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Abstract

Availability of high-performance IO devices has led to
the development of various IO interfaces/APIs. For many
distributed data processing and storage systems that
consider integrating high-performance networks (e.g.,
RDMA) and storage devices (e.g., flash), the perfor-
mance implications of the available options are not clear
upfront. To provide guidance to application developers
as well as system designers, we discuss if (or what) com-
binations of modern networking and storage stacks can
deliver the full performance of flash storage to a net-
worked application? We report our findings with regard
to access latencies, peak performance, IO efficiency, core
scaling, and we perform a comparison between a block
and an RDMA interface to a flash device.

1 Introduction

The performance of an IO operation in a distributed stor-
age or data processing system is governed by the per-
formance of the storage system as well as the network-
ing technology. Thankfully, the performance and ca-
pabilities of modern network and storage devices have
improved considerably during the past decade. Conse-
quently, IO stacks of a modern OS such as Linux, have
also evolved to deliver these improvements to applica-
tions. However, this rapid evolution has also introduced
many new parameters, IO dependencies, and new inter-
faces, whose influence on the performance has not been
fully understood. This work, which is triggered by our
own curiosity about the implications of integrating high-
performance IO devices in a distributed setting, empiri-
cally investigates the performance of various networked
flash configurations. We now quickly recap the IO devel-
opments that made this investigation necessary.

Networking Improvements: The POSIX socket in-
terface has been the de-facto standard for networking
API for more than 30 years. However, as the intercon-

nect performance improved (10, 40, 100 Gb/s Ethernet
with less than 5 µs access latencies), several research
projects have looked into reducing the resource manage-
ment overhead from the OS [12], improving the small
packet performance [6], and the multi-core scalabil-
ity [7], and achieving a closer integration of network pro-
cessing and applications [8, 14]. Many of these improve-
ments are now a part of the Linux kernel. As a popu-
lar alternative way for efficient network IO, we also re-
port the performance numbers for Remote Direct Mem-
ory Access (RDMA) technology, which is being used in
a number of systems [11, 4, 10, 14].

Storage Improvements: Modern flash storage can
support multiple Gb/s bandwidths with access latencies
as low as 15 µs [5]. In a spirit similar to networks,
the storage stack of the Linux kernel has evolved to ac-
commodate the hardware improvements by reducing un-
necessary OS involvement in the IO and by improving
scalability [2]. However, researchers have also observed
the parallels between the high-performance networking
and storage IO [15, 3]. Hence, apart from the traditional
block interface, we also evaluate a Direct Storage Access
(DSA) abstraction that provides an RDMA interface to
the local storage [13, 9]. The DSA interface offers all
key properties of a user-space storage stack [3, 12].

2 Investigation

Aim and Scope: The goal of this investigation is to
quantify the combined performance capability of mod-
ern IO stacks with high-performance devices. We focus
on a client-server environment, where a typical IO pat-
tern consists of a server accepting a data request from
a networked client, getting data from the local storage
device, and transmitting data back as a response to the
requesting client over the network. Such a workload is
an integral part of a networked storage system such as,
e.g., a key-value server, a datanode in HDFS etc.

Methodology: We investigate IO latencies, peak IO



Read Write
Latency IOPS Bandwidth Latency IOPS Bandwidth

dev-SATA 61.0/117.4 µs 155K/51K 271/258 MB/s 1218.2/89.1 µs 139K/36K 220/189 MB/s
dev-PCIe 34.7/77.6 µs 731K/605K 1.35/1.35 GB/s 15.1/25.3 µs 776K/56K 642/714 MB/s
HS4-blk 108.2/118.0 µs 265K/323K 2.3/2.7 GB/s 668.2/2018 µs 1.6K/1.7K 1.5/1.6 GB/s
HS4-DSA 66.1/66.5 µs 556K/531K 3.1/3.2 GB/s 522.1/522.1 µs 84K/113K 2.0/2.0 GB/s

Table 1: Performance of flash devices. The reported performance numbers for latency and IOPS are for 1 kB request
sizes. The bandwidth is measured with 64 kB size. The peak performance is obtained under a device-specific best
configuration. The two numbers represent sequential and random accesses respectively.

operations per second (IOPS) and bandwidth at the
server. Clients repeatedly ask the server over the network
to read or write data into the flash storage. The server
reads and writes flash block devices directly. Hence, the
performance numbers reported do not include the filesys-
tem overhead. For the latency and the peak IOPS exper-
iments, we use 1 kB buffer size. For the peak bandwidth
experiment, the buffer size is 64 kB. The numbers re-
ported are measured on the Linux kernel v3.13.11 and
are the average of 3 runs, each lasting 30 secs with 5
secs of stablization time in between. The performance
numbers reported in this section are not meant as a fair
quantitative comparison as they represent vastly different
hardware/software configurations. Rather, they illustrate
the available performance spectrum for networked flash.

Hardware Setup: All experiments use a cluster of 12
IBM x3650 M4 machines containing a dual socket In-
tel Xeon E5-2690. The machines are connected using
three generations of Ethernet networking devices with
an Intel I350 Gigabit controller, as well as a Chelsio
T4 and a T5 RDMA controller for 1, 10, and 40 Gb/s
connectivity respectively. We further include three types
of flash storage devices, namely (i) a consumer-grade
SATA SSD denoted by dev-SATA; (ii) an enterprise-grade
commercial PCIe-attached flash denoted by dev-PCIe;
(iii) a PCIe-attached Hybrid Scalable Solid State Storage
(HS4) card [13] that supports the Direct Attached Stor-
age (DSA) interface [9] for a local RDMA access to the
flash storage. The DSA interface also support a block de-
vice abstraction, which is denoted by HS4-blk. Table 1
and 2 summarize the best local/baseline performance of
the storage and networking devices that are evaluated in
this paper.

2.1 What is the effect of latency
improvments on remote flash accesses?

A complete IO operation on the networked flash includes
latencies from the network and the flash. In the past,
the performance idiosyncrasies of flash, such as the gaps
in the sequential and random accesses etc., were over-

TCP/Sockets RDMA send/recv
latency IOPS latency IOPS

Intel 1 GbE 49.0µs 365K N/A N/A
T4 10 GbE 16.4µs 549K 13.3µs 750K
T5 40 GbE 12.0µs 620K 8.8µs 1.5M

Table 2: Baseline network performance. Our 1GbE Intel
NIC does not support RDMA.

1 GbE 10 GbE 40 GbE
dev-SATA 191/166.4/14.7% 183/133.8/36.7% 157/129.4/21.3%
dev-PCIe 130/126.6/2.6% 101/94/7.4% 92/89.6/2.6%
HS4-blk 217/167/29.9% 142/134.4/5.6% 135/130/3.8%

Table 3: Access latencies in µs for random 1 kB read
for various combinations IO devices. The three num-
bers represent the measured latency, the best latency (cal-
culated as the sum of individual latencies from table 1
and 2), and the difference between the two.

shadowed by either the high network1 or flash latencies.
However, as both have made progress to lower the access
latencies considerably, we revisit the key questions such
as if the local or the remote flash access matters? and if
there is a performance difference between a random and
a sequential access to a networked flash storage?

Analysis: Table 3 shows the measured access laten-
cies for a random 1kB access for the various combination
of network and storage devices. For PCIe-attached flash
and 10, 40 GbE the access latencies remained within 8%
of the best predicted latencies. 1 GbE and dev-SSD intro-
duced more overhead than expected. As network laten-
cies continue to improve, we expect network to add min-
imum overhead to the flash performance. In a second ex-
periment (not shown), we measure the gap between the
access latencies of random and sequential accesses for
various combinations of IO devices. The extend of the
performance gap depends on multiple factors such as the

1We here refer to the collective latency that includes the core net-
work (e.g., switching) and the end-host protocol processing costs.
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Figure 1: Scaling of IOPS (with equivalent local performance, i.e. w/o network) with the number of clients.
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Figure 2: Scaling of bandwidth (with equivalent local performance, i.e. w/o network) with the number of clients.

controller design, the FTL implementation etc. We dis-
cover that accessing flash storage with a large gap, such
as with dev-PCIe, over a 1 GbE network that has 3−4×
higher latencies than 10 GbE and 40 GbE, shrinks the
performance gap by 11−41%. However, as the network
latencies decrease for 10 GbE and 40 GbE, the gap fur-
ther increases. Hence, we recommend latency-sensitive
applications to differentiate between random and sequen-
tial accesses and (if possible) trade CPU cycles to effi-
ciently re-order/batch IOs.

2.2 Can modern IO stacks deliver the full
performance of networked flash?

In this section, we look specifically at the peak perfor-
mance delivered by a combination of flash+network de-
vices to concurrent clients. If the networked access to a
flash device is significantly expensive than the local ac-
cess then we need to investigate and understand the net-
working overheads. On the other-hand, if the distinction
between local and remote flash storage does not mat-
ter, then we need to rethink how we build distributed
shared data storage and processing systems for high-
performance devices [1].

In this experiment clients request a data block (1 kB
for IOPS, and 64 kB for bandwidth) at a random flash
offset. To represent a data-dependent workload, where
a client cannot issue the next request until the last one
has finished, clients have only one outstanding request

at a time. The server forks a new server process to han-
dle requests for every connected client. This configura-
tion stresses the OS and the IO stacks the most because
of overheads from scheduling, context switches, cache
contentions, protocol processing etc., and provides only
negligible opportunities for the IO cost amortization.

Analysis: Figure 1 shows the scaling of IOPS with
the number of concurrent networked clients. For dev-
SATA, the peak performance of the flash device (64K
IOPS) becomes the bottleneck first, and even a 1 GbE is
sufficient to deliver the maximum IOPS allowed by the
device. However, for dev-PCIe and HS4-blk, the 1 GbE
becomes bottleneck at around 111K IOPS. On an aver-
age, the network adds 23% (min-max: 10-32%) and 20%
(min-max: 9-31%) overhead for 10 GbE and 40 GbE re-
spectively. For HS4-blk, the network adds 8-15%.

Figure 2 shows the peak bandwidth delivered, and
shows a more familiar pattern. In every case, the peak
local bandwidth was followed closely (within 10%) by
the networked flash bandwidth, until the network became
the bottleneck. The 1 GbE network cannot deliver (peak
bandwidth: 120 MB/s) the peak performances of any
flash device. The 10 GbE networked accommodated dev-
SATA (peak bandwidth: 245MB/s), but dev-PCIe (peak
bandwidth: 1.35 GB/s) and HS4-blk (peak bandwidth:
2.6 GB/s) necessitated a 40 GbE link. In summary, one
can lose up to one-third of the peak IOPS performance
for the networked flash storage. This conclusion implies
that sources of inefficiencies exist in the networking and
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Figure 3: Performance of HS4-DSA interface for local, and over 10GbE and 40GbE RDMA networks.

storage stacks, when dealing with small message sizes (1
kB) that are not large enough to saturate the device ca-
pacity. The exact size is device dependent. However, the
full peak bandwidth of the flash devices was delivered.
Hence, a distinction between a local and a remote stor-
age does not matter, and locality aware optimization can
be considered irrelevant [1].

2.3 What is the performance of a
networked DSA/RDMA interface?

We now turn our attention to emerging storage inter-
faces that go beyond the simple block accesses. Exam-
ples of these interfaces include NVMe, Moneta-D, and
IBM’s Direct Storage Access (DSA) interface. In this
section, we evaluate the performance of the DSA inter-
face running on top of an IBM HS4 SLC PCIe flash stor-
age. The DSA interface offers the key performance prop-
erties of user-space storage (with the support from the
hardware, here the HS4 flash storage) as illustrated by
the Moneta project [3] and the storage stack of Arrakis
OS [12]. The interface is built upon the RDMA network-
ing principles (and even uses the standard OFED/Linux
RDMA stack), where each application is given its pri-
vate set of userspace-mapped storage hardware queues
to access flash extents. Reading or writing DSA/HS4
storage is similar to reading or writing a remote memory
location using RDMA operations. In this experiment the
networked clients also use RDMA operations for high-
performance networking. The goal of this exercise is to
illustrate the best performance possible.

Analysis: Figure 3 summarizes our findings. The
HS4/DSA prototype delivered remote flash access la-
tencies that are close to the combined latencies of flash
(around 67 µs) and RDMA networks (8-13 µs). In such
a setting, a 4 kB page transfer takes about 90 µs with
HS4/DSA on T5/40GbE. A major part of this perfor-
mance improvement comes from IO offloading, another
one from the thin software abstraction of RDMA. The
peak IOPS performance of networked HS4/DSA follows
the local performance more closely, on average 16%

to 6% for 10 GbE and 40 GbE respectively. The 40
GbE/RDMA network delivered the full bandwidth of the
HS4 device across the network.

2.4 What is the IO efficiency?

We now turn our attention to the cost of high-
performance IO. We fix the number of concurrent clients
to 64, and for additional comparison, use the null block
device from the kernel (null blk.ko).

Scaling of IOPS: Figure 4a shows the scaling of
IOPS for the local null block device (nullb), RDMA
send/recv operations (RDMA), TCP send/recv opera-
tions (TCP), RDMA operations accessing the null block
device (RDMA-nullb), and TCP operations accessing the
null block device (TCP-nullb). In our setting, a single
core delivers about 59K (peak: 510K) and 195K (peak:
950K) IOPS for block IO for TCP and RDMA accesses
respectively. In comparison, Arrakis reports 1.1M IOPS
for UDP packet processing [12]. However, there are
some key differences between the Arrakis IO stack and
our setup. First, Arrakis achieved its peak performance
under a certain fixed request rates from clients, whereas
clients in our experiment do not batch requests. Second,
Arrakis performance does not include overheads from
the storage accesses. Lastly, the RDMA performance in-
cludes cost for executing more complicated TCP state
engine. For a memcached server when there is a read
hit, Arrakis reports 300K IOPS for a single core, which
arguably is better than Linux’s 170K IOPS for just TCP
send/recv performance.

Effect of storage latency improvements: Figure 4b
shows the effect of storage latency improvements on the
delivered IOPS for the three networks. We injected con-
trolled delays (no delay, 10 µs, and 100 µs) to mimic
a low-latency block device. To our surprise, an order
of magnitude latency improvement did not affect the
overall IOPS delivered. We believe that this is due to
the fact that in a single core experiment, the CPU core
(while performing scheduling, context switches, copies
etc.) quickly becomes the bottleneck. Improving net-
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Figure 4: IO efficiency in terms of IOPS delivered under various settings.

work speed from 10 GbE to 40 GbE showed 41% im-
provement for the null block device.

Efficiency of mixed configurations: Availability of
RDMA interfaces for the network and storage gave us
opportunity to test the efficiency of the IO offloading.
We evaluate a similar 64 client experiment with a null
DSA device with a null block device in the following
configurations: (a) block for storage and sockets for net-
work; (b) block for storage and RDMA for network; (c)
DSA for storage and TCP for network; (d) DSA for stor-
age and RDMA for network. Figure 4c shows our find-
ings. Contrary to our expectations, the offloading of the
storage stack yielded small improvements, a conclusion
that was also confirmed by measuring the overheads (less
than 1.3 µs) from the block layer for the null device.
Network offloading to RDMA gives the maximum per-
formance gains (by upto 3.2×). The figure also shows
the peak performance (around 900K) when all 32 cores
are enabled. However, our analysis only includes simple
block accesses. Hence, the results pertaining to the stor-
age overheads will change once more complicated stor-
age operations such as transactions, with file systems are
included in the evaluation.

3 Conclusion

In this work we investigated the performance of vari-
ous flash and network device combinations. Our anal-
ysis concludes that (a) low-latency networks expose the
performance traits of flash storage which otherwise were
eclipsed by large network or storage latencies; (b) net-
worked flash access can lose upto on-third of peak IOPS
but the full device bandwidth is delivered; (c) an RDMA
interface to the storage and the networks can deliver low-
latency remote page accesses (4kB transfer in 90 µs) and
upto 900K IOPS for a null block device. As next steps in
our investigation, we are looking into performance bot-
tlenecks for small IO operations, breaking down the CPU
cost, and evaluating QoS (e.g., the tail effect) when the
storage, or the network, or both are loaded.
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