

RZ 3896 (#ZUR1603-057) 03/21/2016
Computer Sciences/Mathematics 22 pages

Research Report

The Complexity of Deadline Analysis for Workflow Graphs with

Multiple Resources

Mirela Botezatu1,2, Hagen Völzer1 and Lothar Thiele2

1IBM Research – Zurich

8803 Rüschlikon

Switzerland

2ETH Zurich

Switzerland

 Research
 Almaden – Austin – Beijing – Brazil – Cambridge – Dublin – Haifa – India – Kenya – Melbourne – T.J. Watson – Tokyo – Zurich

The Complexity of Deadline Analysis for Workflow
Graphs with Multiple Resources

Mirela Botezatu1,2, Hagen Völzer1, and Lothar Thiele2

1 IBM Research – Zurich, Switzerland
2 ETH – Zurich, Switzerland

Abstract. We study whether the executions of a time-annotated sound workflow
graph (WFG) meet a given deadline when an unbounded number of resources
(i.e., executing agents) is available. We present polynomial-time algorithms and
NP-hardness results for different cases. In particular, we show that it can be de-
cided in polynomial time whether some executions of a sound workflow graph
meet the deadline. For acyclic sound workflow graphs, it can be decided in linear
time whether some or all executions meet the deadline. Furthermore, we show
that it is NP-hard to compute the expected duration of a sound workflow graph
for unbounded resources, which is contrasting the earlier result that the expected
duration of a workflow graph executed by a single resource can be computed in
cubic time. We also propose an algorithm for computing the maximum concur-
rency of the workflow graph, which helps to determine the optimal number of
resources needed to execute the workflow graph.

1 Introduction

A workflow graph can capture the main control flow of processes modeled in languages
such as BPMN, UML-Activity Diagrams, and Event Process Chains, cf. [11]. That is,
the core routing constructs of these languages can be mapped to the routing constructs
of workflow graphs, which are alternative choice and merge, and concurrent fork and
join. Fig. 1 shows an example of a workflow graph modeling a ticket resolution work-

Fig. 1: An example of a workflow graph and one of its executions (red)

flow. After a task to categorize the ticket (“Label ticket”), there is a choice s1 whether
the ticket documents a database issue (DB) or a disk issue (HDD). Following the case of
HDD, there is a preliminary step to fetch the disk logs followed by a fork f 2 that spawns
two concurrent threads. One thread follows “Consistency check”, the other thread fol-
lows “Analyze HDD logs”. Then each thread is merged with the corresponding thread

of the case DB through the merge gateways m1 and m2. After merging, there are some
additional tasks “Identify error” and “Report usage pattern”, before the threads are syn-
chronized at the join j1. Finally there are some wrap-up tasks, common to both cases.

A workflow graph is equivalent to a two-terminal free-choice Petri net i.e., a con-
nected net with a unique source and sink, which is also called a free-choice workflow
net [6]. A workflow graph can be seen as a compact representation of the correspond-
ing free-choice net. Therefore, the theory of free-choice Petri nets directly applies to
workflow graphs.

A workflow graph may contain a local deadlock or exhibit lack of synchronization.
The latter corresponds to unsafeness in Petri nets. The absence of local deadlock and
lack of synchronization has been termed soundness, which can be decided in cubic time
by help of the rank theorem for free-choice Petri nets [5], also cf. [1].

In this paper, we analyze whether the executions of a sound workflow graph meet a
given deadline, where tasks, or, equivalently, edges are annotated with execution times.
We are not aware of any similar work for the model class we investigate. In our previous
work [3], we considered the case where the workflow graph is executed by a single
resource (i.e., executing agent). In this work, we provide results for the case where the
workflow graph is executed by an unbounded number of resources. We also discuss the
case of a fixed number n > 1 of resources in Section 6.

General workflow graphs can of course be analyzed for timing behavior in terms
of their reachability graph, and there are various techniques and tools that support this
[9, 10, 18]. This holds also for non-Petri-net like models, e.g., timed automata where
the minimum cost reachability problem is addressed through exponential branch-and-
bound based algorithms [13]. Since the construction of the reachability graph incurs
an exponential blowup, these techniques do not run in polynomial time in the size of
the workflow graph. In this paper, we show that some deadline analysis problems for
workflow graphs can nevertheless be solved in polynomial time.

1. All execu-
tions

2. Some ex-
ecution

3. Probability
of transgression

4. Expected
duration

5. Min. nr.
resources

A. Sound WFG NP-hard O(|V||E|) NP-hard NP-hard open*
B. Acyclic Sound WFG O(|V| + |E|) O(|V| + |E|) NP-hard NP-hard open*
C. Regular WFG O(|V | + |E|) O(|V | + |E|) NP-hard NP-hard O(|V | + |E|)

Table 1: Overview of results; new contributions in bold, * we give a heuristic for this in
Sect. 5

Table 1 shows the results for deadline analysis of sound workflow graphs with un-
bounded resources, where our new contributions in this paper are written in bold.

First, we ask whether all executions of a workflow graph finish before a given dead-
line. This is a question that arises when the choices made in the process at runtime are
not under our control. This corresponds to Column 1 in Table 1. For the general case
(Cell A.1), loops in the graph are constrained by a termination order. The complex-
ity result for this case follows directly from Theorem 2 in our previous paper [3]. For
acyclic workflow graphs, this question can be answered in linear time (Cell B.1) and
we provide an algorithm for this in Section 3. For regular graphs, which are workflow

2

graphs that can be generated by a regular expression, i.e., every split corresponds to
a join of the same logic (see Fig. 3 for an example), the solutions consist of simple
recursive algorithms that run in linear time (Cell C.1).

Next, we assume we have control over the choices made in the process at runtime.
Therefore, we ask the question whether there exists an instantiation of the process – an
execution – that meets a given deadline. This corresponds to Column 2 in Table 1. In
particular, as one of our main contributions, we show that for general sound workflow
graphs, finding the minimum duration over all executions can be solved in polynomial
time (Cell A.2). When restricting to acyclic workflow graphs (Cell B.2, similarly as for
Cell B.1), the problem can be solved in linear time. As above, for regular graphs, the
minimum duration of an execution can be computed recursively in linear time.

Suppose not all executions meet a given deadline but only some. We can then ask
whether the probability of a deadline transgression exceeds a given threshold - Column
3 in Table 1. Results carry over from our previous work [3] where we have proven that
computing whether the probability of an execution with a single resource terminating
before the deadline exceeds a given threshold is NP-hard (Cells A.3, B.3 and C.3).

Also in the probabilistic framework, another valuable information is the expected
duration of an execution of a given workflow graph. The results related to this question
map to Column 4 in Table 1. We show that computing the expected duration is NP-hard
even for regular graphs. This is in contrast to the execution with a single resource where,
the expected duration can be computed in cubic time for general sound workflow graphs
[3].

Finally, we ask what is the optimal number of resources for the workflow graph
where optimal means the minimum number k of resources such that each execution
achieves its minimal execution time under k resources (Column 5 in Table 1). We pro-
pose an algorithm for computing the maximum concurrency of a workflow graph in
Section 5, which is an upper bound for the optimal number of resources.

2 Preliminaries

In this section, we define the necessary fundamental notions, which include workflow
graphs and their semantics.

A weighted, directed multi-graph G = (V, E, c,w) consists of a set of nodes V , a set
of edges E, a mapping c : E → V × V that maps each edge to an ordered pair of nodes
and a mapping w : E → N that maps each edge to a nonnegative integer, called its
weight or duration. For each edge e with c(e) = (v, z), we assume v , z for simplicity
throughout the paper.

A workflow graph Γ = (V, E, c, l,w), is a weighted multi-graph G = (V, E, c,w)
with distinct and unique source and sink nodes, denoted vsource and vsink, respectively,
equipped with an additional mapping l : V \ {vsource, vsink} → {XOR,AND} that as-
sociates a branching logic with every node, except for the source and the sink. Fur-
thermore, we assume that every node is on a path from the source to the sink, that
the source has a unique outgoing edge, called the source edge (esource), and that the
sink has a unique incoming edge, called the sink edge (esink). For each node v, we de-
fine the pre-set of v, •v = {e ∈ E | ∃ z ∈ V : c(e) = (z, v)} and the post-set of v,

3

v• = {e ∈ E | ∃ z ∈ V : c(e) = (v, z)}. A node with a single incoming edge and multiple
outgoing edges is called a split. A node with multiple incoming edges and a single out-
going edge is called a join. We don’t allow nodes that have multiple incoming edges as
well as multiple outgoing edges. Note that this is not restrictive as such a node can be
converted into a join followed by a split without changing the semantics.

Fig. 1 shows a workflow graph in BPMN notation: An XOR gateway is depicted
as a diamond, an AND gateway as a diamond decorated with a plus sign. Source and
sink are depicted as circles. A node that is neither a join, split, nor source or sink is
usually called a task. A task is shown as a rounded rectangle in Fig. 1. It is natural to
assign durations to tasks. Tasks are executed by resources: non-preemptive, identical
agents, and we assume an unbounded number of these. We will henceforth omit tasks
for simplicity and annotate each edge with a duration w(e) as formalized above.

Let A be a set. A multi-set over A is a mapping m : A → N. For two multi-sets
m1, m2, and each x ∈ A, we have: (m1 + m2)(x) = m1(x) + m2(x) and (m1 − m2)(x) =

m1(x) − m2(x).
A marking m : E → N of a workflow graph is a multi-set over E. If m(e) = i, we say

that there are i tokens on edge e. The marking with exactly one token on the source edge
and no token elsewhere is called the initial marking, denoted by ms. The marking with
exactly one token on the sink edge and no token elsewhere is called the final marking
of the workflow graph, denoted by m f .

The semantics of workflow graphs is defined as a token game as it is in Petri nets.
A comprehensive analysis of the relationship between workflow graphs and free-choice
workflow nets (a subclass of Petri nets) can be found in [6]. The execution of a node
with an AND-logic removes one token from each of its incoming edges and adds one
token to each of the outgoing edges. The execution of a node with a XOR-logic removes
non-deterministically a token from one of its incoming edges that has a token, then non-
deterministically adds one token to one of the outgoing edges. Although we omit tasks,
we allow nodes with just one incoming and one outgoing edge for technical reasons.
For such nodes, XOR- and AND-logic behave the same.

A triple T = (E1, v, E2) is called a transition of Γ if v ∈ V , E1 ⊆
•v, and E2 ⊆ v•. A

transition (E1, v, E2) is enabled in a marking m if for each edge e ∈ E1 we have m(e) > 0
and any of the following propositions:

– l(v) = AND, E1 = •v, and E2 = v•, or
– l(v) = XOR, there exists an edge e such that E1 = {e}, and there exists an edge e′

such that E2 = {e′}.

We will use •T to denote E1 and T • to denote E2.
A transition T can be executed in a marking m if T is enabled in m. When T is

executed in m, a marking m′ results such that m′ = m − E1 + E2. We write m −→ m′ if
there exists a transition T , enabled in a marking m and its execution results in a marking

m′. We write m
T
−→ m′ when the transition T is enabled in a marking m and its execution

results in the marking m′. We use
∗
−→ to denote the transitive and reflexive closure of −→.

We say m′ is reachable from a marking m if m
∗
−→ m′. We say m′ is a reachable marking

of Γ if ms
∗
−→ m′.

4

An execution of Γ is an alternate sequence σ = 〈ms,T0,m1,T1, · · · 〉 of markings mi

of Γ and transitions Ti such that mi
Ti
−→ mi+1, for each i ≥ 0. We will be using also the

shorter notation σ = 〈ms,m1, · · · 〉 to denote an execution.
An execution σ is maximal if either σ is of infinite length or σ ends in a marking

from which no other marking can be reached.
We say an edge e is taken at i if ∃ Ti such that e ∈ T •i .
A maximal execution is fair if for each XOR-split v, that is executed infinitely often

in σ, each edge e ∈ v• is taken infinitely often in σ.
If σ = 〈m0,T0,m1,T1, · · · ,Tn,mn+1〉 is an execution, then τσ = 〈T0,T1, · · · ,Tn〉 is

a transition sequence leading from m0 to mn+1 and we write m0
τσ
−−→ mn+1.

A reachable marking m is a local deadlock if m has a token on an incoming edge e
of an AND-join such that each marking reachable from m also contains a token on e. A
reachable marking m is unsafe or exhibits lack of synchronization if one edge has more
than one token in m. A workflow graph is said to be sound if it has no local deadlock and
no unsafe reachable marking. Soundness guarantees that every fair execution terminates
in the final marking of Γ. Soundness has various equivalent characterizations and can
be decided in polynomial time [5, 1].

We now equip each token with an integer-valued clock initialized to zero. Then the
state of the workflow graph is given by the tuple (m, c) where m is the marking and
c : m → N (note that for safe workflow graphs, m : E → {0, 1}, hence m is a subset

of E). We carry over the token-game semantics for clocks and we set (m, c)
T
−→ (m′, c′),

when m
T
−→ m′ and c′(e) = c(e) for e ∈ m′ \ T • and c′(e) = w(e) + max{ c(e′) | e′ ∈ •T }

for e ∈ T •.
In the initial marking, the state of the workflow graph is given by (ms, cs), where

cs(esource) = w(esource). Similarly, in the final marking, the state of the workflow graph
is given by (m f , c f). We then define the duration of an execution σ as c f (esink), where
σ ends in the final marking m f .

Let Γ be a WFG; Γ is sequential if it contains no AND-split and no -join. It is
acyclic if the underlying graph has no cycles. A regular workflow graph is a workflow
graph that can be generated from a regular expression as follows. Let ε be a constant
symbolizing an edge and X,Y variables for workflow graphs. Then a regular workflow
graph expression is the smallest set such that ε is a regular workflow graph, and if X
and Y are regular workflow graphs, then X ; Y , X AND Y , X XOR Y , and X LOOP Y
are also regular workflow graphs. From each regular workflow graph expression, we
can generate a workflow graph, where each expression type corresponds to one of the
graph fragment patterns shown in Fig. 2 and composition is done by replacing an edge
labeled with a variable by another pattern. For example, the expression ((ε; ε) AND

Fig. 2: Regular patterns Fig. 3: Regular graph

(ε LOOP ε)) generates the graph shown in Fig. 3. Note that the loop construct has two

5

loop bodies. It can be viewed as a combination of a while and a repeat loop, one loop
body before the loop condition one after it. It can be decided in linear time whether a
workflow graph is a regular workflow graph using graph parsing techniques [14].

3 Workflow graphs with nondeterministic choice

In this section, we present our first main contribution, a polynomial time algorithm
that computes the minimum execution time of a workflow graph, which can be used
to determine whether some fair execution of a time annotated workflow graph with an
unbounded number of resources meets the deadline.

3.1 The minimum duration of a workflow graph

We start by presenting several preliminary notions that are necessary for the algorithm.
We introduce the accumulated cost associated with an edge in a fair execution. Based
on our definition of the accumulated cost associated with an edge, the cost accumulated
on the source edge represents the cost of a fair execution. Next, we present an algorithm
to compute the minimum cost accumulated on the source edge, this equals the minimum
cost of a fair execution of a given workflow graph and prove its correctness.

In the following, let Γ be a sound workflow graph.
To facilitate the computation of the cost accumulated on an edge in a fair execu-

tion σ, we express the execution as the sequence of edges that get marked in σ. To
introduce an unambiguous representation, we use τσ = 〈T0,T1, · · · ,Tn〉, the transition
sequence that corresponds to σ. The sequence of edges that get marked in σ is given
by 〈esource,T •0 ,T

•
1 , · · · ,T

•
n 〉, where each set T •k such that |T •k | > 1 is ordered in a fixed

predefined order (e.g., alphabetic). We use the notation σ = 〈esource, · · · , ei, · · · , esink〉.
Since we are interested in fair executions (and we assume soundness), the sequence of
edges is finite and ends with esink.

Having the sequence of edges that are marked in σ, we traverse the sequence back-
wards, from the last to the first edge in the sequence and update the cost of an edge
e ∈ •v at position i in the sequence based on the cost already computed for the edges in
the sequence that belong to v•.

As an example, consider the workflow graph in Fig. 4. In Fig. 4, edges are labeled
(e.g. e8; 2) with an edge name (e8) and a duration (2). Fig. 5 represents the workflow
graph restricted to the elements that are contained in the fair execution with minimum
duration, i.e., it is a representation of the minimum duration execution. Each edge in
Fig. 5 is labeled with the accumulated cost for reaching the sink in that execution.

Fig. 4: Workflow graph with edge weights Fig. 5: Minimum duration execution and the
accumulated costs

6

For e11, the accumulated cost to reach the sink is: w(e11) to which we add the cost
of esink therefore, 6 + 3 = 9. Based on our update rule for AND-join nodes, the cost
associated to e9 becomes w(e9) plus the cost of e11 and we obtain 14 and the cost
associated to e8 becomes w(e8) plus the cost of e11, and we get 2+9=11. For edges e5
and e1, we update the cost by adding the edge weight to the accumulated cost on the
outgoing edge of the XOR-split, and we obtain costs 16 (11+5) for e1 and 16 (14+2)
for e5. We apply the same rule for e4 and we obtain an accumulated cost of 19 (16+3)
and subsequently also for e2 and we obtain 22 (19+3). Now we can compute the cost of
the execution. Note that the AND-join we are about to process spawns two threads. The
cost of the execution is decided by the longest thread (in terms of duration). Therefore,
we update the cost accumulated on esource to be equal to w(esource) + max(16, 22) which
equals 24 and this equals the cost of the execution.

Now we present formally how to compute the accumulated cost associated with an
edge for a given execution. Let ei be the edge at position i in the sequence of edges that
get marked in the execution.

Since we update based on the edges in v•, for the XOR nodes, we define a function
nextσ(ei) such that for the edge at position i, ei ∈ •v, it returns the edge in v• that get
marked next after ei gets marked.

For each position i in the sequence of edges that get marked in the execution, starting
from the last index, we update the cost of the edge ei, which we denote by dσ(ei):

dσ(ei) =

w(ei) if ei = esink

w(ei) + dσ(nextσ(ei)) if l(v) = XOR
w(ei) + max{dσ(e′) | e′ ∈ v•} if l(v) = AND and |v•| > 1
w(ei) + dσ(e′) if l(v) = AND and {e′} = v•

Note that this procedure may update the cost of an edge e multiple times in case the
execution is cyclic, i.e. executes an edge multiple times. As the final accumulated cost
associated with the edge e in σ, we take the value of dσ(e) after the last update.

Since esource is always the first edge in the sequence of edges that get marked in a fair
execution, it follows that e0 = esource and dσ(e0) = dσ(esource). Since the computation of
dσ(e) follows the semantics of workflow graphs, it is easy to see that dσ(esource) = c(σ),
the duration of the execution σ.

The algorithm for computing the minimum duration of a fair execution of a work-
flow graph with an unbounded number of resources, Algorithm 1, is given below. It
works on a weighted workflow graph, and for each node v, and each edge e ∈ •v, it
updates a value δ(e) that represents the currently known minimum cost to reach the
sink from e based on relaxation rules specific to each node type (see Algorithm 3). All
edge costs are updated at most |V | times for a cyclic workflow graph (see Algorithm
1) and only once for an acyclic workflow graph (see Algorithm 2). Upon termination
of our algorithm, the value associated to esource, δ(esource), represents the duration of the
minimum duration execution.

The outer loop of the algorithm is similar to the Bellman-Ford algorithm [2] for
sequential graphs, but the parallel constructs entail a different relaxation procedure to

7

Algorithm 1 Minimum duration
1: function WFGMin(V, E)
2: for e ∈ E \ {esink} do
3: δ(e)← ∞
4: end for
5: δ(esink)← w(esink)
6: for i = 1 : |V | do
7: for all e ∈ E do
8: u, v← nodes s.t. e = c(u, v)
9: Relax(e,v)

10: end for
11: end for
12: end function
Algorithm 2 Min duration, acyclic

1: function AcyclicWFGMin(V, E)
2: for e ∈ E \ {esink} do
3: δ(e)← ∞
4: end for
5: δ(esink)← w(esink)
6: TopologicalSort(Γ)
7: while V , ∅ do
8: Select v ∈ V s.t. v is maximal with

respect to the topological sort
9: V ← {V \ v}

10: for all e ∈ •v do
11: Relax(e,v)
12: end for
13: end while
14: end function

Algorithm 3 Relaxation of an edge e ∈ •v
1: function Relax(e,v)
2: if l(v) = XOR and {e′} = v• then
3: if δ(e) > w(e) + δ(e′) then
4: δ(e)← w(e) + δ(e′)
5: end if
6: end if
7: if l(v) = XOR and |v•| > 1 then
8: if δ(e) > w(e) + mine′∈v• (δ(e′))

then
9: δ(e)← w(e) + mine′∈v• (δ(e′))

10: end if
11: end if
12: if l(v) = AND and {e′} = v• then
13: if δ(e) > w(e) + δ(e′) then
14: δ(e)← w(e) + δ(e′)
15: end if
16: end if
17: if l(v)= AND and |v•| > 1 then
18: if δ(e) > w(e) + max{δ(e′) | e′ ∈

v•} then
19: δ(e) ← w(e) + max{δ(e′) |

e′ ∈ v•}
20: end if
21: end if
22: end function

reflect the semantics of sound workflow graphs. In addition, the correctness proofs are
more complex due to the characteristics of workflow graphs.

Next, we will show the correctness of the algorithm. For this we introduce the def-
inition of the minimum cost that can be accumulated on an edge. This is necessary
for the proofs, as we will demonstrate that the algorithm computes the minimum cost
accumulated on the source edge.

Let e be an edge of Γ and v a node of Γ such that e ∈ •v. We define the edge enabling
marking me, as the reachable marking for which me(e) = 1, v is enabled in me and no
other node is enabled in me. It has been shown [8] that for a sound workflow graph, the
edge enabling marking is unique.

We define d∗(e), the minimum cost downstream from e, as follows:

d∗(e) = min{dσ(e) | σ is a fair execution that starts in me }. (1)

8

Because Γ is sound, note that since me is a reachable marking, it holds that me
∗
−→ m f .

Since dσ(esource) represents the cost of a fair execution σ, d∗(esource) represents the
duration of the minimum duration execution.

Lemma 1 Let e be an edge and v a node such that e ∈ •v. We always have δ(e) ≥ d∗(e).

The proof of Lemma 1 is presented in the Appendix.

Lemma 2 Let e be an edge. Let σ be a fair execution such that dσ(e) = d∗(e). Let
S = 〈ei−1, · · · , esink〉 be the sequence edges that get marked after e gets marked for
the last time in σ. Each sequence of calls of Relax(e, v) that has the property that edges
esink, · · · , ei−1, e have been relaxed in this order, after the sequence of calls to Relax(e, v)
we have δ(e) = d∗(e).

The proof of Lemma 2 is presented in the Appendix.

Definition 1 A fair execution σ of Γ, is a loop-free execution if no node is executed
more than once in σ, and therefore no edge is marked more than once in σ.

Lemma 3 Some fair execution of Γ with minimum duration is loop-free.

The proof of Lemma 3 is presented in the Appendix.
For a workflow graph Γ and a fair, loop-free execution σ of Γ, we define Γσ as

the workflow graph Γ restricted to σ such that it contains only the nodes of Γ that are
executed in σ and the edges of Γ such that σ(e) = 1. For a fair, loop-free execution σ
of Γ, it follows that Γσ is an acyclic workflow graph.

The elements of an acyclic workflow graph are in a partial order defined by the flow
of the graph: Let G = (V, E, c) be an acyclic multi-graph. If x1, x2 are two elements in
V ∪ E such that there is a path from x1 to x2, then we say that x1 precedes x2, denoted
x1 � x2, and x2 follows x1.

Lemma 4 For a sound workflow graph, after running the Algorithm 1, it holds that
δ(esource) = d∗(esource).

Proof: Lemma 3 states that some fair execution of Γ, with minimum duration, is
loop-free (i). Recall that for a given fair execution σ, dσ(esource) represents the duration
of execution of σ (ii). From (i) and (ii) it follows that some execution that minimizes
dσ(esource) is loop-free (iii).

Note that ms is the edge enabling marking for esource.
Using (iii) and the definition for d∗(e) instantiated to esource, we obtain:
d∗(esource) = min{dσ(esource) | σ is a fair execution that starts in ms }. It follows that

some σ∗ for which dσ∗ (esource) = d∗(esource), is a fair, loop-free execution.
Since σ∗ is loop-free, it means that at most |V | nodes are executed in σ∗. In each

complete relaxation step (one iteration of the loop in line 6 in Algorithm 1), we relax all
the edges. Therefore, at the |V |-th iteration we have relaxed all the edges, in decreasing
order with respect to the partial order on the edges of Γσ∗ . It means that at the |V |-th
iteration, we will have relaxed all the edges that get marked after e gets marked in σ∗.
Therefore, from Lemma 2, δ(e) = d∗(e).

9

Therefore, we computed the duration of the minimum duration execution of the
workflow graph, which is d∗(esource).

For Algorithm 1, the initialization of the edge costs takes O(|V |) time and each of
the |V | iterations over the edges of the workflow graph is performed in O(|E|) time. The
cost update is performed in constant time. Hence, we have proven the following:

Theorem 1 The minimum duration execution of a sound workflow graph with un-
bounded number of resources can be computed in time O(|V ||E|).

3.2 Regular and acyclic workflow graphs

In the following, we briefly present the ideas for computing the maximum duration of
execution for regular and acyclic workflow graphs.

As presented in [3], for a regular workflow graph with a structured cycle, i.e., a
while or repeat loop, or more general, of the form X LOOP Y , the computation of the
maximum duration requires the specification of the maximal number of iterations for
each loop. If we assume that the backedge of each loop (i.e., edge “x” in Fig. 2) of the
regular graph is annotated with a positive integer k that represents the maximum number
of times the backedge can be traversed, then the maximum duration of X LOOP Y is
(k + 1) · dX + k · dY where dX denotes the maximum duration of the loop body X, and dY

represents the maximal duration associated to reentering the loop. For computing the
minimum duration we take k = 0 and the minimum duration of the loop body. We still
obtain the minimum/maximum duration of such an annotated regular workflow graph
in linear time (Cell C.1, C.2 of Table 1).

For acyclic workflow graphs, we can use the algorithm for the cyclic case but with-
out the need to perform |V | iterations. Instead we exploit the fact that the elements of an
acyclic workflow graph are in a partial order defined by the flow of the graph. There-
fore, in order to make sure that the edges are relaxed respecting the partial order, first,
the graph is sorted topologically - O(|V | + |E|). Secondly, the edges are relaxed in de-
scending order with respect to the topological sorting in O(|E|) time. The algorithm that
formalizes this idea is Algorithm 2.

Theorem 2 The minimum duration execution of a sound acyclic workflow graph with
unbounded number of resources can be computed in time O(|V | + |E|).

Note that, in the acyclic case, for computing the maximum duration execution, one
only needs to select the maximum instead of the minimum in the Relax(e, v) procedure
when l(v) = XOR and |v•| > 1.

4 Workflow graphs with probabilistic choice

If not all fair executions of a workflow graph meet the deadline, we could ask whether at
least a large portion of the fair executions does. We approach this question by assuming
that decisions are resolved through a coin flip, i.e., each XOR-node v is assigned a
distribution µ : v• → [0, 1] such that µ(e) > 0 for each e ∈ v• and

∑
e∈v• = 1. Although

10

some fair executions may not terminate, their probability3 is zero. We can then take the
duration of an execution as a random variable and ask whether the probability of an
execution terminating before the deadline exceeds a given threshold.

4.1 Expected duration

In the following, we will present our result for the complexity of computing the ex-
pected duration of a workflow graph.

Theorem 3 Given a regular, acyclic probabilistic workflow graph Γ, computing the
expected duration of Γ executed by an unbounded set of resources is NP-hard.

The proof consists of a reduction from the subset sum problem which is the problem:
given a set D = {d1, · · · , dn} of integers and an integer S, to determine whether any
non-empty subset D′ ⊆ D sums up to exactly S. This problem is known to be NP-hard.
This is equivalent to solving a problem where all the values d1, · · · , dn, S are multiples
of 4 (this statement will be used in the proof later on). For the proof, we use the class
of (regular, acyclic) probabilistic workflow graphs Γε,n in Fig. 6, where each decision
outcome has probability 0.5.

Fig. 6: A probabilistic workflow graph

Proof. Let X,Y be random variables that denote the duration of each of the two parallel
flows of Γε,n. The expected duration of the workflow graph Γε,n is:

E(Γε,n) = E(max(X,Y))

E(Γε,n) = 1
2E(max(S − ε,Y)) + 1

2E(max(S + ε,Y))

Let f be the probability distribution of Y . We rewrite the terms of E(Γε,n) as follows:

E(max(Y, S − ε)) = (S − ε) Pr(Y ≤ S − ε) +
∑

y>S−ε

y f (y) (1)

3 We do not explicitly construct the probability space here on which the development of this
chapter is formally based on. As workflow graphs contain concurrency, we need to consider
maximal partial-order executions to obtain a single probability space and to avoid the notion of
an adversary as in Markov decision processes. Note that a probabilistic workflow graph does
not contain real non-determinism, just concurrency. The construction of such a probability
space is provided elsewhere [16, 17], e.g. for Petri nets and in fact rests on the assumption
that the Petri net is free-choice. In this paper, we are only concerned with the duration of an
execution, which is independent of the interleaving, i.e., the ordering of concurrent events.

11

E(max(Y, S + ε)) = (S + ε) Pr(Y ≤ S + ε) +
∑

y>S +ε

y f (y) (2)

By using equations (1), (2) we obtain the following expression for E(Γε,n):

E(Γε,n) = 1
2

[
(S + ε) Pr(Y ≤ S + ε) +

∑
y>S +ε

y f (y) + (S − ε) Pr(Y ≤ S − ε) +
∑

y>S−ε

y f (y)
]
.

Let us choose ε > 0 such that no subset of {d1, · · · , dn} has sum in [S − ε, S) nor
in (S , S + ε]. Note that the sum, can still potentially equal exactly S . Such ε is easy to
find. It is enough to choose ε = 2 as all the numbers d1, · · · , dn, S are multiples of 4.

We will show that E(Γε,n) = E(Γ ε
2
) if there is no non-empty subset of {d1, · · · , dn}

that sums up to exactly S (i), and E(Γε,n) , E(Γ ε
2
) otherwise (ii). If we can compute the

expected duration of a workflow graph with unbounded resources in polynomial time
we can solve the subset sum problem in polynomial time. Note that both ε and ε/2 are
integers, so we are always considering workflow graphs with integer weights.

(i) There is no non-empty subset of {d1, · · · , dn} that sums up to exactly S
.

In this case, it holds that Pr(Y ≤ S − ε) = Pr(Y ≤ S + ε). Therefore we update the
equation for E(Γε,n)):

E(Γε,n) = 1
2

[
Pr(Y ≤ S + ε)(S + ε + S − ε) +

∑
y>S−ε

y f (y) +
∑

y>S +ε

y f (y)
]
.

E(Γε,n) = 1
2

[
2S Pr(Y ≤ S + ε) +

∑
y>S−ε

y f (y) +
∑

y>S +ε

y f (y)
]
. One can easily observe

that E(Γε,n) = E(Γ ε
2
).

(ii) There exists a non-empty subset of {d1, · · · , dn} that sums up to exactly S
.

In this case, Pr(Y ≤ S − ε) , Pr(Y ≤ S + ε). Therefore,

E(Γε,n) = 1
2

[
(S + ε) Pr(Y ≤ S + ε) + (S − ε) Pr(Y ≤ S − ε) +

∑
y>S−ε

y f (y) +
∑

y>S +ε

y f (y)
]
.

E(Γε,n) = 1
2

[
(S +ε)(Pr(Y ≤ S −ε)+Pr(Y = S))+ (S −ε) Pr(Y ≤ S −ε)+

∑
y>S−ε

y f (y)+∑
y>S +ε

y f (y)
]
.

E(Γε,n) = 1
2

[
2S Pr(Y ≤ S − ε)︸ ︷︷ ︸

T1

+ (S + ε) Pr(Y = S)︸ ︷︷ ︸
T2

+
∑

y>S−ε

y f (y) +
∑

y>S +ε

y f (y)
]

︸ ︷︷ ︸
T3

.

Please note that term T2 has different value for E(Γε,n) and E(Γ ε
2
), while T1 and T3

have the same value for E(Γε,n) and E(Γ ε
2
). Therefore, E(Γε,n) , E(Γ ε

2
).

12

5 Minimum number of resources

In this section, we compute the maximum degree of concurrency of Γ, i.e., the maxi-
mum number of tokens that can exist in the graph in a reachable marking. This can help
in answering a natural question that arises in the quantitative timing analysis of a busi-
ness process. What is the minimum number k∗ of resources one needs, such that each
execution achieves its minimal execution time? This means there does not exist any
execution for which the duration could be decreased by having more than k∗ resources.
The maximum number of tokens that can exist in the graph is an upper bound for k∗.
There are cases where tighter bounds can be given, as illustrated in Figure 7 where the
maximum number of tokens is 3, obtained in the marking that marks edges e2, e3 and
e4 but 2 resources would suffice for reaching the minimum duration, i.e., 15.

Fig. 7: Tighter bound example

Before presenting the algorithm we need to in-
troduce one more subclass of workflow graphs.

A workflow graph Γ is a marked graph if any
node v ∈ Γ \ {vsource, vsink} is either an AND-node
or an XOR-node with a single incoming and a sin-
gle single outgoing edge.

There is an EXPTIME algorithm for comput-
ing the maximum degree of concurrency for gen-
eral worklfow graphs. It is based on computing
the reachability graph of Γ, which is the transition relation→ restricted to its reachable
markings. Note that for sound workflow graphs the reachability graph is finite, but ex-
ponential in the size of Γ. Each reachable marking is visited to compute the maximum
concurrency degree.

However, efficient algorithms are known for subclasses such as marked graphs, reg-
ular or sequential worklfow graphs. Therefore, we propose to leverage this fact and
tackle the problem through a divide and conquer strategy. This approach has the poten-
tial of speeding up the computation of the maximum degree of concurrency of a work
in practice.

In order to divide the problem into smaller parts, we compute the Refined Process
Structure Tree (RPST) [14] of the workflow graph. The RPST represents a decompo-
sition of a workflow graph into a hierarchy of sub-workflows that are subgraphs with
a single entry and a single exit of control called fragments (see e.g., Figure 8 (a)). The
decomposition results in a parse tree which reflects the containment relationship of the
fragments.

The algorithm for computing the maximum degree of concurrency works as fol-
lows: (1) divide the problem of computing the maximum degree of concurrency to sub-
problems by decomposing the workflow graph into its fragments. These fragments are
labeled with their corresponding subclass (e.g., marked graph). (2) conquer the problem
by computing the maximum degree of concurrency of the workflow graph based on the
maximum degree of concurrency computed for its fragments. Note that we omit here
trivial fragments consisting of a single edge.

The complexity of the algorithm depends on the subclass of the fragment f , as
follows. It runs in linear time for sequential workflow graphs, where the returned value
is the maximum weight of an edge of this fragment. Similarly it runs in linear time

13

for regular fragments. For regular fragments modeling concurrency (cf. Figure 2.c) the
maximum degree of concurrency is the sum of the weights of the edges. For regular
fragments modeling choice (cf. Figure 2.b,d,e) the maximum degree of concurrency is
the maximum of the weights of the edges. The computation of the concurrency degree
runs in polynomial time for marked graphs and in exponential time for the complex
fragments – the fragments which are not regular nor marked-graphs nor state-machines.

An example for how our algorithm works is provided in Figure 8. In Figure 8, edge
weights represent the concurrency degree. The root fragment is Sequence Fragment 2
and the tree has one leaf – the Marked Graph Fragment, Figure 8 (a). After computing
the concurrency degree of the marked graph (value 3) the work is updated as shown in
Figure 8 (b). In the next iteration, the wor is reduced to the e wo composed of a regular
fragment contained in a sequence fragment, as shown in Figure 8 (c). The concurrency
degree of the regular fragment is computed (we obtain 3+1=4), we update the he w and
we are left with a sequence fragment Figure 8 (d). The maximum degree of concurrency
of the the is the concurrency degree of this fragment (4).

Fig. 8: An example of a work decomposition into its fragments and its corresponding
RPST (a), the wor and RPST after computing the concurrency degree for the Marked
Graph Fragment (b) the e wo and RPST after computing the concurrency degree for
Sequence Fragment 1 (c) the he w and RPST before the algorithm ends (d)

In the following, we present the approaches for computing the maximum degree of
concurrency for marked graphs and for complex fragments.

Let w denote a |E| × 1 column vector representing the degree of concurrency asso-
ciated with each edge of Γ. Finding the maximum degree of concurrency of a marked
graph Γ, deg(Γ), can be formulated as:

deg(Γ) = max{m · w | m is a marking reachable from m0} (1)

The solution we propose for computing deg(Γ) in a marked graph is identical to the
computation of the maximum weighted sum of tokens in [12]. In [12] the author for-

14

mulates this problem as an integer programming (IP) problem with integer data and
totally unimodular constraint matrix. Note that any IP problem with with integer data
and totally unimodular constraint matrix is solvable in polynomial time.

The complexity of the algorithm is therefore dominated by complex fragments, for
which we resort to the EXPTIME algorithm. Since complex fragments are rare in prac-
tice, this approach can be efficient in computing the maximum degree of concurrency.
In a previous study documented in [15] on 645 industrial business process which were
translated to workflow graphs, only about 4% of the total of their corresponding frag-
ments were complex with an average number of edges between 21 and 32.

6 Conclusion

We presented new results on the deadline analysis of workflow graphs with an un-
bounded number of resources.

The same questions can be asked in settings with a fixed number n > 1 of resources.

Fig. 9: Regular WFG with n paral-
lel threads

This constraint leads to problems that can not
be solved in polynomial time. The probability of
deadline transgression and the expected duration
remain NP-hard which is easy to see from our
justifications in the current work. For the maxi-
mum duration – the worst case execution time is
attained when we require all the tasks to be exe-
cuted by a single resource, which we have studied
in [3]. What is different, is the fact that computing
the minimum duration of execution becomes NP-
hard for a fixed number n > 1 of resources. For example, for a simple workflow graph
as the one in Figure 9, let’s assume we need to complete n tasks T1, · · · ,Tn and we have
k identical agents to solve them. Finding an assignment of the tasks to the agents such
that the duration of execution (makespan) is minimized is NP-hard as one can reduce
2-PARTITION to finding the minimum duration when there are exactly two resources
available [7].

In future work, we would like to investigate further whether computing the max-
imum degree of concurrency of a WFG is NP-hard or a polynomial time algorithm
exists.

References

1. W. M. P. Aalst, A. Hirnschall, and H. M. W. Verbeek. Advanced Information Systems En-
gineering: 14th International Conference, CAiSE 2002 Toronto, Canada, May 27–31, 2002
Proceedings, chapter An Alternative Way to Analyze Workflow Graphs, pages 535–552.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

2. R. Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16:87–90, 1958.
3. M. Botezatu, H. Völzer, and L. Thiele. The complexity of deadline analysis for workflow

graphs with a single resource. In Proceedings of the 20th IEEE ICECCS Conference, De-
cember 2015.

15

4. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New
York, NY, USA, 2004.

5. J. Desel and J Esparza. Free Choice Petri Nets. Cambridge University Press, New York, NY,
USA, 1995.

6. C. Favre, D. Fahland, and H. Völzer. The relationship between workflow graphs and free-
choice workflow nets. Inf. Syst., 47:197–219, 2015.

7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

8. B. Gaujal, S. Haar, and J. Mairesse. Blocking a transition in a free choice net and what it
tells about its throughput. Journal of Computer and System Sciences, 66(3):515 – 548, 2003.

9. H. Hansson and B. Jonsson. A framework for reasoning about time and reliability. In Real
Time Systems Symposium, 1989., Proceedings., pages 102–111, Dec 1989.

10. M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of probabilistic real-
time systems. In Proceedings of the 23rd International Conference on Computer Aided
Verification, CAV’11, pages 585–591, Berlin, Heidelberg, 2011. Springer-Verlag.

11. H. Mili, G. Tremblay, G. Jaoude, É. Lefebvre, L. Elabed, and G. El Boussaidi. Business pro-
cess modeling languages: Sorting through the alphabet soup. ACM Comput. Surv., 43(1):4:1–
4:56, December 2010.

12. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, Apr 1989.

13. L. Popova-Zeugmann and M. Heiner. Worst-case analysis of concurrent systems with dura-
tion interval petri nets. In BTU COTTBUS, pages 162–179, 1996.

14. J. Vanhatalo, H. Völzer, and J. Koehler. The refined process structure tree. Data Knowl.
Eng., 68(9):793–818, 2009.

15. J. Vanhatalo, H. Völzer, and F. Leymann. Faster and more focused control-flow analysis
for business process models through sese decomposition. In Bernd Krämer, Kwei-Jay Lin,
and Priya Narasimhan, editors, Service-Oriented Computing – ICSOC 2007, volume 4749 of
Lecture Notes in Computer Science, pages 43–55. Springer Berlin Heidelberg, 2007.

16. D. Varacca, H. Völzer, and Glynn Winskel. Probabilistic event structures and domains.
Theor. Comput. Sci., 358(2-3):173–199, 2006.

17. H. Völzer. Randomized non-sequential processes. In CONCUR 2001 - Concurrency Theory,
12th International Conference, Aalborg, Denmark, August 20-25, 2001, Proceedings, pages
184–201, 2001.

18. M. Wan and G. Ciardo. Symbolic reachability analysis of integer timed petri nets. In SOF-
SEM 2009: Theory and Practice of Computer Science, volume 5404 of Lecture Notes in
Computer Science, pages 595–608. Springer Berlin Heidelberg, 2009.

19. C.-Q. Yang and B.P. Miller. Critical path analysis for the execution of parallel and distributed
programs. In Distributed Computing Systems, 1988., 8th International Conference on, pages
366–373, Jun 1988.

16

Appendix

Preliminaries for proofs of different lemmas

Several of the lemmas we will present in the following, are originally phrased in the
context of free choice Petri Nets. Due to the equivalence between workflow graphs and
free choice Petri Nets stated in [6], the results hold for workflow graphs as well.

The Parikh vector of a transition sequence τ, written
→
τ , maps every transition T to

the number of occurrences of T in τ. More formally, it is the multi-set of transitions
such that

→
τ (T) = k if T appears exactly k times in τ.

We say a transition T is included in an execution σ, denoted T ∈ σ, if
→
τσ [T] > 0.

We write
→
σ instead of

→
τσ, henceforth, for convenience.

For two vectors
→
τ1 and

→
τ2 we set

→
τ1≤

→
τ2 if ∀ T ,

→
τ1 [T] ≤

→
τ2 [T].

Two transition sequences τ1 and τ2 of Γ are permutations of each other if
→
τ1=

→
τ2.

Let Trans(v) denote the set of transitions of a node v. Trans(v) = {T | T = (E1, v,
E2)}.

The incidence matrix N of a workflow graph is a matrix whose rows represent the
edges of the workflow graph, and the columns represent the transitions of the workflow
graph. The entry N(i, j) corresponds to the change of the marking of the edge i caused
by the occurrence of the transition j = (E1, v, E2).

N(i, j) =

−1 if i ∈ E1 \ E2

1 if i ∈ E2 \ E1

0 otherwise

We will use the following marking equation lemma [5]:

Lemma 5 (Marking equation lemma) For every finite transition sequence τ, of a work-
flow graph with the incidence matrix N, with m

τ
−→ m′, the following equation holds:

m′ = m + N·
→
τ

Let τ2 be a permutation of the transition sequence τ1. If m0
τ1
−→ m and m0

τ2
−→ m′,

then it follows from the marking equation lemma that m = m′.

Proof of Lemma 1

Lemma 1 Let e be an edge and v a node such that e ∈ •v. We always have δ(e) ≥
d∗(e).

We prove the lemma by induction on k, the number of calls of Relax(e, v).
Base case: k = 0 : δ(esink) = w(esink), therefore clearly, δ(esink) = d∗(esink), and for

all e ∈ E \ {esink}, δ(e) = ∞, and therefore δ(e) > d∗(e).
Induction step: Suppose that after the k-th call of Relax(e, v) we have δ(e) ≥ d∗(e)

for all e. At the (k + 1)-th call of Relax(e, v), only δ(e) may get updated.
We will show that from the definition of d∗(e) and from the induction hypothesis, it

follows that δ(e) ≥ d∗(e), for each of the relaxation cases.

17

For the case l(v) = XOR and |v•| > 1 the proof relies on Lemma 1.1, and for the
case l(v) = AND and |v•| > 1 the proof relies on Lemma 1.2.

We will present the reasoning for one of the relaxation cases, as the justification for
the remaining ones is similar.

Let l(v) = XOR and |v•| > 1. Let •v = {e} Before the (k + 1)-th relaxation step, it
holds that δ(f) ≥ d∗(f) ∀ f ∈ v• (due to the induction hypothesis). After the (k + 1)-th
relaxation step, δ(e) gets updated, such that δ(e) becomes w(e) + min{δ(f) | f ∈ v•},
as presented in Algorithm 3. Therefore, due to the induction hypothesis, δ(e) ≥ w(e) +

min{d∗(f) | f ∈ v•} (i).
From Lemma 1.1 we have that d∗(e) = w(e) + min{d∗(f) | f ∈ v• } (ii).
From (i) and (ii) it follows that δ(e) ≥ d∗(e).
Note that at each relaxation step we can only decrease the value of δ(e). Once δ(e) =

d∗(e), it doesn’t change (it can not decrease further) as otherwise it would contradict the
claim that δ(e) ≥ d∗(e).

Lemma 1.1 Let v be a node such that l(v) = XOR and v• > 1. Let {e} = •v. We have
d∗(e) = w(e) + min{d∗(f) | f ∈ v•}.
Proof:

From the definition of dσ(e) we have:dσ(e) = w(e) + dσ(nextσ(e)) (such that this is
the last update of dσ(e)). Also by definition, we have: d∗(e) = min{dσ(e) | σ is a fair
execution that starts in me}. Therefore, d∗(e) = min{w(e) + dσ(nextσ(e)) | σ is a fair
execution that starts in me}.
d∗(e) = w(e) + min{dσ(nextσ(e)) | σ is a fair execution that starts in me}.

Note that σ is an execution like: 〈e f · · · 〉 where f ∈ v•. Let σ f be the execution
when f = nextσ(e).

We can re-write the definition of d∗(e):
d∗(e) = w(e) + min f∈v•min{dσ(f) | σ is a fair execution that starts in me }.

Recall that σ started in me. Upon executing v, we obtain the marking m f . Note that
since me is an edge enabling marking, m f is also an edge enabling marking. This can be
easily verified by analyzing the different possibilities for l(v′) where f ∈ •v′. We obtain:
d∗(e) = w(e) + min f∈v•min{dσ(f) | σ is a fair execution that starts in m f }. From this it
follows that d∗(e) = w(e) + min f∈v•d∗(f).

Lemma 1.2 Let v be a node such that l(v) = AND and v• > 1. Let {e} = •v. We have
d∗(e) = w(e) + max{d∗(f) | f ∈ v•}.

Our proof relies on some notions we would like to fix here:

– From Lemma 3, it follows that if σ∗ = argminσ{dσ(e) | σ is a fair execution that
starts in me}, then σ∗ is a loop-free execution.

– For a loop-free execution σ, and an unbounded number of resources, the duration
of the execution is equal to the longest path in Γσ - the critical path [19].

Proof:
I. We prove that d∗(e) ≥ w(e) + max f∈v•d∗(f).

From the definition of dσ(e) we have: dσ(e) = w(e) + max{dσ(f) | f ∈ v•}. Also by
definition, we have: d∗(e) = min{dσ(e) | σ is a fair execution that starts in me}.

18

Therefore, d∗(e) = min{w(e) + max{dσ(f) | f ∈ v•} | σ is a fair execution that starts
in me }.

d∗(e) = w(e) + min{max f∈v•dσ(f) | σ is a fair execution that starts in me}.
We use the max-min inequality [4] which says that, for any function f : Z×W → R

it holds that:

minw∈Wmaxz∈Z f (z,w) ≥ maxz∈Zminw∈W f (z,w) (1)

We obtain that:
min{max f∈v•dσ(f) | σ is a fair execution that starts in me} ≥ max f∈v•min{dσ(f) | σ

is a fair execution that starts in me}. Therefore,

d∗(e) ≥ w(e) + max f∈v•min{dσ(f) | σ is a fair execution that starts in me} (2)

Note that since we first take minimum in the right hand side of the inequality, in
min{dσ(f) | σ is a fair execution that starts in me}, due to Lemma 3 we can restrict to
loop-free executions (some execution that minimizes dσ(f) is loop-free).

Note that ∀σ starting in me, ∃σ′ starting in me such that σ′ = 〈me, · · · ,m f , · · · 〉,

such that m f is the edge enabling marking for f ∈ v• and
→
σ=

→

σ′.
From Lemma 6, the edge enabling marking m f can be reached without firing any

transition in Trans(v f) where f ∈ •v f .
σ′ = 〈me, · · · 〉︸ ︷︷ ︸

σPre f

〈m f , · · · 〉︸ ︷︷ ︸
σS u f

.

We have that dσ′ (f) = dσS u f (f) (i).
We also have that dσ′ (f) = dσ(f) (ii). The reason for this is the fact that from

→
σ=

→

σ′ and from the acyclicity of σ and σ′ it follows that Γσ = Γσ′ . It is clear that
dσ(f) = dσ′ (f) both represent the longest path starting from f in the same acyclic
workflow graph.

From (i) and (ii) it follows that dσS u f (f) = dσ(f). Therefore, min{dσ(f) | σ is a
fair execution that starts in me} = min{dσ(f) | σ is a fair execution that starts in m f }.
Plugging this into Equation 2 we have that: d∗(e) ≥ w(e) + max f∈v•min{dσ(f) | σ is a
fair execution that starts in m f }, and therefore d∗(e) ≥ w(e) + max f∈v•d∗(f).

II. We prove that d∗(e) ≤ w(e) + max f∈v•d∗(f).
We construct an execution σ′′ such that max f∈v• (dσ′′ (f)) ≤ max f∈v•d∗(f).
Let σ∗f = argmin{dσ(f) | σ is a fair execution that starts in m f }.
Case 1: σ∗f agree on all choices ∀ f ∈ v•. Then σ′′ is any of the σ∗f .
Case 2: They don’t agree on all choices and we need to construct σ′′. We will

iteratively modify σ∗f , ∀ f ∈ v• without increasing dσ∗f (f) until all of them will become
identical to common σ′′.

Let v′ be a choice for which σ∗f don’t agree. Let Γσ∗f be a workflow graph restricted
to elements contained in σ∗f . Let also π(Γσ∗f , v

′) be the longest path in Γσ∗f , starting from
vertex v′. By taking fmin = argmin f {π(Γσ∗f , v

′)}, to modify each σ∗f it is enough for
each of them to take choice(σ∗f , v

′) = choice(σ∗fmin
, v′). Due to the choice of fmin, such

modification will not increase dσ∗f (f) and will eventually converge to common σ′′ for
all f .

19

From the way we constructed σ′′ we have:

w(e) + max f∈v•d∗(f) ≥ w(e) + max f∈v•dσ′′ (f) (3)

From the definition, we have:

w(e) + max f∈v•dσ′′ (f) = dσ′′ (e) (4)

We have:

dσ′′ (e) ≥ d∗(e) (5)

From Eq. 3, Eq. 4 and Eq. 5 we have d∗(e) ≤ w(e) + max f∈v•d∗(f).

Proof of Lemma 2

Lemma 2 Let e be an edge of a workflow graph Γ. Let σ be an execution such
that dσ(e) = d∗(e). Let S =< ei−1, · · · , esink > be the edges that get marked after e gets
marked, in σ. Each sequence of calls of Relax(e, v) that has the property that edges
esink, · · · , ei−1, e have been relaxed in order, after the sequence of calls to Relax(e, v) we
have δ(e) = d∗(e).

We prove the lemma by induction on k = |S |.
Base case: k=0: δ(esink) = w(esink), therefore δ(esink) = d∗(esink).
Induction step: Suppose that after having relaxed esink, · · · , ek−2, ek−1 in order, we have
that δ(ek−1) = d∗(ek−1). We will show that when we relax the edge ek, given the defini-
tion of d∗(e) and the induction hypothesis, it follows that δ(ek) = d∗(ek). We present the
reasoning for one of the cases, as the justification for the remaining ones is similar.

Let v be a node, with l(v) = XOR and |v•| > 1. Let •v = {ek} and < ek−1, · · · ,
esink > are the edges that get marked after e gets marked, in σ. Assume without loss of
generality that ek−1 ∈ v•.

From the induction hypothesis, we have δ(ek−1) = d∗(ek−1). Since ek−1 is the edge
that gets marked after ek gets marked in σ for which dσ(ek) = d∗(ek), we have that
d∗(ek) = w(ek) + d∗(ek−1) (recall claim (ii) from the proof of Lemma 1).

We have demonstrated in Lemma 1 that after each call of Relax(e, v) it holds that
δ(e) ≥ d∗(e), therefore for our case δ(ek) ≥ w(ek) + d∗(ek−1) (i).

Also, after the relaxation of ek we have that δ(ek) = w(ek) + min{δ(e′) | e′ ∈ v•}.
Since ek−1 ∈ v• it follows that δ(ek) ≤ w(ek) + δ(ek−1) and since δ(ek−1) = d∗(ek−1), it
follows δ(ek) ≤ w(ek) + d∗(ek−1). (ii)

From (i) and (ii) it follows that after relaxing ek, we have δ(ek) = w(ek) + d∗(ek−1),
and therefore δ(ek) = d∗(ek).

Proof of Lemma 3

Lemma 3 Some execution of Γ, with minimum duration, is loop-free.
Let σ∗ be an execution of Γ of minimum cost. Suppose σ∗ is not loop-free. Then,

σ∗ =< m0,T0, · · · ,mi,Ti, · · · ,m j,T j, · · · ,m f > such that Ti = (E1, v, E2) and T j = (E′1,
v, E′2) (there exists a node v such that a transition in Trans(v) is executed more than
once). Let τσ∗ be the transition sequence corresponding to σ∗.

20

We construct σ′ such that τσ′ is a permutation of τσ∗ . We will show that in σ′, a
marking is repeated which contradicts the claim that σ′ (implicitly σ∗) is an execution
of minimum cost of Γ.

We divide σ∗ into three parts:
σ∗ = < m0, · · · ,mi >︸ ︷︷ ︸

α

< Ti > < mi+1, · · · ,m f >︸ ︷︷ ︸
β

The constructed sequence σ′ starts with α, followed by a permutation of the transi-
tions contained in τTiβ.

Let β′ =< m′0, · · · ,mk > be a maximal sequence such that:

1. m′0 = mi

2.
→

β′≤
→

β

Claim: T is enabled in mk implies T ∈ Trans(v).

We prove indirectly that such a β′ exists. Let A =
→

β −
→

β′ −[Ti]. Suppose ∃ T ′,
T ′ ∈ Trans(v′) enabled in mk. We distinguish two cases:

Case 1: ∀ T ′′ ∈ A : T ′′ < Trans(v′). In this case if we fire all the transitions in A
we obtain m f (due to the marking equation lemma). But m f enables T ′, because of the
assumption of case 1, therefore we reach a contradiction, namely that m f is not the final
marking.

Case 2: ∃ T ′′ ∈ A such that T ′′ ∈ Trans(v′). Then, T ′′ is enabled in mk and therefore
β′ is not maximal and we reach a contradiction.

At this point, we have an intermediary prefix for σ′, let’s call it σtemp, σtemp =

α β′ Ti. σtemp does not include all the transitions in σ∗, more precisely we still have to

add the transitions in
→

β −
→

β′.

Note that T j ∈
→

β −
→

β′ −[Ti]. Let π denote the transition sequence obtained from τβ
after removing from it the transitions in τβ′ and Ti.

Since m0
τα
−→ mi

τβ′
−−→ mk

Ti
−→ m′k

π
−→ m f , it means ∃ ml ∈ π such that T j is enabled

in ml (because T j, Ti ∈ Trans(v) and they were both blocked in β′ and T j ∈
→
π . We

repeat the same procedure for the sequence π as we did for the original sequence and
we reach a marking mp in which the only enabled transitions belong to Trans(v) (recall
that T j ∈ Trans(v)).

It holds that, for l(v) ∈ {XOR-split, AND-split, AND-join }, mk = mp due to Lemma
6, stated by the authors in [8]. Since σ′ =< m0, · · · ,mk, · · · ,mp,Tp,mp+1 · · · ,m f > and
mk = mp, one can construct a lower cost execution σ′′ =< m0, · · · ,mk,Tp,mp+1 · · · ,
m f > by removing the execution in σ′ that led to the repetition of the marking. This
implies that σ∗ can not be the execution of minimum cost and thus we reach a contra-
diction.

If l(v) =XOR-join the results follows easily by noting that the edge {e} = v• is
marked twice and therefore the transition T = (E1, v, E2) such that e ∈ E1 is repeated,
and thus the unique edge enabling marking of e is repeated.

Lemma 6 If Γ is a sound workflow graph and v a node in Γ, such that l(v) ∈ { XOR-
split, AND-split, AND-join } then there exists a unique reachable marking mv such that

21

the only transitions enabled in mv are the transitions in Trans(v). Furthermore, the
marking mv can be reached from the initial marking and without firing any transitions
in Trans(v).

An equivalent way of expressing the lemma above is by referring to edge enabling
markings. For any edge e of Γ, there exists a unique edge enabling marking me.

22

