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Abstract
We introduce a static information flow analysis for dynamic systems. Based on user-configurable

trust assumptions, our approach computes an information flow graph on top of a system model
graph. The edges in this information flow graph are annotated with dependencies on the trust
assumptions’ conditions, which operate on node attributes and connectivity. A dynamic system model
is described as a graph delta of incremental and decremental node and edge changes as well as node
attribute changes. Our differential analysis computes the impact of a system model graph delta on the
information flow graph based on the information flow edges’ dependencies. We apply our approach to
the practical and important problem of tenant isolation in dynamic virtualized infrastructures.

1 Introduction
Isolation is a fundamental security requirement in any multi-level security system. The non-interference
property [24] is a strict formalization of isolation: Inputs and outputs are classified as either low or high,
and a computation on low values must not influence high outputs and vice versa. Less strict and practical
variants of non-interference have been proposed, which allow for instance mediated communication
between different security levels using channel control [35]. Alternatively, access control models for
multi-level security systems exist, such as, Biba [5] for integrity, Bell-LaPadula [3] for confidentiality, and
Chinese Wall [9] for confidentiality with conflicting parties.

These fundamental security models find their application in practical systems security. For instance
in virtualization, the sHype [36] hypervisor mediates inter-VM communication and enforces the aforemen-
tioned access control models. Rueda et al. [34] analyzes VM access control policies using information flow
graphs to verify inter-VM flows. The TVDc [4] approach enforces access control on the entire virtualized
infrastructure level and not just on the hypervisor. The analysis of isolation and mediated inter-VM
communication in heterogeneous virtualized infrastructures has also been studied [7]. Similar approaches
have been proposed for the Android operating system, such as, domain isolation [11], taint tracking [18],
and permission analysis using graph reachability [10].

In general we can classify the isolation approaches as either static or dynamic. The static approaches
operate on a model of the system and compute potential information flows, in order to make a policy
decision on illegal flows. The dynamic approaches monitor the running system for actual flows to detect
or block illegal ones. A similar classification is done in program analysis where static approaches operate
on the source code of the program, and dynamic approaches analyze the executing program. One benefit
of the static approach is that we compute all possible flows whereas in the dynamic approach we only see
the current actual flows. However, the static approach operates on a model of the system. In dynamic
systems we need to ensure that the model is kept in sync with the actual system, otherwise we have delays
in the detection of violations or miss transient violations altogether. Previous static approaches, such as
[7] and [34], only operate on static system models. In this work we pursue a static analysis approach
of dynamic systems based on system change events and a differential analysis. We apply our approach
to the case study of isolation in dynamic virtualized infrastructures. However our approach is general
enough to be applied also in other domains, such as attacker propagation in digital-physical environments
or access control configurations.
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Our approach works in two phases: the initial phase and the differential phase. The initial phase takes
a current snapshot of the system modeled as a graph. A directed information flow graph is computed as
an overlay graph on top of the system model graph. Using the information flow graph we can compute
reachability between any two nodes, in order to verify isolation policies. The information flow edges are
constructed based on a set of user-defined flow rules that capture trust assumptions on system elements
and their isolation properties. The constructed edges are dependent on the flow rules’ conditions on node
attributes and connectivity. This lays the foundation for the dynamic analysis because we record the
existence requirements for each edge and can verify if these requirements still hold in a changing system.
In the differential phase, we obtain a system model change as a graph delta, which describes incremental
and decremental node and edge changes as well as node attribute changes. We compute the impact of
the system model change on the information flow graph based on evaluating the flow rules for new nodes
and edges, remove information flow edges for deleted elements, as well as using the edge’s dependencies
on node attribute or connectivity changes.

This work is a generalization of previous approaches to dynamic information flow graphs with user-
defined flow rules for virtualized infrastructures [6, 8]. We provide detailed specifications of the models,
flow rules, and algorithms. We further analyze the correctness and complexity of the algorithms, in
particular its termination, the correct ordering of rules using an adapted firewall rules fault model, and
the equivalence of a full and differential analyses.

Contributions: In summary we make the following contributions.

• We propose the novel concept of information flow graphs constructed from user-defined flow rules.
The flow rules capture trust assumptions on isolation in system components based on their attributes
and connectivity. This leads to a generic and user-configurable approach that we apply to the case
study of isolation in virtualized infrastructures. We analyze the correctness and complexity of our
approach, in particular we adapt a firewall fault model to analyze flow rules sets.

• We establish dynamic information flow graphs that are updated based on system model changes,
including incremental, decremental, node property, and resulting connectivity changes. This enables
a differential information flow analysis for dynamic systems. We apply our dynamic approach also to
the case study of isolation in virtualized infrastructures in combination with a system that provides
system model changes.

2 Isolation in Virtualized Infrastructure
Multi-tenant virtualized infrastructures offer self-service access to a shared physical infrastructure with
compute, network, and storage resources. While administrators of the provider govern the infrastructure
as a whole and the tenant administrators operate in partitioned logical resource pools, both groups change
the configuration and topology of the infrastructure. For example, they create new machines, modify or
delete existing ones, causing large numbers of virtual machines to appear and disappear, which leads to
the phenomenon of server sprawl [22]. Therefore, self-service administration, dynamic provisioning and
elastic scaling lead to a great number of configuration and topology changes, which results in a complex
and highly dynamic system.

Misconfigurations and insider attacks are the adverse results of such complex and dynamic systems.
Indeed, even if committed unintentionally, misconfigurations are among the most prominent causes for
security failures in IT infrastructure [31]. Notably, according to studies by ENISA [19] and CSA [15],
operational complexity, which leads to misconfiguration and security failures, as well as isolation failures
are among the top threats in virtualized infrastructures. Isolation failures put both the provider as
well as the consumers at great risk due to potential loss of reputation and the breach of confidential
data. Further, malicious insiders and their attacks are considered a top, very high impact security risk.
Consider an example of isolation breach from misconfiguration, which we encountered in the security
analysis of a financial institution’s in-house VMware-based production cloud: An administrator performed
a wrong VLAN ID configuration change leading to an unnoticed network isolation breach between the
high-security and the test security zone. The goal of our approach is to compute an information flow
analysis in such rapidly changing systems.
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Figure 1: Model of a Virtualized Infrastructure

In Fig. 1 we illustrate our model of a virtualized infrastructure, which consists of (virtualized)
computing, networking and storage resources that are configured through a well-defined management
interface. In particular, we illustrate the networking part in more detail. Physical hosts and their
hypervisors provide networking to VMs by virtual switches that connect the VMs to the network. A
virtual switch contains virtual ports, to which the VMs are connected via a virtual network interface card
(vNIC). Virtual ports are aggregated into port groups, which apply a common configuration to a group
of virtual ports. Virtual LANs (VLANs) allow a logical separation of network traffic between VMs by
assigning distinct VLAN IDs to the port groups. Our network model is focused on the OSI Layer2.

From an isolation and trust assumptions point of view, two VLANs are logically isolated from each
other if they are configured with distinct VLAN ID values (and not configured to 0). However, if two
port groups have the same VLAN IDs, but their underlying virtual switches are without a physical
network connection, then they are also physically isolated. On the compute level and an arguable
assumption is that hypervisors isolate VMs, i.e., no side channels [32] exist. It is crucial to allow user
configurable/extensible rules that capture those different and arguable assumptions. The goal of our
approach is to capture user-dependent trust assumptions in rules that guide our information flow analysis.
The output of the analysis is tightly dependent to the conditions of the rules and these conditions may
be invalidated due to system model changes, which leads to a complex analysis.

3 Constructing an Information Flow Graph using Flow Rules
In this section we lay the foundation for the fully dynamic information flow analysis by constructing an
overlay information flow graph on a given system model graph using flow rules. We formalize both the
system and information flow models, as well as defining the flow rules and their matching. We introduce
an algorithm for the first-matching of flow rules and discuss a well-ordering for rules sets. Important for
the dynamic analysis is to capture the dependencies of information flow edges on the flow rules’ conditions.
Additionally we need to capture implicit dependencies due to the first-matching application of rules.

3.1 System and Information Flow Models
The input of the information flow analysis is a system model in the form of a directed, symmetric,
vertex-typed and -attributed graph. The analysis produces as an output a directed, edge-labeled graph,
which we call an information flow graph, as an overlay on the system model graph. Figure 1 illustrates our
model of a virtualized infrastructure including actors such as administrators. We represent the topology
of the virtualized infrastructure with the following graph model.

Definition 1 (System Model) Let T be a set of vertex types, Σ an alphanumeric alphabet where
A ⊂ Σ+ is a set of vertex attribute names, and D ⊂ Σ∗ is a set of attribute values. The system model
graph GS = (VS , ES , P ) contains a set of uniquely labeled and typed vertices VS ⊂ V := (Σ+ × T), a set
of edges ES ⊆ (VS × VS), and a vertex properties set P ⊂ P := (A× D). A vertex v is a tuple of vertex
label and type (l, t) ∈ VS, and we write v.t to obtain the type of a vertex. The edges are directed and
symmetric, i.e., for each edge e = (vi, vj) there must exists an edge e′ = (vj , vi) in ES. A partial function
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attr : (V × A) 9 D is defined as an attribute function which returns for a given vertex and attribute
name the attribute value. We also use the notation v.a for a ∈ A to obtain the attribute value instead of
attr(v, a).

Definition 2 (Hierarchically-Typed and Relational Vertex Model) The vertex types T form a
tree hierarchy that establishes a partial ordering of the types based on transitive parent-child relations,
i.e., child < parent or a directed edge (child, parent), where the root node type is called Any. We define
a type relation T ⊂ (T× T). A given type pair (ti, tj) ∈ T is considered adjacent if there exists a pair
(t′i, t′j) ∈ T for which ti ≤ t′i and tj ≤ t′j. GS is considered valid if ∀(vi, vj) ∈ ES : adjacent(vi.t, vj .t).

The data model of the system is a simplified form of the Enhanced Entity-Relationship Model that
establishes sub-typing and relationship modeling.

Definition 3 (Information Flow Model) The information flow model graph GI(GS) = (VS , EI) is
derived from GS and contains the set of typed and attributed vertices VS of the system model graph GS, as
well as a set of directed and labeled edges EI ⊆ (VS×VS) with an edge label function f : E → {flow,noflow}.
An edge e = (vi, vj) with label flow means that information from vi can flow to vj , whereas noflow indicates
no flow. We write information flow edges in short form as iedge.

In terms of dynamic behavior of the models, we consider the system model graph to be static. In section 4
we will study a fully dynamic system model graph and its implications on our information flow graph.
However the information flow model is dynamic, i.e., during application of rules we are inserting new
edges.

3.2 Information Flow Rules
The information flow rules encode trust and isolation assumptions of system model elements by the user.
They are a mandatory input for constructing the information flow graph from the system model graph.
The application of rules in a first-matching semantic and the construction of the information flow model
is discussed in subsection 3.4.

Definition 4 (Information Flow Rule) Let F be a set of flow types {flow,noflow}, T a set of system
model vertex types. A rule r is a tuple r = (ft, ti, tj , pa, pc), where ft ∈ F , ti, tj ∈ T, pa a predicate
on attributes of vertices VS and pc a predicate on connectivity of vertices in GI . The rule describes
information flow from a vertex of type ti to another vertex of type tj.

A rule is considered simple if (ti, tj) is adjacent (cf. Definition 1) and pc is always true. A rule is
considered complex if (ti, tj) is non-adjacent and pc may only be using connected statements on simple
flow edges. A default simple rule only operates on type Any, is adjacent, and pa and pc are always true.
An information flow edge e that is later produced by a simple or complex rule will have the rule type rt(e)
of either simple or complex.

We use rules with connectivity conditions for expressing tunneled information flow between two system
components that are not directly connected in the system model. For example in our case study, we use
connectivity conditions to model VLANs and other form of tunnels (GRE, VPN) between the tunnel
endpoints.

Depending on the flow type of the default rule, the analysis may either tend to produce false positives
in case of a default flow because we are over-approximating the possible information flow. In case of a
default noflow, the analysis may produce false negatives.

3.2.1 Attribute and Connectivity Conditions

Our definition of an information flow rules includes two predicates pa for attribute conditions and pc for
connectivity conditions. We treat those predicates separately and do not allow mixing attribute with
connectivity conditions. The predicates are expressed in Boolean algebra.

The attribute predicate pa takes two vertices vi, vj and the property set P of the system model graph.
The predicate can use equality expressions on, and only on, the attributes of vi and vj . We do not allow
nested attribute conditions.
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The connectivity predicate pc takes two vertices vi, vj and the information flow graph GI . The
connectivity conditions is built upon a connected predicate that we define as the following: connected(a,b)
for a, b ∈ VS returns true if there exists a path from a to b in the information flow sub-graph GI,flow =
(VS , EI,flow) where EI,flow = {e | e ∈ EI ∧ f(e) = flow}. Only complex rules are allowed to have
connectivity conditions and only on the information flow sub-graph that was produced by simple rules,
i.e., on the following edge set: EI,flow,simple = {e | e ∈ EI,flow ∧ rt(e) = simple}. As the flow edges are
directed, connected is not necessarily symmetric. The vertex parameters of connected can either be vi

and vj , or adjacent vertices of those.
We call a condition predicate closed if it has been partially applied with the two vertices vi, vj . The

resulting closure still takes either the current attribute property set P for attribute conditions or the
current GI for connectivity conditions.

3.2.2 Rule Matching and Evaluation

Given an information flow rule and a pair of vertices, we define when a rule matches and what the
evaluation of that rule returns.

Definition 5 (Rule Matching and Evaluation) Given a rule r = (ft, ti, tj , pa, pc) and a pair of
vertices vi and vj. The current system state is given as GS = (VS , ES , P ) and GI(GS). A rule has
a full match if the (sub-)types match: (vi.t ≤ ti) ∧ (vj .t ≤ tj), and the conjunction of conditions is
true: pa(vi, vj , P ) ∧ pc(vi, vj , GI). The rule returns an information flow edge e = (vi, vj) with flow label
f(e) = ft. If the types do not match, then the rule evaluates to nil. If the types match, but any of the
predicates does not, then we have a partial match, and we return an implicit dependency, which contains
the rule, the closed attribute and connectivity condition predicates, as well as the vertex pair.

Here we only introduced the matching of a single rule and the possible in return values. In subsection 3.4
we discuss a first-matching algorithm that takes a set of well-ordered rules for evaluation.

3.2.3 Attribute and Connectivity Dependencies

If a rule fully matches and returns an information flow edge, this edge depends on the rule’s attribute
and connectivity condition. To prepare the grounds for the dynamic system model analysis, we associate
these dependencies with the edges.

An attribute dependency AttrDep is a set of tuples (v, a), where v ∈ VS , a is an attribute of vertex v,
and a predicate da, which is the closed attribute predicate that is true if the attribute dependency is still
fulfilled. Each usage of a vertex attribute in the attribute condition will result in a vertex-attribute tuple
in the resulting attribute dependency. Similarly, a connectivity dependency ConnDep is a set of tuples
(vi, vj , p) where vi and vj are the connectivity endpoints and p an optional connectivity path. Predicate dc

indicates if the connectivity dependency is still fulfilled, which is again the closed connectivity predicate.

3.3 Ordering of Information Flow Rules
The ordering of rules is important since we apply them in a first-matching semantic in our analysis. In
this section we discuss how to establish a partial ordering for a given sequence of rules based on the
rules’ types and conditions. We derive a directed acyclic graph, the Rule Order Graph, from the partial
ordering, which yields a rule evaluation order for the analysis.

For a sequence of rules R we define a function cmp : (R×R)→ {EQ,LT,⊥} that establishes a partial
ordering for any pair of rules with the return values less-than (LT), equal (EQ), and undefined (⊥).

We use a running example to illustrate the rule ordering. We defined a subset of rules in Table 1,
which are derived from our case study description from section 2. We establish the ordering using two
implementations of the cmp function: one for type-based and another for condition ordering. If type-based
ordering returns equality for a given rule pair, we need to further order by conditions.

3.3.1 Type Ordering

Given our type hierarchy from Definition 2, two rules may operate on different levels of this hierarchy. In
general, given two rules that operate on types that are in a transitive parent-child relationship, then the

5



Table 1: Subset of Information Flow Rules Relevant for PortGroup (PG) VLAN Isolation.
# Kind Flow Directed Node Pair Condition(s) Edge Dependency

1 Simple noflow VSwitch→ PortGroup PG.vlanId 6= 0 Attribute VLAN ID
2 Simple noflow PortGroup→ VSwitch PG.vlanId 6= 0 Attribute VLAN ID
3 Simple flow Any→ Any — —
4 Complex flow PortGroup→ PortGroup PGi.vlanId 6= 0 ∧ PGi.vlanId = PGj .vlanId Attribute VLAN ID

∧ connected(vswitch(PGi), vswitch(PGj)) Connectivity of VSwitches
5 Complex noflow PortGroup→ PortGroup — —

rule with the child types has to be evaluated first. Otherwise, the more general parent-type rule is always
applied. We define the cmp function for type-based ordering as the following:

cmptype(r1, r2) =


EQ if r1.ti = r2.ti ∧ r1.tj = r2.tj

LT if (r1.ti < r2.ti ∧ r1.tj ≤ r2.tj) ∨ (r1.ti ≤ r2.ti ∧ r1.tj < r2.tj)
ERR if (r1.ti < r2.ti ∧ r1.tj > r2.tj) ∨ (r1.ti > r2.ti ∧ r1.tj < r2.tj)
⊥ otherwise

The types of the type tree form a partial order and here we establish a product order for tuples of two
types. LT if one type is strictly less than the other in the tuple. We have an error case (ERR) if we have
conflicting relations, where one type in the tuple is strictly less but the other one is strictly greater than
the corresponding type of the other tuple. In any other case the ordering is undefined.

In case of EQ, we require further condition-based ordering. In case of ERR we need to abort the
information flow analysis as the rules ordering is inconsistent. If any of the pair types are not in a
(transitive) parent-child relation, then the ordering is undefined, i.e., we obtain a partial order of the
rules based on their types. If for all rules the node type pairs are distinct/non-relational, then the rules
are confluent, i.e., the order of which they are evaluated does not matter.

3.3.2 Condition Ordering

For the rules that are defined for equally typed nodes we require ordering based on their condition
predicates. Basically when given two equally typed rules, the rule with the most specific condition has to
be first, and the one with the most general condition last. The two rules must not be equal, but can be
either in a LT or ⊥ relation.

Given two rules r1 and r2 with their condition predicates p1 = r1.pa ∧ r1.pc and p2 = r2.pa ∧ r2.pc.
The predicate atoms are connected statements and attribute equalities on typed constants and variables.
We need to define a partial order (EQ, LT, ⊥) returned by a function cmpcond analog to the type-based
ordering. We employ an approach based on the interpretation of predicates and truth assignments. We
leverage existing work in this areas, e.g., for the ordering of methods with conditions [20] or predicate
interpretation with parametrized truth assignments and value domains [1].

A function truths is defined that returns for two given predicates a list of variable assignments from the
value domains as well as connected statement truth assignments. Further, we define a eval function that
takes a truth assignment (variable value assignments and connected truth assignments) and a predicate,
and returns either true or false for the predicate evaluation under the given variable assignments and
connected statement assignments. The function substitutes variables with assigned values and connected
statements with truth assignments. The predicate with substitutions is then evaluated.

Connectivity Truth Assignments: We have a set C of connected(a, b) statements each for a unique
pair of vertices (a, b). Each unique statement is considered true or false leading to 2|C| possible truth
assignment combinations. Note that the statement is not symmetric, i.e., when connected(a, b) is assumed
true it does not mean that connected(b, a) must be true too.

Attribute Equality Truth Assignments: We write attribute equalities as a predicate AttrEq(a1,a2)
for a1 = a2. We have a set of AttrEq(a1, a2) where the parameters can either be constants or variables
of types integer, string, or Boolean. The domain of integers Di includes the integer constants and for
each variable a unique random integer value. Analog are the domains Ds for strings and Db for Boolean
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values. We consider the set of attribute variables typed integer Ai, string As, or Boolean Ab. The possible
combinations of value assignments for the attribute variables are |Di||Ai| · |Ds||As| · |Db||Ab|.

Determining a Partial Ordering of Predicates: The combinations of truth assignments for con-
nected statements and value assignments for attribute variables leads to the overall number of combinations:
2|C| · |Di||Ai| · |Ds||As| · |Db||Ab|. It is exponential to the number of connected statements as well as
attribute equality parameters.

Given two rules r1 and r2 and their predicates p1 = r1.pa ∧ r1.pc and p2 = r2.pa ∧ r2.pc. We
compute the truth and variable assignments with truths on those predicates and then iterate over the
assignments. For each assignment eval evaluates both predicates. We obtain equality if for all assignments
the interpretations of the predicates are simultaneously true. For an LT order we require that for all
assignments the first predicate implies the second. Otherwise, the order of the predicates is undefined.

We define the condition-based compare function as the following:

cmpcond(r1, r2) = cmp′cond(r1.pa ∧ r1.pc, r2.pa ∧ r2.pc)

where cmp′cond is a helper function that operates on the rules’ predicates.

cmp′cond(p1, p2) =


EQ if ∀t ∈ truths(p1, p2) : eval(t, p1) ∧ eval(t, p2)
LT if ∀t ∈ truths(p1, p2) : eval(t, p1)→ eval(t, p2)
⊥ otherwise

The two predicates are equal if they are simultaneously true for all truth assignments. In negated form,
they are “mutually exclusive exactly if one implies the negation of the other” [20] or in other words a
NAND operation. They are LT if the specific predicate p1 always implies the more generic predicate
p2, i.e., when p1 is true then p2 must be true, which is a logical implication. Ernst [20] uses the term
“overrides” to describe that one predicate is a specialization of another, i.e., the specific predicate overrides
the general predicate. He defines it as “Method m1 overrides method m2 iff m1’s predicate implies that
of m2, that is, if (not m1) or m2 is true.” [20].

3.3.3 Establish a Rule Order Graph

We establish a Rule Order Graph GR as a directed graph with rule identifiers as vertex labels. A directed
edge (r1, r2) with edge head r1 and edge tail r2 represents that r1 < r2. It means that r1 must be
evaluated before r2. The relation between partial orders and DAG (also later topological sorting) is well
known and we use it here.

Rule 3
(Simple, Default)

Rule 1 Rule 2 Rule 4

Rule 5
(Complex, Default)

Figure 2: Order Graph of Rules of Table 1 based on Type and Condition Ordering.

Our example rule set produces the following rule order graph illustrated in Figure 2. The simple
rules Rule 1 and Rule 2 are dependent on the default simple rule Rule 3. Rule 1 and Rule 2 are however
unrelated in terms of the type pair they operate on, because V S 6≤ PG and vice versa. Rule 4 is a
complex and non-adjacent rule, therefore independent of all the other simple rules, but dependent on the
default complex rule Rule 5.

3.4 Application of Rules and Construction of Information Flow Model
The construction of the information flow model is based on the system model and uses the matching
of individual rules (cf. subsubsection 3.2.2) from a well-ordered set of rules (cf. subsection 3.3). Hence,
the application of rules requires as inputs the system model graph as well as the rule order graph. The
output is an information flow model with the edge dependencies derived from the rule application.
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For our case-study we use both the system model sub-graph as illustrated in Figure 3 and the subset
of rules shown in Table 1. The final output is shown as an overlay graph in Figure 4.

NetworkVSwitch1 VSwitch2

PortGroup1
vlanId=123

PortGroup2
vlanId=123

Figure 3: Input Model: Subset of system model graph

The algorithm uses a first-matching semantics of the rules. A topological sort of the rule order graph
provides a valid evaluation order that adheres to the ordering of the rules. If the topological sort cannot
produce a sorting we will report an error. The topological sort may produce many valid evaluation orders,
because two rules with undefined ordering are confluent and can be evaluated in any order.

The application of the rules is defined in Algorithm 1. The key points of the algorithms are:

• TopoSort performs a topological sorting and produces a linear ordering R of the rules in the rule
order graph GR. We split the rule sequence R into simple (adjacent) rule set Rsimple and a complex
(non-adjacent) rule set Rcomplex. For the simple rules we iterate over the edge set of the system
model graph. For the complex rules we obtain the nodes for the matching (sub-)types using a
function TypedNodes and evaluate the node pairs.

• We have a function EvalRule that tries to match a rule (cf. subsubsection 3.2.2) and returns either
an information flow edge (iedge), implicit dependency, or nil for a given rule, node pair, as well as
system and information flow models and optional component graph. A pre-condition of the rule
evaluation is that (u, v) 6∈ EI .

• For a returned information flow edge, we find, obtain, and remove the implicit dependencies of
previous rules using the ImplicitDeps function (cf. subsubsection 3.4.1). We associate the implicit
dependencies with the iedge, i.e., setting iedge.implicits, and insert the edge into the information
flow model graph.

• If an implicit dependency is returned, we store the dependency together with the rule and for
complex rules also together with the evaluated node pair. In the algorithm DS holds the implicit
dependencies of simple rules, and DC holds the ones of complex rules indexed by the evaluated
node pairs.

• In case of nil we simply evaluate the next rule. We report an error if we have unclaimed implicit
dependencies, which have not been taken by another rule. For example no default rule for adjacent
rules, or no catching rule for the non-adjacent rules.

Strongly Connected Components: As an optimization to determine reachability, we use strongly
connected components (SCC) and a component graph (or also called reachability tree) [14, Section 22.5].
They allow us to efficiently evaluate connected statements in a rule’s connectivity condition. A component
graph is a DAG that contains the SCCs as vertices and there exists a directed edge between two SCCs
if there exists a directed edge between any two elements that are contained in the respective SCCs.
Elements within one SCC are mutually reachable, i.e., reachability can be checked by set membership. To
determine reachability between two elements that are not part of the same SCC, we try to find a path in
the component graph between their respective SCCs. The reachability is by definition only unidirectional.
With the function ComputeSCC we compute the SCCs and the component graph on a sub-graph of GI

that only contains flow-labeled edges and is further parametrized by the rule type. During rule application
we compute the SCCs [37] after all simple rules have been evaluated, because the subsequent complex
rules may have connectivity conditions based on the result of the simple rules. Finally we also compute
SCCs after the complex rules have been evaluated for the entire information flow graph, in order for
policy checks to verify connectivity.
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Algorithm 1: Application of Information Flow Rules.
Data: Rule Order Graph GR, System Model Graph GS = (VS , ES , P )
Result: Information Flow Graph GI = (VI , EI)
GI ← (VS , ∅)
R← TopoSort(GR)
DS ← ∅ // Initializing implicit dependencies of simple rules
// Processing simple rules of R
foreach (u, v) ∈ ES do

foreach r ∈ Rsimple do
res ← EvalRule(r, u, v, GS , GI)
if res is iedge then

(DS , d) ← ImplicitDeps(res, r, DS)
iedge.implicits ← d
EI ← EI ∪ {res}
break

else if res is implicit dependency then
DS ← DS ∪ (r, res)

if DS 6= ∅ then
error // Unclaimed implicit dependencies

GC ← ComputeSCC(GI)
DC ← ∅ // Initializing implicit dependencies of complex rules
// Processing complex rules of R.
foreach r ∈ Rcomplex do

Vr,i ← TypedNodes(r.ti, VS)
Vr,j ← TypedNodes(r.tj , VS)
foreach (u, v) ∈ Vr,i × Vr,j do

res← EvalRule(r, u, v, GS , GI , GC)
if res is iedge then

(D, d) ← ImplicitDeps(res, r, DC [(u, v)])
DC [(u, v)]← D
iedge.implicits ← d
EI ← EI ∪ {res}
break

else if res is implicit dependency then
DC [(u, v)]← DC [(u, v)] ∪ (r, res)

if DC 6= ∅ then
error // Unclaimed implicit dependencies

GC ← ComputeSCC(GI)

3.4.1 Implicit Dependencies

To further prepare the ground for the dynamic information flow analysis, we need to record when a rule
matched because a child rule (in the rule order graph) did not match due to mismatching attribute or
connectivity conditions. A resulting information flow edge from a rule evaluation obtains the negative
conditions from the rule’s child rules. It means the result only exists because one of the child rules did
not match. Once the system or information flow model are changing a previous rule may match and the
current result needs to be invalidated.

The function ImplicitDeps takes an iedge, a rule, and a list of implicit dependencies. It returns a
new dependency list with the matching ones removed and a disjunction of the matching dependencies’
predicates. The matching dependencies for a rule r are: D′ = {(r′, da, dc) ∈ D | r′ < r} with r′ <
r for a transitive order in the rule order graph (cf. subsubsection 3.3.3). The remaining implicit
dependencies are simply D \ D′. In the case of complex rules, we need to further index the implicit
dependencies by the vertex tuple. The implicit dependencies D′ are then associated with the iedge. An
iedge is valid if it’s own dependencies are true, but not any implicits. Given D′ = (i1, . . . , ik), then
iedge.implicits(P, GI) =

∨
(ij .da(P ) ∧ ij .dc(G)). Both the closed attribute and connectivity predicates
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Figure 4: Output Model: Graph model annotated with dashed information flow edges of different kinds
(simple, complex, attribute-dependent, connectivity-dependent).

have to be true for a child rule to match. If any of the child rules match then the parent rule must be
invalidated, therefore the disjunction of implicit dependency predicates. The validity of an information flow
edge under the current property set and information flow graph is given as a predicate valid(iedge, P, GI) =
iedge.da(P ) ∧ iedge.dc(GI) ∧ ¬(iedge.implicits(P, GI)) where da and dc are again the closed condition
predicates. We derive the attribute and connectivity dependencies not only for the rule’s own conditions,
but also for its implicits.

3.5 Algorithm Analysis
We analyze our approach with regard to the termination and complexity analysis of the algorithm. We
are adapting and extending a firewall fault model and analyze how our analysis prevents such faults.
Finally we discuss the correctness of the ordering and application of rules.

3.5.1 Algorithm Termination and Complexity

The termination of Algorithm 1 is given by the following properties:

• Finite Sets: We apply a finite set of flow rules. We evaluate the simple rules by iterating over the
finite edge set ES and similarly for the complex rules on subsets of vertex products VS × VS . In
each iteration of Algorithm 1 the set of non-evaluated edges or vertex pairs shrinks, and we do not
modify these sets during the execution of the algorithm.

• Limited Inter-Rule Dependencies: We do not have any circular or self dependencies among rules,
which could otherwise result in a rule application without termination. Rules depend on node
types and their attributes, which are not influenced by any other rules. Complex rules may depend
on connectivity, which is influenced by other rules. However, we limit connectivity conditions to
only iedges produced by simple rules (cf. Definition 4). This provides a one-way dependency from
complex to simple rules, but no circular or self dependencies exists among the complex rules.

• Termination of Helper Functions: The helper function EvalRule performs a rule matching and only
uses a terminating BFS on the finite component graph. ImplicitDeps is iterating over the finite
set of implicit dependencies. TypedNodes returns a subset of nodes from the finite nodes set VS .
TopoSort and ComputeSCC are existing algorithms and are variants of DFS, which is terminating
for finite graphs with node coloring.

We analyze the run-time complexity of our analysis by breaking it up into the following steps:

• Rules Ordering and Topological Sort: Type-based rule ordering requires |R|2 comparisons, each
comparison’s complexity linear to the depth of the type hierarchy. Condition-based ordering requires
|R|2 · 2|C| · |Di||Ai| · |Ds||As| · |Db||Ab| comparisons, which is exponential to the number of connected
statements and attribute equalities. Topological sort is O(|VR|+ |ER|), since it is based on DFS.
The ordering and topological sort is done once for a given rule set.
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• Rule Evaluation: EvalRule is constant with regard to GS and R, but for a given rule r it depends
on the number of condition statements in pa (the sets of integer/string/boolean attribute atoms:
|Ai| + |As| + |Ab|) and pc (the set of connected statements |C|). Connected statements can be
evaluated in constant time using set membership checks when the nodes in the same SCC, or linear
to the size of the component graph by using path finding (e.g., BFS). Attribute condition atoms are
evaluated in constant time.

• Implicit Dependency: For simple rules the implicit dependencies are derived linearly to the size of
the rules. For complex rules, we first perform a constant lookup with the node pair (u, v) followed
by finding the implicit dependencies in linear time in the rule set.

• Simple Rules Application: The evaluation of the simple rules requires |ES | · |Rsimple| applications of
EvalRule and ImplicitDeps.

• Complex Rules Application: The evaluation of the complex rules requires |Rcomplex|·|V ′S |2 applications
of EvalRule and ImplicitDeps. We evaluate the complex rules for the matching pairs of typed nodes,
where V ′S is a subset of VS , which practically makes a difference but not asymptotically.

• Computation of Strongly Connected Components: We compute the strongly connected components
(SCCs) twice: first after the application of simple rules and a second time after the complex rules
application. Tarjan’s algorithm [37] to compute SCCs has a complexity of O(|VS |+ |EI |) as well as
the component graph creation is linear [14, Section 22.5].

In summary, we can differentiate between load-time and run-time complexity. Load-time is concerned
about rule ordering and run-time about the evaluation of rules. The dominating parts for load-time are
the quadratic rule complexity for rule ordering in general and exponential condition ordering in particular.
In practice this is not a problem, because we only do it once for a given rule set, the condition ordering
only happens for equally node-typed rules, and the number of connectivity and equality statements in
the predicates is small. During run-time the dominating factor is the evaluation of complex rules with
quadratic vertex set size.

In terms of space complexity, the upper bound is given by a full mesh information flow graph given by
|VS |2 iedges. Each iedge may obtain and store implicit dependencies from |R| − 1 rules. The component
graph based on the SCCs would as the upper bound contain |VS | SCCs, where each system model vertex
is its own SCC. As a future optimizations, we can introduce information flow vertices in addition to the
iedges. Such a vertex would allow to move from a full mesh information flow graph to a star topology.
For instance in the case of Rule 5 of Table 1, which currently would create a full mesh between the
non-matching portgroups, we can create one information flow vertex for the noflow portgroups.

Complexity Comparison with Traversal Analysis: We now compare the complexity of the infor-
mation flow graph based analysis, denoted as FlowGraph approach, to the graph traversing analysis
of [7], which we denote as the Trav approach. The Trav information flow analysis performs a graph
traversal based on a set of traversal rules, which are similar to our flow rules, starting from a set of
information source vertices. Each source obtains a unique color that propagates through the graph based
on the rules’ decisions. In the worst case, we have |VS | information sources and perform a DFS-like
traversal with O(|VS |+ |ES |) from each source, leading to a dominating run-time complexity of |VS |2. In
terms of space complexity, each vertex has to store at least |VS | unique colors, although rules may create
an arbitrary number of “sub-colors”, also called tags. We compare the two approaches for the following
steps:

• Rules Ordering: This step is required by both approaches in similar complexity, although in Trav
a good ordering is assumed and no automated ordering performed. The rules conditions of Trav
do not contain connected statements, which simplifies the condition ordering to just attribute and
tags-based conditions.

• Rule Evaluation: Considering a single rule evaluation, both approaches operate on the vertices
attributes. FlowGraph also allows connectivity conditions that is evaluated linear to the size of
the component graph in the case of a complex rule. The Trav approach operates on the current
color and sub-colors, which is independent of the graph size.
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• Rule-Dependent Metadata: Rules can lead to metadata that needs to be stored in addition to the
information flow state. In FlowGraph we store explicit and implicit dependencies. Similarly, the
Trav rules can create sub-colors or tags. In both cases the space complexity of the metadata is
highly dependent on the specific rules set.

• Rules Application: In FlowGraph we differentiate between simple and complex rules. We do not
have this differentiation in the Trav approach, but only have simple rules equivalents. For complex
rules, the dominating run-time complexity is given by |VS |2, although in practice we evaluate a
vertex subset, e.g., only portgroups. In the Trav approach we start for instance from VMs as
information sources, and typically |PG| � |V M |.

• Connectivity Evaluation: In FlowGraph we use SCCs for efficient connectivity evaluation, which
takes in the worst case linear to the component graph size. In Trav we evaluate connectivity based
on colors, which is constant for a color set membership. However the connectivity depends also on
the information sources, i.e., we can evaluate connectivity only from specific information source
vertices.

In summary, the dominating run-time complexity of |VS |2 is given in this approach by the complex rules
evaluation, although in practice we typically evaluate a subset of VS . In the Trav approach the same
complexity is dominating when starting a graph traversal from each vertex as an information source. The
evaluation and application of rules differs slightly between the two approaches, where this one depends on
connectivity conditions and the other one on color tags. In terms of space complexity, both approaches
have to store in the worst case |VS |2 information flow states, either in the form of a full mesh information
flow graph or as |Vs| colors for each vertex. We outline as part of future optimizations how this space
complexity can be reduced by moving from a full mesh to a star topology with information flow vertices.
Although for the full system mode analysis the both approaches are very similar in terms of run-time
and space complexity, in section 4 we compare the two approaches with regard to analyzing a dynamic
system model.

3.5.2 Fault Model for First-Matching Rules Application

The goal of the information flow analysis is to extrapolate the isolation decisions between system model
components by a user to the entire system. Instead of deciding for each individual edge and node pair in
the system model graph if there is an information flow or not, the user captures generalized decisions
using the flow rules.

The extrapolation is based on the specific rule set and the application of those rules. The first depends
on the decisions by the user and there is no clear right or wrong. We can reduce the correctness of the
extrapolation to the correctness of the rules. The second depends on the dependencies between simple
and complex rules and the ordering of the rules due to our first-matching semantic. The rule application
first evaluates the simple rules and only then the complex rules to satisfy their one-way dependency.

To analyze the rule ordering, we adapt and extend the firewall fault model [12, 13], because in firewall
rules we also deal with first-matching semantics and similar faults.

• Wrong Order: The ordering of rules is critical in a first-matching application and our approach
has to ensure a well-ordered set of rules. We have to consider the following cases how rules can be
in a wrong order:

– Wrong Type Ordering: A rule with more generic types must appear after a rule with more
specific types, i.e., sub-typed rules before super-typed rules. We rely on the facts that the type
tree establishes a partial order of the types and product order to establish a partial order for
the tuple of types.

– Wrong Conditions Ordering: For two equally typed rules, the rule with the more generic
condition must appear after the rule with the more specific condition. We obtain a partial
predicate order using truth assignments and interpretation with variable assignments.

– Inter-Rule Dependencies: Rules may only depend on each other due to connectivity conditions.
However this could lead to circular dependencies. We prevent cycles by only allowing one-way
dependency from complex to simple rules. We always evaluate simple rules first so that the
dependency of the complex rules is satisfied.
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– Conflicting Rules: When rules operate on the same types and conditions but producing different
results. We prevent this by requiring a non-equal ordering after type and condition ordering
for two given rules.

• Missing Rule: Depending on the default rule, a missing rule may lead to false positives (default
is flow) or false negatives (noflow). We can reduce this fault to the correctness of the rules and their
coverage (number of explicit vs. default rule) [7].

• Wrong Predicates: Wrong conditions may result in false positives or negatives when a rule
triggers under the wrong circumstances or is not triggered at all. This fault is again reduced to the
correctness of the rules.

• Wrong Decision: A rule may return a wrong flow decision (Flow/NoFlow). This can be a crucial
mistake that can also lead to false positives and negatives. In general we advice to perform NoFlow
decisions in the simple rules with a default flow decision, in order to mitigate false negatives. In
such a case a wrong decision can be spotted more easily.

• Wrong Extra Rule: Old rules may remain in the rule set. They could result in ordering problems,
which we would detect. However they could also result in false positives or negatives. We do not
see this as a major problem as we are dealing with more static and smaller rule sets compared to
network firewall configurations.

In summary, many faults can be reduced to the correctness of the rules themselves. In practice, for the
different application domains we envision a rule set that is based on best practices. In addition, the
ordering of rules is crucial and our approach ensures a well-ordered rules set and a rule application that
satisfies inter-rule dependencies.

3.5.3 Correctness of Rule Ordering and Application

We have to show the correctness of two parts of the analysis for the static system model case: First, the
correct ordering of rules; Second, the correct application of the ordered rules.

The ordering of rules relies on the following parts of the analysis, which are build upon existing work:

• Type Ordering: The vertex types form a type hierarchy in form of an in-tree, i.e., a rooted tree
where all vertices have a unique path to the root. We can derive a partial ordering based on the
child-parent edges. A product order establishes a partial ordering for a tuple of partially ordered
elements.

• Condition Ordering: Using truth assignments and variable assignments from a value domain, we
establish a partial ordering of the rule’s predicate. In particular two predicates are equal when
they are simultaneously true for all assignments, and one predicate is less than another if the first
implies the second. Predicate ordering has been used also in other domains [20].

• Rule Order Graph: We construct a DAG based on the partial ordering between rules using the type
and condition partial ordering. A DAG can represent a partial order, where a directed edge (u, v)
represents u ≤ v. In particular the following properties are fulfilled: reflexive since each vertex can
reach itself ; transitive since we can construct a transitive closure; asymmetric because with u ≤ v
and v ≤ u if u 6= v then we would have a cycle, so not a DAG anymore.

• Topological Sorting: Given a DAG, the topological sorting produces a linear ordering (out of
potentially many valid ones) of the vertices based on their directed edges. This is a well-known
algorithm [14, Section 22.4] used in areas such as task scheduling. In our application, we apply
topological sorting on our Rule Order Graph, which is a DAG, to obtain a rule evaluation order.

For the second part we show that an error in the reachability of any two vertices in the information flow
model can only be caused by an error in the individual information flow rules, but not by an error in the
application of the rules by our algorithm.

• Completeness of rules application: For a given rule set, the application of these rules is complete.
We evaluate all edges with the simple rules in first-matching semantics. We evaluate all vertex pairs
that match or are sub-types of a complex rules.
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• Reduction to the correctness of individual rules: Given any pair of vertices (a, b) where connected(a, b)
is true. There must exists a path p = [e1, . . . , ek] of ordered k iedges with flow type flow, by definition
of the connected predicate. An edge ei = (u, v) in the path has either been created by a simple rule
if there exists an edge (u, v) ∈ ES or by a complex rule in the non-adjacent case. Either rule has
made a flow decision. If the expected outcome was that connected(a, b) is false, then a simple or
complex rule returned the wrong flow decision: instead of flow it should have return noflow.
Similarly, if connected(a, b) is false, given all possible paths P between a and b, then all paths must
contain a noflow iedge: ∀(p ∈ P )∃(e ∈ p) : f(e) = noflow. If the expectation was that connected(a, b)
is true, then there must exists one path for which all iedges are flow. At least one rule made a
wrong flow decision by returning noflow.

3.6 Summary
We lay the foundation for the dynamic information flow analysis by introducing a rule-based construction
of an information flow graph for a static system model. We defined both the system and information flow
models as graphs, introduced the information flow rules and their ordering, and shown an algorithm for
the application of such rules. Overall the key concepts of our approach are the following:

• System and Information Flow Models as Graphs: The system is modeled as an directed, symmetric,
vertex typed and attributed graph. The vertex types form a tree-like type hierarchy and relationships
between vertices are modeled. The information flow model is an overlay on the system model (i.e.,
using the same vertex set) but edge-labeled with flow and noflow as well as directed.

• Flow Rules and Matching: The rules capture isolation and trust assumptions of the user into system
model components. Based on a vertex pair types as well as attribute and connectivity conditions,
the rule returns either a flow or noflow decision. A rule matches a given pair of vertices of the
system model when the types are equal or subtypes of the rule, and when the conditions are true.
Important for the dynamic analysis is that we record for each iedge the attribute and connectivity
dependencies, as well as implicit dependencies due to the first-matching rule application.

• Rule Ordering and Application: The rules are applied in a first-matching way. Therefore the rules
ordering is crucial. We establish a partial ordering based on rules’ types and – if equally typed– also
on conditions. On the resulting Rule Order Graph we perform a topological sort which yields an
evaluation order. We always evaluate first the simple rules then the complex ones due to possible
connectivity dependency.

4 Fully Dynamic Information Flow Analysis
We lay the foundation for the dynamic information flow analysis in the previous section, in particular by
recording for the created information flow edges the condition dependencies as well as implicit dependencies
from preceding rules that did not match. If connectivity or attributes change, the affected information
flow edges with their dependencies have to be re-validated and if necessary partially re-computed.

In this section we discuss the handling of a fully dynamic system model and the implications on the
information flow model. Instead of performing an information flow analysis always from scratch when the
system model graph changes, we perform an analysis that updates the information flow graph. First we
define a change to the system model as a graph delta.

Definition 6 (System Model Change) Given a system model graph G′S = (V ′S , E′S). We define a
system model change as a graph delta ∆ = (V +, V −, E+, E−, M), where V + ⊂ V, V − ⊆ V ′S , E+ ⊂
E, E− ⊆ E′S , M ⊂ (V ′S × A× D). The delta contains creator as well as eraser nodes and edges, and a
set of node attribute modifiers (vertex, attribute, value).

We rely on an existing system [8] that provides us such system model changes for our case study.
Given a delta ∆ and two versions of the system model graph: before the change G′S = (V ′S , E′S) and

after the change GS = (VS , ES). GS is constructed from the given ∆ and G′S in the following way:
VS = (V ′S \ V −) ∪ V +, ES = (E′S \ E−) ∪ E+, and applying the node modifiers on V ′S . A differential
information flow analysis computes an information flow graph GI based on an information flow graph
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G′I of the previous version of the system model graph G′S and ∆. Thereby it operates on the difference
between the system models given as ∆ to compute the updated information flow model graph GI .

The challenge we solve is to maintain an information flow graph, which is build from simple as well as
attribute and/or connectivity-dependent information flow edges, even when connectivity or attributes
are changed. Our differential analysis works in two phases: First, given a graph delta, we process the
changes to the system model graph and the impact on the information flow graph. In particular applying
flow rules for new vertices and edges, removing affected iedges while removing vertices and edges, and
determining attribute dependency violations due to attribute changes. Second, based on the changes to
information flow model in the first phase, we compute and process connectivity changes, in particular
determining connectivity dependency violations.

4.1 Translating System Model Changes to Information Flow Changes
In the first phase we process the system model graph delta, and for each element of the graph delta
∆ = (V +, V −, E+, E−, M) compute information flow graph changes.

• Node Attribute Changes: Find all affected attribute-dependent edges and remove them if they
are invalid, i.e., their attribute condition does not hold anymore or one of the implicit dependencies
is true. Re-evaluate the vertex pairs of the removed iedges and insert potentially new iedges due to
re-evaluation.

• Eraser Edges: For each system model edge we remove the corresponding information flow edge.
Further, if one of the edge’s vertices is part of a connectivity-dependent iedge with another vertex as
a connectivity endpoint, then the iedge is invalid if the removed edge provides the relation between
the vertex and endpoint.

• Eraser Nodes: Remove the nodes as well as all their incoming and outgoing edges from the
information flow graph. Find all connectivity-dependent edges that require the erased nodes as
connectivity endpoints, and remove those edges too.

• Creator Nodes: For each node evaluate the complex rules (given the new node, and all the
existing matching typed nodes, as well as vice versa), which may create new information flow edges,
and insert the created edges into the information flow graph.

• Creator Edges: Evaluate simple rules for each new edge and insert the resulting information flow
edges in the graph. Analog to edge removal, we need to find the (negative) connectivity-dependent
iedges, where the new edge establishes the relation between the vertex and its connectivity endpoint.

Regarding the ordering of the graph delta processing, deletion and modification of vertices can only be
performed on the existing vertices of the system model graph as defined in Definition 6. We first perform
the node attribute changes, then the deletion of edges and vertices. The final step is the creation of nodes
and edges.

Examples of system model changes for our case study are the following and illustrated in Figure 5.
In case of an attribute change where PortGroup1’s VLAN ID changes to zero (denoted as ∆VLAN ), the
edges between the vswitch as well as the other port group are removed, but a new flow edge is introduced
between the vswitch. If we have a node removal, i.e., VSwitch is removed from Figure 4 (denoted as
∆VSwitch), the edges to PortGroup1 and Network are removed. Additionally, the edge between the port
groups is removed, because it is dependent on the connectivity of the vswitches.

In summary, removal of graph elements directly impacts the associated iedges, but also the connectivity-
dependent iedges that rely on a removed element as part of their connectivity endpoints. Attribute
changes affect the attribute-dependent iedges and require a rule re-evaluation when an iedge’s attribute
dependencies are violated. For new graph elements we simply evaluate them with our rule set.

4.2 Processing Connectivity Changes
In the previous phase of our dynamic information flow analysis we processed the system model changes
and modified the information flow graph accordingly. The addition and removal of information flow edges
may cause changes in the overall connectivity which we have to process and handle as well. In particular
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Figure 5: Examples of Graph Deltas on the System and Information Flow Models.

we need to handle connectivity-dependent iedges. Only the iedges that have been created by complex
rules can be affected, as only them have connectivity dependencies.

We need an interface that notifies us about connectivity changes, in particular if there exists increased
or reduced connectivity, and if any existing connectivity paths in dependencies are affected. Since we
are using strongly connected components (SCCs) for efficient connectivity checks, we also use SCC
re-computations to tell us after inserting a set of edges, which SCCs have been added/removed, and
which edges have been added/removed in the component graph.

With Tarjan’s algorithm [37], we can do set operations between an old and a new component graph’s
vertex and edge sets. Ideally, we would use a dynamic reachability approach [33] that can also provides us
notifications on reachability changes. The SCC component graph G′C = (V ′C , E′C) is derived from G′I , and
a new GC = (VC , EC) from GI . We compute the removed SCCs V ′C \ VC and removed inter-SCC edges
E′C \ EC . As well as new SCCs VC \ V ′C and new inter-SCC edges EC \ E′C . We process the connectivity
changes as reflected in the component graph changes in the following ways.

• Removed SCCs or inter-SCC edges: In the case of reduced connectivity, we find all iedges that
have a connectivity dependency with a connectivity path. These iedges depend on a found path and
the reduced connectivity may have invalidated this path. In particular we have to check the iedges
with a path that contains a removed SCC or inter-SCC edge if their connectivity dependencies are
still valid.

• New SCCs or inter-SCC edges: In the case of increased connectivity, we find all iedges that
have a connectivity dependency without a connectivity path. In contrast to the previous case, these
iedges exists because no path was found for their connected statements. The increase in connectivity
may have established such a missing path. We have to check the connectivity dependency of all
iedges without a connectivity path.

In our case study, if the Network node is removed from the example of Figure 4, SCC2 splits into two new
SCCs, i.e., SCC2 is removed and two new SCCs are added. In the example, the connectivity-dependent
edge between the port groups is affected and removed, because SCC2 appears in its connectivity path.
Since another connectivity path could exists for the connectivity endpoints, we re-evaluate the complex
rules for the removed edges’ node pairs. However, in the example no other connectivity path exists.
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4.3 Algorithm Analysis
In this section we discuss the termination and complexity of the dynamic analysis algorithm. Further we
show the equivalence between the fully and differential information flow analyses.

4.3.1 Algorithm Termination and Complexity

The termination of the dynamic information flow analysis is given by the same set of properties as for the
static analysis (cf. subsubsection 3.5.1):

• Finite Sets: The differential analysis operates on the finite sets of the graph delta with created/erased
vertices and edges, as well as attribute modifiers. The iteration over these sets processes each
element only once and does not modify the sets. In particular our definition of graph deltas only
allow deletion and modifications of existing nodes and not of newly created ones in the same delta.

• Limited Inter-Rule Dependencies: Attribute and connectivity changes may result in the invalidation
and re-evaluation of iedges. The termination of the algorithm is given because of the one-way
connectivity dependency of complex rules towards simple rules, therefore we do not have circular
connectivity dependencies. Attributes are only changed through system model changes and not
through the application of rules, therefore no attribute dependencies among rules.

We analyze the complexity of our differential algorithm with regard to the processing of system model
changes and the handling of connectivity changes. The complexity of processing the system model changes
is the following:

• Attribute Changes: Processing of attribute changes is linear to the number of modifiers |M |. For
each modifier (v, a, d) we perform a constant lookup of the affected attribute dependencies for (v, a).

• Eraser Edges: The removal of iedges is linear to the number of removed system model edges |E−|.

• Eraser Nodes: For each removed node in |V −| we remove the incoming and outgoing iedges, which
is linear to the number of iedges with a constant lookup of connectivity-dependent iedges indexed
by endpoints.

• Creator Nodes: Given the node set V ′S of the previous system model, we need to evaluate the
complex rules for the pairs between the existing nodes and the new nodes: V + × V ′S + V ′S × V +,
as well as between the new nodes themselves V + × V +. For each we perform the rule application
(EvalRule and ImplicitDeps) and an edge insertion.

• Creator Edges: We evaluate the simple rules for all new edges: |E+| · |Rsimple|, for each edge we
evaluate the rule and find the implicit dependencies. We further find the connectivity-dependent
iedges where the edge establishes the relation between a node and endpoint.

The complexity of the connectivity change processing is the following:

• Reduced Connectivity: We are iterating over the connectivity-dependent iedges that have a connec-
tivity path (subset or equal of EI). An iedge is affected if an element of its connectivity path is
removed. For an affected edge we try to find an alternative path (linear to the size of the component
graph, BFS for shortest path).

• Increased Connectivity: We are iterating over the connectivity-dependent iedges that have no
connectivity path (subset or equal of EI). For all iedges we need to check if a path has been
established between the connectivity endpoints (linear to the size of the component graph, BFS for
shortest path).

Complexity Comparison with Traversal Analysis: The analysis approach of [7] is not designed
to handle a dynamic system model. In particular rules dependent on the current color or color tag lead to
an information flow state that highly depends on the current system model. Changes to the system model
requires to re-run the entire analysis. Therefore the comparison boils down to the differential complexity
as previously discussed and the full analysis complexity of [7] as discussed in subsubsection 3.5.1.
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4.3.2 Full and Differential Analyses Equivalence

The objective is that there is no difference in the information flow graphs produced by the differential
analysis compared to the full one.

Given the current system model graph GS , a system model change ∆, and the information flow graph
G′I of the previous system model graph G′S . The full information flow analysis (cf. section 3) of GS

produces GI,full. The differential information flow analysis using G′I and ∆ produces an information
flow graph GI,diff. Both GI,full and GI,diff are equal, i.e., the edge sets are equal and all edges have the
same flow type. We show the equivalence between the full analysis on the changed system model and the
differential analysis based on the graph delta in the following cases:

• Node Attribute Changes: The full analysis would never have seen the original vertex attributes,
only the changed attribute value. The regular rules application of attribute-conditioned rules may
either match in a first matching semantic, or no match.
For the differential analysis we have to consider two cases: would the same rule that was applied
still hold, i.e., is the attribute condition fulfilled, and would a previous rule match instead. To
achieve the same results as the full analysis, the differential analysis needs to handle the two cases:
the rule does not match anymore (attribute condition not fulfilled), that means the iedge has to
be removed. Second, a previous rule now matches (first matching semantic), therefore the iedge
produced by the current rule has to be removed. We achieve this through attribute dependencies
and implicit dependencies.

• Eraser Nodes and Edges: The full analysis would never create iedges to or from any erased
node (complex rules) nor based on any removed edges (simple rules). The differential analysis
achieves the same result by removing the iedges that connect to any removed node and the iedges
corresponding to the removed edges.
In addition, the removal of edges can also break the relation between nodes and their connectivity
endpoints. The differential analysis removes the complex iedges where the relation is broken due to
edge removal.

• Creator Nodes and Edges: The changed system model is given as VS = (V ′S \ V −) ∪ V + and
ES = (E′S \E−)∪E+. We already showed the equivalence for the eraser nodes and edges, therefore
we now consider VS = V ′′S ∪ V + and ES = E′′S ∪E+ with the erasers already applied in V ′′S and E′′S .
Given the new edge set ES = E′′S ∪ E+, for the full analysis we can split the rule application (cf.
Algorithm 1) into iterating over E′′S and iterating over E+. The differential analysis already iterated
over E′′S for the previous model and now only iterates over E+.
Similarly for the new vertex set VS = V ′′S ∪ V +. The full analysis will evaluate the complex rules on
typed node pairs of VS . We can split the evaluation into the set of typed node pairs of V ′′S × V ′′S ,
as well as evaluating the sets V + × V ′′S , V ′′S × V +, and V + × V +. The differential analysis already
evaluated the node pairs of V ′′S × V ′′S for the previous model, and now only considers the pairs
between the new vertices and the existing ones.
Additionally, the creation of new edges can establish the relation between vertices and their
connectivity endpoints in case of (negative) connectivity-dependent iedges. We handle this case in
the creator edge processing and re-evaluate the affected iedges.

4.4 Summary
Building upon the concepts of the static information flow analysis of section 3 we defined a fully dynamic
analysis. The key concepts are:

• System Model Changes as Graph Deltas: Changes to the system model, which is a graph model, are
defined as graph deltas consisting of creator nodes and edges, node modifiers, and eraser nodes and
edges.

• Processing of System Model Changes: Given a system model and a system model change as a graph
delta, the differential analysis computes the information flow model changes based on the graph
delta. We show that the full and differential analyses result in the same information flow model.
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• Processing Information Flow Changes: Changes to the system model result in changes in the
information flow model. The differential analysis processes how the connectivity changes and
determines the connectivity-dependent iedges that are affected.

Overall the differential analysis builds upon the full analysis and partially applies the rule evaluation.
The attribute and connectivity dependencies of iedges are essential in producing an equal information
flow result for the differential analysis compared to the full one.

5 Related Work
A variety of algorithms, including connectivity, on dynamic graphs have been long studied [16]. Of
our particular interest are fully dynamic graph reachability algorithms, such as proposed by Roditty
and Zwick [33], which would replace our current SCC re-computations using Tarjan’s algorithm. Our
approach builds up on dynamic graph reachability, where our approach computes the graph delta that
is consumed to update the graph reachability. Recently, differential computation frameworks, such as
differential dataflow [29], have been applied to differential graph computations [28], in particular to graph
connectivity. As future work we will evaluate and try to implement our algorithm as a differential dataflow
computation. CellIQ [27] analyzes cellular network topologies using differential graph computations.
They compute connected components over a sliding window based on the GraphX [25] framework.

A similar model of information flow graphs has been used to model and analyze virtual machine
system policies [34]. Two static rules translate an access control statement into a graph edge based on
the statement’s permission and a classification of permissions as read-like or write-like [26]. The system
does not handle dynamic access control policies and neither dynamic information flow graphs. Similarly,
taint tracking is guided by a set of static rules for the particular language semantic, such as TaintDroid’s
propagation logic [18]. Attacker propagation has been studied in socio-technical systems. Groove [23]
is a graph transformation environment that has been used to model attacker actions in social-technical
environments. The underlying Portunes [17] model establishes a set of semantics for the possible attacker
actions. Given the variety of socio-technical environments, user-defined trust assumptions and attacker
propagation rules are required. This allows to model the effectiveness of different physical security
measures, e.g., door strengths, and digital security properties, such as, software vulnerabilities.

In previous work we studied the information flow analysis of static virtualized infrastructures with
user-defined trust assumptions [7]. The analysis uses a graph traversal approach with “color” propagation
starting from a set of information source vertices. However, the approach’s stateful graph traversal renders
this approach difficult to adapt to graph changes. Instead, in this work we pursue the use of information
flow graphs rather than graph traversals. This work is a generalization of first dynamic analyses using
such information flow graphs [6, 8] and provides detailed algorithm specifications and analyses.

In this work we pursue a static information flow analyses of a dynamic virtualized infrastructure
topology. This means we analyze for potential information flows rather than actual flow. This is analog to
static program analysis where the program’s source code is studied rather than the executed program. On
the other hand, dynamic approaches for information flow control (IFC) have been proposed. For instance,
SilverLine [30] offers data and network isolation based on data labeling, however requires changes to both
Xen and the guest VM kernel. CloudFlow [2] is based on VM introspection to monitor and extract the
tasks with their SELinux security labels that running inside a VM. They implement a Chinese wall policy
to prevent, for instance, that a VM with unlabeled tasks is running on the same physical server as a VM
that runs a top secret task. IFC also finds application in infrastructure management and administration.
For instance H-one [21] is a system that uses information flow tracking to establish an audit log of VM
configuration tampering by administrators.

6 Conclusions and Future Work
In this work we propose a approach for the static information flow analysis for dynamic systems. We
introduce the concept of dynamic information flow graphs with user-defined flow rules. The flow rules
capture the user’s trust assumptions in system components and their isolation. The dynamic information
flow graphs are dependent on the flow rules’ conditions and changes to the system model may require
re-computation of parts of the information flow graph. However compared to other approaches our analysis
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operates in a differential way, i.e., the analysis is updated based on the changes rather than performing
an entire analysis. We apply our approach to the case study of isolation in virtualized infrastructures,
where we model the infrastructure’s configuration and topology as a system model graph and capture
assumptions in the network isolation as flow rules. An existing system provides us with system model
changes that lead to updates in our dynamic information flow graph. Security systems can build upon
our information flow graph to verify isolation between system components using graph reachability in
dynamic systems.

As part of future work and further optimization of our approach, we propose the following directions.
We aim for a graph reduction by replacing potential full-mesh graph structures, e.g., as created by default
complex rules, with star topologies. For this we need to introduce the concept information flow nodes
that can be created by flow rules. In our case study, the default complex rule for portgroups would
create a noflow information flow node to connect the portgroups to. The information flow nodes are also
dependent on flow rules conditions and need to be adapted based on system model changes. Furthermore,
we can optimize our approach by using a dynamic reachability or SCC algorithm rather than re-computing
the SCCs using Tarjan’s algorithm. Finally, we aim to apply our approach to new case studies, such as
for attacker propagation in digital-physical environments.
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