average, the
error graph has V vertices and Ep edges. For the complete
graph with double edges, each node of the error graph has
2(n′ − 1)p edges on average and the edge distribution at each
node is binomial. For large n′, it is well approximated by a
Poisson distribution with parameter λ = 2(n′ − 1)p.

A k-core is a subgraph of the (error) graph with an edge
degree of at least k for all its vertices. Consider a QPC based
on a t-error correcting reversible component code. The decoder
will fail if and only if the error graph contains a (t+1)-core [1].
For a random graph with V nodes and E edges, asymptotically
there exists a k-core for k > 2 with high probability when E >
V ck/2, where the threshold ck is determined by a truncated
Poisson distribution [9]; in particular, c3 = 3.35, c4 = 5.14,
c5 = 6.80, c6 = 8.37. This is the basis for the definition of
the iterative decoding threshold as

pc = V ct+1/2E. (7)

For large code lengths, iterative decoding succeeds with high
probability if and only if the BSC has crossover probability
p < pc.

B. Approximate Analytical Performance Analysis

A length-N codeword that was sent over the BSC with
crossover probability p has an error distribution fobs,p(s) of
the observed errors, which is binomial with mean Np and
variance Np(1− p). Here s denotes the actual observed error
rate within a codeword. For large N , this is well approximated
by the normal distribution with the same mean and variance.
Following the argument in Section 4.1.1 of [4], we write the
frame error rate as

FER(p) =
∫ 1

0

fobs,p(s)Pr[Frame error |s]ds. (8)

The threshold property of iterative decoding of long (sub)-
product codes implies that Pr[Frame error |s] is well approx-
imated by a step function which jumps from 0 to 1 at the
iterative decoding threshold pc, which leads to

FER(p) ≈
∫ 1

pc

fobs,p(s)ds =
1

2
erfc

(
(pc − p)

√
N√

2p(1− p)

)
. (9)

Here erfc denotes the complementary error function. When
decoding fails, we assume that the number of bit errors is
N max{pc, p} and, thus, the output bit-error rate (BER) is
approximated by

BER(p) ≈ 1

2
max{pc, p}erfc

(
(pc − p)

√
N√

2p(1− p)

)
. (10)

The formula for BER(p) is valid in the waterfall region of
the BER-curve. To obtain the performance in the error floor
region, we study the error patterns that make the decoder fail,
which were termed “stalling” patterns in [4]. For a product
code of length N = n2, which is based on a t-error correcting
component code, the stalling patterns of minimum weight are
easy to characterize: the minimum weight patterns have weight
w = (t+1)2, and they consist of t+1 rows with t+1 errors
at the same locations, i.e., these are square structures with
(t+ 1)×(t+ 1) errors. The number of these patterns is given
by

µ =

(
n

t+ 1

)(
n

t+ 1

)
.

The error floor performance is approximated as (see [2], [6])

BERfloor ≈ µpww/N. (11)

In [3], the stalling patterns for HPCs with t = 3 have been
analyzed. The minimum weight stalling patterns have weight
wH = (t+ 2)(t+ 1)/2 = 10 and their multiplicity is

µH =

(
n

t+ 2

)
.

The multiplicity µ equals the number of complete graphs on
t+2 vertices within the complete graph on n vertices. Clearly,
this holds for any t. With these parameters one can readily
generalize the approximation (11) for the HPC case.

For QPCs, the error floor performance can again be approxi-
mated by (11) with appropriate weights and multiplicities. The
analysis of stalling patterns is slightly more involved, and here
we consider only two cases, namely, reversible length-n = 2n′

component codes, which can correct t = 2 or t = 4 errors. We
are looking for the smallest t + 1-cores within the complete
graph on n′ vertices with double edges.

For t = 2, the minimum weight subgraph has three vertices,
and all pairs are connected by double edges except for one pair
that is connected by a single edge. The weight of this stalling
pattern is wQ = 5 and it has multiplicity

µQ = 6

(
n′

3

)
.

The weight w′
Q=6 stalling patterns consists of complete

subgraphs on 3 vertices and of certain subgraphs on 4 vertices
all of degree 3 with 6 edges in total. The multiplicity equals

µ′
Q =

(
n′

3

)
+

(
n′

4

)(
26 + 22

(
4
2

))
.

For t = 4, the smallest stalling pattern is a subgraph on
4 vertices, where all pairs of vertices except for two pairs
are connected by two edges and the two exceptional pairs are
connected by a single edge only. This subgraph has w′′

Q = 10
edges and the number of such subgraphs is

µ′′
Q = 22 · 3 ·

(
n′

4

)
.

C. Performance of Selected Codes

Two short QPC codes are designed for validation purposes.
They are based on the t=2 and t=4 error-correcting reversible
binary BCH component codes with parameters (200, 183, 6)
and (216, 183, 10), respectively. The performance curves are
shown in Fig. 3. There is good agreement between the simula-
tions of the pseudo-decoder (without miscorrections) and the
estimates from the approximate analytical method using (10)
and (11). Moreover, for the QPC with t=4, true and pseudo-
decoder have almost identical performance. In all cases, the
maximum number of decoding iterations was limited to 20.

−2.4 −2.3 −2.2 −2.1 −2 −1.9 −1.8 −1.7 −1.6 −1.5
10

−20

10
−15

10
−10

10
−5

log
10

(p)

B
E

R

QPC(1237B,2) r=0.836 Pseudo
QPC(1237B,2) r=0.836
QPC(1237B,2) w5−floor
QPC(1237B,2) w6−floor
QPC(1444B,4) r=0.717 Simul.
QPC(1444B,4) r=0.717 Pseudo
QPC(1444B,4) r=0.717
QPC(1444B,4) w10−floor
HPC(1472B,3) r=0.668
HPC(1472B,3) w10−floor

Fig. 3. Validation of approximate analytical QPC performance curves.

For comparison, we also show a HPC code of similar
length that is based on the binary (154, 126, 8) BCH code.
The rate-0.717 QPC and the rate-0.668 HPC have comparable
performance in the waterfall region. Morever, the QPC has a
lower error floor than the HPC.

More general, for any t=3-based HPC and t=4-based
QPC of similar length, µH > µ′′

Q holds if n ≥ 16. Thus,
for comparable codes, the QPC has the lower error floor.
Furthermore, if the two corresponding component codes are
binary BCH codes with defining roots in the same extension
field, then the QPC has higher rate than the HPC. In particular,
if the dimensions satisfy KH ≈ 22ℓ+1 ≈ KQ, then the rate of
the QPC exceeds that of the HPC.

In [3], a HPC was proposed for coding over optical transport
networks (OTN). This HPC has similar parameters as the
coding scheme in Appendix I.9 of the OTN standard G.975.1.
Here we compare two similar codes, viz., a HPC and a QPC of
essentially the same rate ≈ 239/255 and length ≈ 512×1020,
which are based on the binary (1021, 990, 8) BCH code and
the binary reversible (1446, 1401, 10) BCH code, respectively.
Both codes have similar analytical performance curves in the
waterfall regions, but the QPC has a lower error floor. As the
t=4 component code has a lower miscorrection probability
than the t=3 code, the actual performance of the two codes
will even be closer.

−4.5 −4 −3.5 −3 −2.5
10

−20

10
−15

10
−10

10
−5

log
10

(p)

B
E

R

G.975 RS(255, 239, t=8)
QPC(65250B,4) r=0.939
QPC(65250B,4) floor
Capacity limit: r = 0.9387
HPC(65088B,3) r=0.94
HPC(65088B,3) floor

Fig. 4. Approximate analytical performance of the reference G.975 code and
of a similar-rate HPC and QPC on a BSC with crossover probability p.

V. CONCLUSIONS

A new class of sub-product codes was proposed and their
BER performance under iterative decoding investigated. This
class provides additional flexibility in the design of product-
like codes. In particular, there is a subset of QPCs with higher
rate and lower error floor than comparable HPCs.

REFERENCES

[1] Jørn Justesen and Tom Høholdt, “Analysis of Iterated Hard Decision
Decoding of Product with Reed-Solomon Component Codes,” IEEE Proc.
ITW 2007, Lake Tahoe, CA, USA, 2-6 Sept. 2007, pp. 174–177.

[2] J. Justesen, “Iterated Decoding of Modified Product Codes in Optical
Networks,” IEEE Proc. Inform. Th. and Appl. Workshop ITA2009, San
Diego, CA, USA, 8-13 Feb. 2009, pp. 160–163.

[3] Jørn Justesen, Knud J. Larsen, Lars A. Pedersen,“Error Correcting Coding
for OTN” IEEE Communications Magazine, Vol. 48, No. 9, pp. 70–75,
Sept. 2010.

[4] Benjamin P. Smith, Error-Correcting Codes for Fibre-Optic Communica-
tion Systems, Ph.D. thesis, Univ. Toronto, 2011.

[5] Y.-Y. Jian, H.D. Pfister, K. Narayanan, R. Rao, and R. Mazahreh, “It-
erative Hard-Decision Decoding of Braided BCH Codes for High-Speed
Optical Communication,” IEEE Proc. GLOBECOM 2013, pp. 2376–2381.

[6] J. Justesen, “Performance of Product Codes and Related Structures
with Iterated Decoding,” IEEE Trans. Communications, Vol. 59, No. 2,
pp. 407–415, Feb. 2011.

[7] H.D. Pfister, S.K. Emmadi, K. Narayanan, “Symmetric Product Codes,”
IEEE Proc. ITA 2015, San Diego, CA, USA, 1-6 Feb. 2015.

[8] J.L. Massey, “Reversible Codes,” Inform. & Control 7, pp. 369–380, 1964.
[9] S. Janson, M. Luczak, “A Simple Solution to the k-Core Problem,”

Random Structures Algorithms, Vol. 30, pp. 50–62, 2007.

