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Abstract—Data with vastly different access characteristics is
efficiently stored in multi-tiered storage systems. A cost-effective
way to retain large volumes of infrequently accessed data is to
store it on tape. Steady developments in tape technology deliver
ever increasing storage capacities at low cost. This has established
tape as a viable solution to cope with the extreme data growth
in the context of Big Data. Assessing the performance of the
various tiers is central to achieving appropriate tier dimensioning
and storage provisioning. To that end, we develop an analytical
model to evaluate the performance of a tape library system
that considers various relevant aspects, such as the number of
cartridges and tape drives as well as different mount/unmount
policies. Closed-form expressions for the corresponding mean
waiting times are derived. The validity of the model developed
is confirmed by demonstrating that the predicted performance
matches well with that obtained by simulation across a wide
range of system parameter values.

I. INTRODUCTION

Large data volumes are ubiquitous in modern enterprises

with the demand for additional capacity continuing to grow.

The Big Data explosion has led to the deployment of multi-

tiered storage systems that make use of mass storage archives.

In the past four decades, cost considerations have established

tape as the natural choice for economically storing the bulk

of data, that is, the data that is infrequently accessed [1]–

[7]. The tape tier remains an economically attractive option,

especially considering the potential growth of the capacity and

bandwidth offered by tape devices [8]. Modern enterprise tape

has reached a capacity of 10 TB per cartridge with data rates

reaching 360 MB/s. A tape library system typically comprises

a small number of tape drives for performing read/write

operations on a large number of tape cartridges, which are

located in a storage rack and are mounted in and unmounted

from the tape drives through automation mechanisms (robot

arms). To perform a read/write access to a tape cartridge, the

cartridge should first be mounted in a free drive and then,

after a seek time, be appropriately positioned to read/write

the corresponding data. Also, the unmount time of a tape

includes the time spent to rewind it before it is removed

from the corresponding tape drive. Although the tape tier is

economically attractive, it presents certain challenges as the

access latencies are relatively high and can run into minutes

even on lightly loaded systems. Furthermore, tape drives are

very expensive compared to tape cartridges and consume more

space. Therefore, the tape drive component is a scarce resource

that needs to be properly provisioned for an efficient and cost-

effective operation. Consequently, assigning a proper number

of tape drives to a tape system is becoming increasingly

important. The same applies to optical disk archives, which

operate using optical disk readers and, generally, to tertiary

storage, which uses drives that accept removable media, such

as tapes and optical disks [5], [6].

The complexity of storage systems has grown in terms

of the heterogeneity required to satisfy user requirements.

In this context, as well as in the context of cloud storage,

multi-tiered storage systems store data with vastly different

access characteristics in various types of storage devices. They

typically store the least accessed data on tape, also referred to

as tertiary storage [5], [6], and the most frequently accessed

data on hard disk drives (HDD) and solid state drives (SSD).

A scalable method for efficient tier provisioning and data

placement that minimizes the system’s mean response time

for a given budget and workload was presented in [9]. It

used an M/G/1 queueing model to capture the behavior
of HDD and SSD devices and analytically assess the mean

waiting times of the corresponding tiers. Note though, that

the operation of tape libraries with the mounting, serving,

and unmounting of cartridges is similar to that of polling

systems, and therefore cannot be captured by a simpleM/G/1
queueing model. Consequently, for a proper provisioning of a

multi-tiered storage system that includes tape, an advanced

tape tier model needs to be developed, which is the aim of

this work.

In this article, we present an analytical queueing-based

method for efficiently evaluating the performance of a tape

library system and, more generally, of a storage system that

operates using drives that accept removable media. The results

obtained can then be used to provision the system such that

desired performance guarantees are satisfied. Such perfor-

mance guarantees are useful in appropriately provisioning

tape systems for an expected workload in order to comply

with service level agreements on the system performance. The

model developed yields the mean waiting time analytically in

closed-form as a function of the system parameters, including

the number of tape cartridges, the number of tape drives, and

the tape mount, unmount and seek times.

Performance evaluations of a tape library system reported in

the literature were mainly conducted by means of simulation

[1]–[3] or by actual measurements [6]. To properly dimension

such a system, it is imperative to be able to assess the effect of

the various parameters on the performance metric considered.

Accomplishing this by simulation is time-consuming com-

pared with analytical models that provide fast execution times

and more insight. Initial analytical efforts were presented in

[10], [11] where M/M/c and MX/G/c models were used.
These models, however, are simplistic because they do not

capture the polling nature of operation of tape library systems.

In this article, we present a comprehensive theoretical model

that considers the resource contention between tapes and



drives, and provides accurate results, which cannot be directly

derived from relevant previous works. Building uponM/G/K
and polling-system queueing results, we develop an enhanced

model and subsequently assess the effect of two distinct

tape mount/unmount policies. To the best of our knowledge,

this is the first theoretical work to accurately evaluate the

performance of tape libraries and, more generally, of systems

with removable media, using closed-form expressions for the

mean waiting time.

The remainder of the paper is organized as follows. Section

II provides a survey of the relevant literature on performance

evaluation of tape library systems. Sections III and IV describe

the operation of a tape library system and its similarities to

the operation of a polling system. Section V describes the

tape system model along with the corresponding parameters.

Section VI presents the analytical evaluation of the mean

waiting time. Section VII shows numerical results for a typical

tape system. Finally, we conclude in Section VIII.

II. RELATED WORK

The performance of tape libraries was studied primarily by

means of simulation. The maximum throughput and the mean

response time of an automated tape library were evaluated in

[1]. An open queueing network model was developed, but it

turned out to be analytically intractable. A performance evalu-

ation was subsequently conducted by means of simulation. The

effect of striping in large tape libraries was assessed in [2], [3]

by simulating a closed system, where tape drives are always

busy serving requests, and an open system, respectively. The

effect of the various parameters on the maximum throughput

and on the mean response time was subsequently evaluated.

To the best of our knowledge, there are only two initial

efforts to assess the performance of a tape library analytically,

both of which date back twenty years [10], [11]. The analysis

in [10] considered an M/M/c model applied together with
an empirical expression, whereas that in [11] considered an

MX/G/c model. As we will see in Section VII, the actual
performance curve cannot be efficiently approximated using

these models and this is due to the fact that none of them

captures the polling nature of operation of a tape library

system. At first glance, and given that there is a large body

of queueing theoretical work on the performance evaluation of

polling systems, it seems surprising that in the last two decades

there has been no other analytical work on tape libraries. We

proceed to review relevant prior work on polling systems and

demonstrate that the corresponding results cannot be directly

applied to analyze a tape library system. This could therefore

be a reason for the lack of progress in this area.

III. OPERATION OF A TAPE LIBRARY SYSTEM

A tape library system consists of tape drives, automation

mechanisms (robot arms), a storage rack for the tape car-

tridges, and a cartridge control unit. To serve a request, a

robot arm (picker) fetches the appropriate tape cartridge from

the storage rack and delivers it to a free tape drive. The tape

drive unit mounts the tape, positions the head to the desired

file and transfers the data. To free the tape drive, a robot arm

unmounts the tape cartridge and returns it to the storage rack.

Tape read/write requests contain the following information:

the cartridge id, the position in the cartridge where the

corresponding data blocks reside, and the data size to be

transferred. Requests submitted for cartridges are queued in the

corresponding queues and are subsequently served according

to a scheduling policy. In this article, we consider a hierarchi-

cal scheduling algorithm where at the upper level it employs a

cyclic (round-robin) scheduling among the queues (mounting

cartridges), and at the lower level it employs a first-come-

first-served (FCFS) policy for serving requests within a queue

(reading from a mounted cartridge). This algorithm ensures

fairness and avoids starvation. The system’s performance can

be further improved by appropriately scheduling batches of

random requests [12], [13]. This issue, however, is beyond

the scope of this article. When all requests for a cartridge

are served (exhaustive service), and there are still pending

requests to some other, non-mounted cartridge, the cartridge

is unmounted and another cartridge with pending requests is

subsequently mounted. If, however, there are no other pending

requests to any other non-mounted cartridge, the cartridge

can either remain mounted in anticipation of future requests

arriving for it or be unmounted so as to save its corresponding

unmount time when future requests arrive for other non-

mounted cartridges that subsequently need to be mounted.

We proceed by considering the following two mount/unmount

policies deployed in this context:

1) Always-Unmount (AU) policy: a tape cartridge is im-

mediately unmounted upon completion of all pending

requests for it, in anticipation of the next request arriving

for another non-mounted cartridge.

2) Not-Unmount (NU) policy: a tape cartridge remains

mounted upon completion of all pending requests for

it, in anticipation of the next request arriving for this

same currently mounted, but idle cartridge.

IV. TAPE LIBRARY AND POLLING SYSTEM OPERATION

In typical polling systems, which include computer commu-

nication, production, traffic and transportation systems [14], a

server serves multiple queues in a given order. In such systems,

it is important to optimize the strategy for serving the queues

so as to minimize the average waiting and response time. Sev-

eral policies were considered for serving jobs in a queue, such

as exhaustive, gated, and limited. Under the exhaustive service

discipline, a server continues to work serving a queue until it

becomes empty. The order in which a server visits the queues

is determined by a routing scheme, such as cyclic (round-

robin), random, or first-come-first-served. Most of the work

on polling systems assumes that the server continues polling

successive queues even when the system is empty [15]. The

transitions between successive queues may be instantaneous or

may require a switchover time. If a polled queue is not empty,

the server spends an additional setup time before beginning

its service. This is a state-dependent setup time operation as

opposed to a system operating under a state-independent setup

time that is incurred in all queues visited, regardless of whether

there is work to be done or the queues are empty.
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We proceed by noting that the operation of a tape library

bears similarities to that of a queueing polling system. Re-

quests arriving for tape cartridges correspond to jobs arriving

at queues. The mounting of cartridges to tape drives to serve

requests corresponds to the servers visiting queues to serve

jobs. In the remainder, we consider a cyclic mounting (visiting)

policy. We now examine whether the cartridge mount/unmount

times can be mapped to switchover and setup times in the

context of polling models. In particular, when all requests of

a cartridge are served while there are still pending requests in

the system, the cartridge is unmounted and the next cartridge

in the sequence that has pending requests is mounted. The

time elapsed before starting to serve a new request is equal

to the sum of the unmount and mount times, regardless of the

position of the cartridge within the polling sequence. Thus, a

moments’ reflection reveals that the corresponding “switchover

time” has to be equal to zero, for otherwise the time elapsed

would depend on the cartridge’s position. Furthermore, for

the NU policy, the corresponding “setup time” is equal to the

sum of the unmount and mount times, and is state-dependent

as it is incurred only on non-empty queues. For the AU

policy, however, the state-dependent setup time involves the

unmount and mount times when the system is busy, but only

the mount time when the system is idle. More details on further

similarities and differences are provided next.

Polling systems have been extensively studied [16]. The vast

majority of work has dealt with the case of a single server, and

even in this case, the resulting models tend to be very complex

with few explicit results. For instance, relevant to the NU pol-

icy is the work presented in [17] where a patient server halts

at a queue as opposed to continuing to visit empty queues.

This work considers state-dependent setup times and assesses

system performance using an iterative procedure that involves

a discrete-Fourier-transform numerical technique. Obtaining

explicit closed-form expressions for the mean waiting time

seems to be a daunting task [15]. The additional complexity

of multiple (two or more) servers renders the polling models

intractable [18]. In particular, there are no analytical results

even for mean waiting times, and hence one must resort to

either simulations or approximations.

We have shown that the operation of a tape library corre-

sponds to that of a multi-server state-dependent polling system.

An approximate analysis of a state-dependent polling system

with multiple servers was presented in [19], but this work does

not consider the exhaustive service discipline; it only provides

results for the cases where a server visiting a queue serves

either all present jobs (gated service) or a limited number

of jobs (limited service). The exhaustive and gated service

disciplines were considered in [20], but results were obtained

under the assumption that multiple, and possibly all servers

may simultaneously serve a queue. In the case of a tape library,

this assumption does not hold as there can be at most one tape

served by a drive, which implies that only one server may serve

a queue at any given time. Also, for this reason, prior work

on polling systems with multiple coupled servers [21], where

all servers simultaneously visit a queue, is not applicable.

In this article, we present a model which is suitable for the

TABLE I
NOTATION OF SYSTEM PARAMETERS

Parameter Definition

c number of cartridges
d number of tape drives
a number of arms
M mount time
U unmount time
s seek time
λct arrival rate of requests for a cartridge
Q request size
bw bandwidth

λ arrival rate of requests to the tape system (λ = c λct)
B service time of a request (B = s + Q/bw)
ρ system load (ρ = λ B)
n number of cartridges per tape drive (n = c/d)

analysis of the AU and NU policies in a common framework.

Our approach follows the same direction as the one presented

in [22], and the references therein, that efficiently obtain an

expression for the expected delay by combining known expres-

sions for the light and heavy traffic cases through interpolation.

However, for the case of a multi-drive system, there are no

known expressions for the light and heavy traffic cases. In our

article, the mean waiting time of a multi-drive system in the

heavy-load region is obtained through a non-trivial extension

of previously published work for single-drive systems [23],

whereas the one for the light-load region is obtained in a novel

way through a virtualM/G/K queueing model. Subsequently,
we present a method to perform an interpolation between the

light- and heavy-load regions.

V. TAPE SYSTEM MODEL

The notation used is summarized in Table I. The parameters

are divided according to whether they are independent or

derived and are listed in the upper and the lower part of

the table, respectively. The tape library system considered

comprises c cartridges, d tape drives, and a (typically one or
two) robot arms. Note that the contention for the robot arm(s)

can be neglected because at low and high loads it is expected to

be negligible, and also because nowadays the time required by

robot arms to fetch tapes is significantly smaller than the tape

mount and unmount times, denoted by M and U , respectively
[24]. This assertion is indeed confirmed in Section VII. We

therefore proceed by considering a = d, which implies that
there is no contention for the robot arm(s). The workload is

assumed to be symmetric with the requests assumed to arrive

for the c cartridges according to independent and identical
Poisson processes at a rate of λct requests per unit of time.
This implies that the arrival process of requests to the tape

system is Poisson with rate λ, where λ = c λct. The request
size is denoted by Q, with the sizes of requests assumed to be
independent and identically distributed. Each request incurs a

seek time of s and a transfer time of Q/bw, where bw denotes

the transfer bandwidth. Thus, the total time to serve a request,

B, is equal to s + Q/bw. The first and second moments of a

random variable X are denoted by X and X2, respectively,

such that B and B2 denote the first and second moments of

the service time B, respectively, given by

B = s + Q/bw , (1)
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and B2 = s2 +Q2/b2
w +2 s Q/bw . (2)

Owing to the assumptions, it follows that the service times are

independent and identically distributed random variables.

VI. SYSTEM ANALYSIS

The performance of the system depends on its load, which

takes values in the [0,1) interval. In the following sections

we will show that the performance of the system can be

accurately modeled in the light-load and heavy-load regions.

Subsequently, we will present a method to accurately assess

the performance in the medium-load region based on an

interpolation between the light-load and heavy-load results.

A. Light-Load Analysis

Here we assess the mean waiting time in the light-load

region, that is, when λ is relatively small. A precise deter-
mination of where this region ends will be given in Section

VI-C. We proceed by noting that when the load is light, most

likely there is at most one request pending in each queue.

Thus, every time a request of a cartridge is served, there is

no other request pending for the same cartridge, and therefore

a robot arm unmounts the cartridge and mounts another one

to serve its request. In this context, the set of all outstanding

requests form a virtual queue that is served by the d tape
drives. Furthermore, the behavior of this virtual queue can

be analyzed by considering a fictitious service time of each

request, Sf , consisting of three components: the unmount time

U , the mount time M , and the service time B, that is,

Sf = U + M + B . (3)

In fact, the only difference between the AU and NU policies is

that the sequence of appearance of these times varies; the AU

policy has a mount-serve-ummount sequence whereas the NU

policy has an unmount-mount-serve sequence. Consequently,

from the virtual queue’s perspective, the two policies have

a service time, Sf , distributed identically with its first two

moments given by

Sf = U + M + B , (4)

and S2
f = U2 +M2 +B2 +2 (U M +U B +M B) . (5)

Consequently, the operation of the virtual queue can be cap-

tured by an M/G/K queueing model with K(= d) servers,
where the arrival rate is λ and the service time is Sf . The mean

waiting of an M/G/K queue is obtained approximately by

E[WM/G/K ] = 1
2 (1 + C2)E[WM/M/K ] where E[WM/M/K ]

is the mean waiting time of a corresponding M/M/K queue
with the same mean service time Sf , and C is the coefficient
of variation of Sf [25]. The fictitious mean waiting time, Wf ,

can then be approximated by

Wf (ρf ) ≈
S2

f dd−1 ρd
f

2Sf d! (1 − ρf )2
π0 , (6)

where ρf denotes the load of the virtual queue, given by

ρf =
λ Sf

d
, (7)

and π0 is the probability that the system is empty, given by

π0 =
1

(d ρf )d

d! (1−ρf ) +
∑d

n=0
(d ρf )n

n!

. (8)

It holds that the utilization (load) of the system is given by

ρ =
λ B

d
. (9)

Combining (7) and (9) yields

ρf =
ρ

ρ∗
, (10)

where

ρ∗ ,
B

Sf

(4)
=

B

U + M + B
. (11)

The virtual queue saturates when ρf = 1, which, according to
(10), occurs at load ρ = ρ∗. Note also that for a single-server
queuing system (K = d = 1), approximation (6) is exact,
yielding the Pollaczek–Khinchine formula.

As mentioned above, the AU and NU policies have the

same fictitious service time distribution and, consequently,

the same queueing time distribution. However, as the actual

waiting times of requests are defined between the arrival and

service initiation times, the actual waiting times are longer than

the fictitious ones. In particular, parts of the fictitious service

times need to be counted as actual waiting times. For the

AU policy, the first component of the mount-serve-ummount

fictitious service sequence, that is, the mount time, is in fact

part of the actual waiting time. Similarly, for the NU policy,

the first two components of the unmount-mount-serve fictitious

service sequence, that is, the unmount and mount times, are in

fact part of the actual waiting time. The actual waiting times,

WAU,l and WNU,l, corresponding to the Always-Unmount and
Not-Unmount policies are therefore given by,

WAU,l = Wf + M , (12)

WNU,l = Wf + U + M , (13)

which in turn yields the mean waiting times as follows:

WAU,l = Wf + M , (14)

WNU,l = Wf + U + M . (15)

Note that in the case of the NU policy, when the number

of cartridges c is not very large, there is a non-negligible
possibility that a request may arrive for a cartridge that is

already mounted. As for the NU policy there are always d
cartridges mounted, the probability of this event is equal to

d/c. In this case, the service of this request can immediately
start, which implies that the fictitious service of an arbitrary

request is given by

Sf =

{

B , with prob. d
c

B + U + M , with prob. 1 − d
c

, for NU. (16)

Also, the actual waiting time, WNU,l, is now given by

WNU,l =

{

Wf , with prob. d
c

Wf + U + M , with prob. 1 − d
c ,

(17)
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which in turn yields the mean waiting time WNU,l as follows:

WNU,l = Wf +

(

1 −
d

c

)

(U + M) . (18)

Note that (18) is also valid when c is large because it reduces to
(15). It can therefore be used for all values of c. Summarizing
(14) and (18), and using (10), yields

Wl(ρ) = Wf (ρ/ρ∗) + H , (19)

where Wf (.) is given by (6), ρ∗ by (11), and H by

H ,

{

M , for AU
(

1 − d
c

)

(U + M) , for NU .
(20)

B. Heavy-Load Analysis

We proceed by noting that when the load is high, the

tape drives are busy serving requests most of the time, while

newly arriving requests involve a large number of cartridges.

Consequently, when all requests for a given cartridge are

served, it is very unlikely that there are no other pending

requests in the system, which in turn implies that the difference

between the AU and NU policies will be negligible. It is also

expected that there are requests to be served in all the queues

visited, which implies that the setup times turn out to be

state-independent, and therefore the performance could then

be assessed by applying a state-independent polling model.

Such models, though, were developed for the case of a single

server, not for multiple servers. To cope with this issue, we

consider the system as being partitioned in d domains, with
each domain containing a set of n = c/d cartridges that are
served by a single tape drive. Therefore, the arrival process

of requests to each of the domains is Poisson with rate λdm,
where λdm = nλct = λ/d. Subsequently, we can apply the
result obtained in [23]. In this case it holds that N = n. Also,
for j = 1, . . . , n, it holds that λj = λct, ρj = λctB, (which
implies that ρ =

∑n
j=1 ρj = nλctB = λdmB = λ B/d),

h2
j = B2, sj = Uj + Mj , with the variables Uj and

Mj distributed according to U and M , respectively, and
S =

∑n
j=1 sj . By substituting the preceding expressions into

Eq. (4) of [23], we obtain the mean waiting time, Wh, as

follows:

Wh =
λ B2

2 d (1 − ρ)
+

sum
2

[

n − ρ

1 − ρ
+

s2
um − sum

2

sum
2

]

, (21)

where sum = U+M and s2
um = U2+M2+2U M . (22)

By considering (9), (21) yields

Wh(ρ) =
ρB2

2B (1 − ρ)
+

sum
2

[

n − 1

1 − ρ
+

s2
um

sum
2

]

. (23)

C. Medium-Load Analysis

Fig. 1 in Section VII shows the simulation-based mean

waiting time results along with the theoretical curves obtained

from (19) and (23). We observe that the theoretical light-load

curve matches well with the simulation results in the light-load

region [0, ρl], and the theoretical heavy-load curve matches

well with the simulation results in the heavy-load region

[ρh, 1]. In the medium-load region [ρl, ρh], we observe that
the mean-waiting-time curve increases almost linearly, which

cannot be efficiently approximated by M/M/c and MX/G/c
queueing models such as those used in [10], [11]. Triggered

by this observation, we propose, as an approximation in the

medium-load region, the unique line that is tangent to the

Wl(ρ) and Wh(ρ) curves at points ρl and ρh, respectively.

Note that the two curves Wl(ρ) and Wh(ρ) are convex and
saturate at ρ = ρ∗ < 1 and ρ = 1, respectively. It can also be
shown that it holds that Wl(0) < Wh(0), which implies that
there is always a unique line that is tangent to the two curves,

at points ρl and ρh with ρl < ρ∗ < ρh, given by

Wm(ρ) =
Wh(ρh) − Wl(ρl)

ρh − ρl
ρ −

ρl Wh(ρh) − ρh Wl(ρl)

ρh − ρl
.

(24)

Note that, owing to the complexity of expression (6), which

yields the Wf component of the Wl function, the ρl and ρh

values can be evaluated only numerically. This basic, partially

numerical analysis yields the mean waiting time for the entire

range of loads as follows:

W (ρ) =











Wl(ρ) , for ρ ∈ [0, ρl] ,

Wm(ρ) , for ρ ∈ [ρl, ρh] ,

Wh(ρ) , for ρ ∈ [ρh, 1) ,

(25)

with Wl(ρ), Wm(ρ) and Wh(ρ), given by (19), (24) and (23),
respectively. It turns out that the tangent line, along with ρl

and ρh, can be analytically determined if instead of the virtual

M/G/K queue, we consider the corresponding single server
M/G/1 queue, with the service time B being K = (d) times
shorter. In this case, the approximate fictitious mean waiting

time, Wf,approx, is obtained by

Wf,approx ≈
λ S2

f

2 d2 (1 − ρf )
. (26)

Combining (7), (9), (11), and (26), (19) yields the approximate

mean waiting time W (a)
l as follows:

W (a)
l (ρ) = Wf,approx + H ≈

S2
f ρ

2 d Sf (ρ∗ − ρ)
+ H . (27)

From (23) and (27), after some manipulations, it follows that

the tangent W (a)
m is given by

W (a)
m (ρ)=

Wh(ρ(a)h )−W (a)
l (ρ(a)l )

ρ(a)h − ρ(a)l

ρ−
ρ(a)l Wh(ρ(a)h )−ρ(a)h W (a)

l (ρ(a)l )

ρ(a)h − ρ(a)l

,

(28)

where ρ(a)l = (−Y +
√

Y 2 − 4X Z)/(2X) , (29)

ρ(a)h = 1 − R (1 − ρl/ρ∗) , (30)

with R =
√

(C + G) ρ∗/A , (31)

A = S2
f/(2 d Sf ) , (32)

C = [n sum + (s2
um − sum

2)/sum
2 ]/2 , (33)

G = B2/(2B) − s2
um/(2 sum) , (34)
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(b) Not-Unmount (NU) policy.

Fig. 1. Theoretical mean waiting times for light- and heavy-load approximations vs. load along with simulation results; c = 720, d = 12.

X = (G + H − A)R , (35)

Y = AR2 + [C + G − 2 (G + H)R ] ρ∗ , (36)

Z = {AR (1 − R) − [C + G − (G + H)R ] ρ∗ } ρ∗ , (37)

with ρ∗ given by (11), the moments of Sf given by (4) and

(5), the moments of sum given by (22), and H given by (20).
Thus, this approximate analysis yields a closed-form ex-

pression for the mean waiting time W (a) for the entire range

of loads as follows:

W (a)(ρ) =











W (a)
l (ρ) , for ρ ∈ [0, ρ(a)l ] ,

W (a)
m (ρ) , for ρ ∈ [ρ(a)l , ρ(a)h ] ,

Wh(ρ) , for ρ ∈ [ρ(a)h , 1) ,

(38)

with W (a)
l (ρ), W (a)

m (ρ), Wh(ρ), ρ(a)l and ρ(a)h given by (27),

(28), (23), (29) and (30), respectively.

As we will see in Section VII, the light-load approximation

given by (27) is not very accurate, leading to a large deviation

of the mean waiting times in the light-load region. However,

it turns out that the derived region limits ρ(a)l and ρ(a)h are very

good approximations of the actual limits ρl and ρh. To improve

the accuracy of the model, we propose to use a variant of

(25) with ρl and ρh replaced by ρ(a)l and ρ(a)h , respectively.

Consequently, the mean waiting time is now obtained by the

following enhanced closed-form expression:

W (e)(ρ) =











Wl(ρ) , for ρ ∈ [0, ρ(a)l ] ,

Wm(ρ) , for ρ ∈ [ρ(a)l , ρ(a)h ] ,

Wh(ρ) , for ρ ∈ [ρ(a)h , 1) ,

(39)

with Wl(ρ), Wm(ρ), Wh(ρ), ρ(a)l and ρ(a)h given by (19), (24),

(23), (29) and (30), respectively. Because the ρ(a)l and ρ(a)h

values are very close to those of ρl and ρh, the enhanced W (e)

curve is almost identical to the partially numerically obtained

W curve given by (25), with albeit the advantage of being

expressed analytically in closed form.

VII. NUMERICAL RESULTS

Here we assess the performance of a tape library by using

both theoretical predictions and event-driven simulations. We

have confirmed the validity of the model by considering

scenarios for a range of distributions and parameter values. We

begin by presenting the specific results for the IBMr TS4500

TABLE II
MEDIUM-LOAD REGION BOUNDARIES

Policy ρl ρh ρ(a)
l

ρ(a)
h

AU 0.3945 0.6953 0.3944 0.6925

NU 0.3944 0.6920 0.3944 0.6912

tape library system [24]. The system comprises c = 720
cartridges and d = 12 servers, such that n = 60. The unmount
and mount times are considered to be fixed, equal to U = 77 s
and M = 15 s, respectively. Requests incur a fixed seek time
of s = 60 s and, from a study that observes uniform access
across files in archival data movement workloads [26], along

with the assumption that files are accessed in their entirety

in this context, we deduce that the distribution of I/O request

sizes is the same as that of the file sizes in the archive. In

particular, we consider the request size distribution to be the

same as the file size distribution of CERN [27], whose mean

Q is equal to 843 MB, the standard deviation to 2.8 GB and
the second moment Q2 to 8.5 GB2. The transfer bandwidth is

assumed to be bw = 360 MB/s.

Fig. 1 illustrates the theoretical mean waiting times obtained

from (19), which is derived by the light-load analysis, and (23),

which is derived by the heavy-load analysis, indicated by the

green and red curves, respectively, and shown for the entire

range of loads. Figs. 1 (a) and (b) show the results for the

AU and NU policies, respectively. Note that for both policies,

the light-load green curves Wl(ρ) saturate at ρ∗ = 0.4039.
The heavy-load red curves do not depend on the policy and

therefore are the same. The simulation results are indicated

by the blue circles, with the 95% confidence intervals being

extremely narrow and therefore not shown.

Fig. 2 shows the theoretical predictions for the AU and NU

policies obtained by using (25) and indicated by the red curves,

along with the simulation results. The values of ρl and ρh for

the AU and NU policies are obtained numerically and listed

in Table II. Fig. 2 also shows the approximate closed-form

theoretical predictions obtained by making use of (38) as green

curves. These curves are barely visible because they lie just

below the red ones. The values of ρ(a)l and ρ(a)h are obtained by

(29) and (30), respectively, and listed in Table II. We observe

that the values of ρ(a)l and ρ(a)h are very close to those of ρl

and ρh, respectively.

Fig. 3 shows the results in the light-load region for the AU

and NU policies. We observe that the red curves, obtained
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(b) Not-Unmount (NU) policy.

Fig. 2. Mean waiting times for AU and NU vs. load; c = 720, d = 12.
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(b) Not-Unmount (NU) policy.

Fig. 3. Mean waiting times for AU and NU vs. load in the light-load region; c = 720, d = 12.
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(a) Partially numerical / Enhanced closed-form approximation.
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(b) Closed-form approximation.

Fig. 4. Ratio of analytical estimations to simulation results as a function of the load; c = 720, d = 12.

partially numerically by (25), match well with the simulation

results as opposed to the green curves, obtained by the closed-

form approximation (38), which exhibit a significant deviation.

This is reflected in Fig. 4, which shows the ratio of the

analytical predictions to the corresponding simulation values.

Clearly, Fig. 4 (a) reveals that the theoretical results match well

with the simulation ones in the light- and heavy-load regions,

with their worst-case deviations being equal to 2% and 3%,

respectively. In the medium-load region, the deviation is on

the average about 10% and exhibits a spike with a peak of

about 50% only in a narrow region around the saturation load

ρ∗ = 0.4039 of the virtual queue. Nevertheless, despite the
drastic change in the system’s mean waiting time, which is

between one and two orders of magnitude, for loads close to

ρ∗ ≃ 0.4, the analytical results turn out to properly capture
this behavior (cf. Figs. 2 and 3). In contrast, Fig. 4 (b) shows a

significant deviation of the closed-form approximation results
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Fig. 5. Deviation of the enhanced mean waiting times from the partially
numerically ones for AU and NU vs. load; c = 720, d = 12.

in the light-load region, obtained by (38), from the simulation

results.

Fig. 5 plots the W (e)(ρ)/W (ρ) − 1 quantity, which reveals
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(a) c = 120, d = 2; ρl = 0.3797, ρh = 0.6793, ρ(a)
l

= 0.3797, ρ(a)
h

= 0.6784 for AU; ρl = 0.3796, ρh = 0.6780, ρ(a)
l

= 0.3796, ρ(a)
h

= 0.6768 for NU.
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(b) c = 240, d = 4; ρl = 0.3871, ρh = 0.6871, ρ(a)
l

= 0.3872, ρ(a)
h

= 0.6855 for AU; ρl = 0.3871, ρh = 0.6853, ρ(a)
l

= 0.3871, ρ(a)
h

= 0.6841 for NU.
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(c) c = 480, d = 8; ρl = 0.3923, ρh = 0.6928, ρ(a)
l

= 0.3922, ρ(a)
h

= 0.6904 for AU; ρl = 0.3922, ρh = 0.6902, ρ(a)
l

= 0.3922, ρ(a)
h

= 0.6891 for NU.

Fig. 8. Various configurations with a ratio of the number of cartridges to the number of tape drives of n = 60.
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Fig. 6. Ratio of mean waiting times of AU to NU vs. load; c = 720, d = 12.

that the enhanced closed-form W (e) curve given by (39) is

almost identical to the partially numerically obtainedW curve

given by (25). We have verified that this holds in all cases

presented next, and this is because the values of ρ(a)l and ρ(a)h
are always very close to those of ρl and ρh, respectively.

Consequently, the red curves shown in all figures correspond

to the values obtained by both the partially numerical model

and the enhanced closed-form model.

Fig. 6 shows the results for the ratio of the mean waiting

times of the AU to those of the NU policy. As expected, for

light loads, the AU policy is superior because it does not waste

any time to unmount cartridges when requests arrive. As the

load increases, the performance of the AU policy approaches

that of the NU policy. Clearly, the theoretical results obtained

by the partially numerical and enhanced models and shown
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(b) Not-Unmount (NU) policy.

Fig. 7. Effect of number of arms on the mean waiting time as a function of
the load; c = 720, d = 12.
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(a) c = 40, d = 2; ρl = 0.3595, ρh = 0.6615, ρ(a)
l

= 0.3592, ρ(a)
h

= 0.6597 for AU; ρl = 0.3588, ρh = 0.6562, ρ(a)
l

= 0.3585, ρ(a)
h

= 0.6543 for NU.
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(b) c = 80, d = 4; ρl = 0.3737, ρh = 0.6742, ρ(a)
l

= 0.3735, ρ(a)
h

= 0.6727 for AU; ρl = 0.3733, ρh = 0.6698, ρ(a)
l

= 0.3731, ρ(a)
h

= 0.6678 for NU.
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(c) c = 160, d = 8; ρl = 0.3832, ρh = 0.6841, ρ(a)
l

= 0.3830, ρ(a)
h

= 0.6816 for AU; ρl = 0.3829, ρh = 0.6795, ρ(a)
l

= 0.3827, ρ(a)
h

= 0.6771 for NU.

Fig. 9. Various configurations with a ratio of the number of cartridges to the number of tape drives of n = 20.
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(a) c = 20, d = 2; ρl = 0.3374, ρh = 0.6435, ρ(a)
l

= 0.3365, ρ(a)
h

= 0.6401 for AU; ρl = 0.3352, ρh = 0.6316, ρ(a)
l

= 0.3342, ρ(a)
h

= 0.6276 for NU.
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(b) c = 40, d = 4; ρl = 0.3595, ρh = 0.6627, ρ(a)
l

= 0.3588, ρ(a)
h

= 0.6593 for AU; ρl = 0.3582, ρh = 0.6527, ρ(a)
l

= 0.3574, ρ(a)
h

= 0.6486 for NU.
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Fig. 10. Various configurations with a ratio of the number of cartridges to the number of tape drives of n = 10.
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by the red curve are in agreement with the simulation ones,

which establishes a confidence for the model presented.

We have also investigated by simulation the effect of the

number of robot arms on the mean waiting time when arm

operations take 3.3 s [24]. Fig. 7 shows the ratio of the mean

waiting times for various values of a to the optimal ones
obtained when there is no contention for the robot arms, that

is, when the number of robot arms is equal to the number

of tape drives (a = d = 12). We observe that for a ≥ 2, the
performance is insensitive to the number of arms because there

is practically no contention for them. For a single arm, the

contention results in an increase of the mean waiting time by

at most 6%, which occurs at medium loads; as expected at low

and and high loads the corresponding increase is very small,

at most 4% and 0.7%, respectively. These results establish that

the effect of the number of arms is negligible, which in turn

confirms the validity of the model presented.

Next, we examine the sensitivity of the accuracy of the

theoretical results to the number of cartridges and the number

of tape drives. First, we consider a ratio of n = 60 cartridges
per tape drive. The theoretical and simulation results obtained

for d = 2, 4 and 8 tape drives are shown in Fig. 8, with each
of the corresponding three rows containing four figures. In

each row, the first two figures show the mean waiting times

for the AU and NU policies, respectively, similarly to Fig. 2.

The values of ρl, ρh, ρ
(a)
l and ρ(a)h for the AU and NU policies

are listed in the corresponding figure caption. The third figure

shows the ratio of the analytical predictions of the enhanced

theoretical model, obtained by (39), to the corresponding

simulation values. The fourth figure shows the ratio of the

mean waiting times of the AU to the NU policies, similarly

to Fig. 6. From Fig. 8, we observe that as the number of

drives increases, the accuracy of the theoretical approximation

improves in that the spike, shown in the third figures for loads

around the value of ρ∗ = 0.4039, becomes narrower, with its
height remaining roughly constant. Also, the red curves in the

fourth figures match well with the simulation results and, as

the number of drives increases, tend to become a step function

for a load equal to ρ∗. This implies that for ρ < ρ∗, the ratio
of AU to NU remains practically the same, and for ρ > ρ∗,
it tends to one. Figs. 9 and 10 reveal that the same applies

when n takes smaller values. However, the width of the spike
becomes wider, which implies that the accuracy of the model

deteriorates at medium loads, but is quite satisfactory at light

and heavy loads, with the deviation being less than 10%.

VIII. CONCLUSIONS

The unrelenting growth of big data has fueled a high

demand for tape storage. Predicting the performance of a

tape library system is key to efficiently dimension it, and,

in particular, to dimension multi-tiered storage systems that

contain several type of devices, including tape. Our work is the

first to provide an accurate analytical model for assessing the

performance of tape library systems. Extending this model to

include enhanced interpolation schemes, to study asymmetric

workloads, and to incorporate advanced scheduling policies is

the subject of further investigations.
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