

RZ 3907 (# ZUR1604-007) 11/10/2016
Electrical Engineering 5 pages

Research Report

Improving the Error-Floor Performance of Binary

Half-Product Codes

Thomas Mittelholzer, Thomas Parnell, Nikolaos Papandreou and Haralampos Pozidis

IBM Research – Zurich

8803 Rüschlikon

Switzerland

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any cur-
rent or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collec-
tive works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

The final version of this paper has been published by IEEE: T. Mittelholzer, T. Parnell, N. Papandreou and H. Pozidis,
"Improving the Error-Floor Performance of Binary Half-Product Codes," in Proc. International Symposium on Information Theo-
ry and Its Applications (ISITA), 295-299

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It
has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside
publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some
reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research
 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich

Improving the Error-Floor Performance of Binary

Half-Product Codes

Thomas Mittelholzer, Thomas Parnell, Nikolaos Papandreou and Haralampos Pozidis

IBM Research – Zurich

8803 Rüschlikon, Switzerland

Email: {tmi,tpa,npo,hap}@zurich.ibm.com

Abstract—Recently, a new type of product-like codes, known
as half-product codes, has been studied for OTN applications.
Binary half-product codes show excellent bit-error-rate perfor-
mance under iterative hard-decision decoding in the waterfall
region. To further improve the performance in the error floor
region, a novel post-processor algorithm is proposed that relies
on conditional bit flipping. For a class of important practical
half-product codes, the error floor after post-processing is char-
acterized.

I. INTRODUCTION

With the shift towards longer codes in applications such as

optical transport networks (OTN), product codes have been

re-considered and new product-like codes proposed [1]–[8].

A key feature of these codes is that they have relatively sim-

ple hard-decision based decoders and that their bit-error-rate

(BER) performance under iterative decoding can be analyzed

analytically for low BERs [5].

In this paper, we will study binary half-product codes

(HPC), which are derived from symmetry-invariant subcodes

of n×n product codes. For comparable parameters, HPCs

often outperform product codes both in the waterfall and the

error-floor region.

To further lower the error floor, erasure-based post-

processors (PP) were proposed in [6] and [7]. In this paper,

we consider a different type of PP that applies to binary

product-like codes. The novel PP relies on conditional bit

flipping; it outperforms the erasure-based PP in many cases.

We also provide an analytic approximation of the error-floor

performance of the PP, which is crucial for applications.

In Section II, we review half-product codes and their asso-

ciated graphical models as defined in [3], [5]. In Section III,

analytical performance approximations for the waterfall and

error-floor regions are given, following the approach in [5] and

[8]. In Section IV, the novel bit-flipping-based PP is described;

by using the graphical model of HPCs, the minimum stopping

sets of the PP are characterized and enumerated. We validate

the analytical performance approximations by simulations in

Section V, and draw our conclusions in Section VI.

II. HALF-PRODUCT CODES AND COMPLETE GRAPHS

Half-product codes are subcodes of two-dimensional prod-

uct codes that are invariant under transposition [3], [5]. More

formally, for a given (square) product code CP , based on a

component code C, the corresponding half-product code CH

is defined by the set of upper triangular matrices in the set of

anti-symmetric matrices (see [5]):

C̃H = {X −XT : X ∈ CP }. (1)

Here, X = [xij] ∈ CP is a n×n square array whose rows and

columns are codewords of C, and XT denotes the transpose

of X .

Given a (n, k, d) component code, the HPC has length N =
n(n−1)/2 and dimension K = k(k−1)/2 [5]. The minimum

distance formula d(d − 1)/2 as originally given in [5] is too

conservative; namely, HPCs have larger minimum distances as

specified by the bound DH ≥ 3d2/4, which has recently been

proved in [9].

The encoding of HPCs is similar to the encoding of product

codes: One forms a (anti)-symmetrical k × k array with zero

diagonal and encodes the corresponding product code.

The graphical model for the HPC is the complete graph

with n vertices, where n is the length of the component code

[5]. The n vertices correspond to check nodes, which impose

the constraints of the component code. The n(n− 1)/2 edges

of the complete graph correspond to the n(n−1)/2 codeword

components in the upper triangular matrices.

Fig. 1: Graphical model for HPC in Example 1.

Example 1: The codewords of the binary (N = 28, K = 6,

DH = 12) HPC based on the (n = 8, k = 4, d = 4) extended

Hamming code correspond to symmetric 8×8 matrices

Y =

0 y12 y13 y14 y15 y16 y17 y18
y12 0 y23 y24 y25 y26 y27 y28
y13 y23 0 y34 y35 y36 y37 y38

y14 y24 y34 0 y45 y46 y47 y48
y15 y25 y35 y45 0 y56 y57 y58
y16 y26 y36 y46 y56 0 y67 y68
y17 y27 y37 y47 y57 y67 0 y78
y18 y28 y38 y48 y58 y68 y78 0

where all rows and columns are codewords of the length-

8 extended Hamming code. The upper triangular part of Y
determines the HPC codeword. When one restricts oneself

to the upper triangular part, one can identify the rows of

Y as folded structures with a 90-degree folding at the zero

diagonal. For example, the length-8 component codeword in

the 3rd row is represented by the folded structure high-lighted

in type-font.

The graphical model for this HPC is the complete graph

on 8 vertices as illustrated in Fig. 1. Vertices represent

folded codewords of the component code, and edges represent

the codeword bits. For instance, the edges leaving vertex 3
correspond to the 7 off-diagonal symbols y13, y23, y34, y35,

y36, y37, y38 of the folded structure, which represents row

3. Two folded structures i and j have exactly one codeword

component in common, viz., yij , and hence the vertices i and

j are connected by one edge with edge label yij .

III. PERFORMANCE OF HALF-PRODUCT CODES

Product codes and half-product codes can be iteratively

decoded using the associated graphical structures, namely,

bipartite graphs and complete graphs, respectively. Hard-

decision iterative decoding of product codes is performed

based on the graph by applying bounded-distance decoding

to all row codewords and then applying bounded-distance

decoding to all column codewords. Each time a codeword is

successfully decoded, the edges leaving the appropriate node

are corrected. The process iterates until decoding is complete,

i.e., until either all syndromes are zero or the decoder makes

no further progress. In the first case, the decoder output

is a codeword, and decoding is successful or produces a

miscorrection. In the second case, the decoder fails to decode.

In a similar way, iterative decoding of HPCs is based on

bounded-distance decoding of the folded codewords of the

underlying component code.

In the next two subsections, we review the performance lim-

its of iterative decoding, which is based on iterative decoding

thresholds and approximate BER performance analysis in the

waterfall and the error-floor region.

A. Iterative Decoding Threshold

For component codes of increasing lengths but with a

fixed error-correction capability t, iterative decoding has been

analyzed using various techniques [1]. If miscorrections are

neglected, these approaches have matching results. In [5],

the analysis has been extended to HPCs using the threshold

behavior of the appearance of k-cores in a random graph [10].

We briefly review this result.

Starting from the complete graph of a HPC with n vertices

and n(n−1)/2 edges, one obtains an error graph by transmit-

ting a codeword through a binary symmetric channel (BSC)

with crossover probability p. The channel will flip each edge

label (codeword component) with probability p. The subgraph

of the flipped edges (components) is known as error graph

Γe = (Ve, Ee). On average, the error graph has n vertices and

pn(n− 1)/2 edges. For the complete graph with n(n− 1)/2
edges, each node of the error graph has p(n − 1) edges on

average and the edge distribution at each node is binomial.

For large n, it is well approximated by a Poisson distribution

with parameter λ = p(n− 1).
A k-core is a subgraph of the (error) graph with an edge

degree of at least k for all its vertices. Consider an HPC based

on a t-error correcting component code. The decoder will fail

if and only if the error graph contains a (t+1)-core [1]. For a

random graph with v nodes and e edges, asymptotically there

exists a k-core for k > 2 with high probability when e >
vck/2, where the threshold ck is determined by a truncated

Poisson distribution [10]; in particular, c3 = 3.35, c4 = 5.14,

c5 = 6.80, c6 = 8.37. This is the basis for the definition of

the iterative decoding threshold as

pc = vct+1/2e. (2)

For large code lengths, iterative decoding succeeds with high

probability if and only if the BSC has crossover probability

p < pc.

B. Approximate Analytical Performance Analysis

A length-N codeword that was sent over the BSC with

crossover probability p has an error distribution fobs,p(s) of

the observed errors, which is binomial with mean Np and

variance Np(1− p). Here s denotes the actual observed error

rate within a codeword. For large N , this is well approximated

by the normal distribution with the same mean and variance.

Following the argument in Section 4.1.1 of [4], we write the

frame error rate as

FER(p) =

∫ 1

0

fobs,p(s)Pr[Frame error |s]ds. (3)

The threshold property of iterative decoding of long (sub)-

product codes implies that Pr[Frame error |s] is well approxi-

mated by a step function that jumps from 0 to 1 at the iterative

decoding threshold pc, which leads to

FER(p) ≈
∫ 1

pc

fobs,p(s)ds =
1

2
erfc

(

(pc − p)
√
N

√

2p(1− p)

)

. (4)

Here erfc denotes the complementary error function. When

decoding fails, we assume that the number of bit errors is

N max{pc, p}, and thus the output BER is approximated by

BER(p) ≈ 1

2
max{pc, p}erfc

(

(pc − p)
√
N

√

2p(1− p)

)

. (5)

The formula for BER(p) applies to the waterfall region of

the BER curve. To obtain the performance in the error-floor

region, we study error patterns that make the decoder fail,

which were termed stalling patterns in [4] and stopping sets

in [9]. In terms of graphical models, a stopping set is an error

graph ΓS on which the iterative decoder fails to make progress.

For a product code of length N = n2, which is based on

a t-error-correcting component code (for rows and columns),

the stopping sets of minimum weight are easy to characterize:

the minimum weight patterns have weight w = (t+ 1)2, and

consist of t+ 1 rows with t+ 1 errors at the same locations,

i.e., they are square structures with (t+1)×(t+1) errors. The

corresponding error graph ΓS is a fully connected bipartite

graph in which each partition has exactly t + 1 vertices. The

number of these stopping patterns is given by

µ =

(

n
t+ 1

)(

n
t+ 1

)

.

The error-floor performance is approximated as (see [2], [5])

BERfloor ≈ µpww/N. (6)

In [3], the stopping sets for HPCs with t = 3 have been

analyzed. The minimum-weight stopping sets have weight

wH = (t+ 2)(t+ 1)/2 = 10 and their multiplicity is

µH =

(

n
t+ 2

)

.

The multiplicity µ equals the number of complete graphs on

t+2 vertices within the complete graph on n vertices. Clearly,

this holds for any t. With these parameters, one can readily

generalize the error-floor approximation (6) for the HPC case.

IV. LOWERING THE ERROR FLOOR

A. Post-Processor for HPCs

One can reduce the error floor by using a post-processor

(PP) in conjunction with the iterative decoder that detects and

corrects stopping sets of small weight. For binary HPCs, the

smallest stopping sets ΓS = (VS , ES) are complete graphs on

t + 2 vertices VS . When the iterative decoder gets stuck on

a minimum stopping set, ΓS can be determined from those

folded codewords of the component code that have nonzero

syndromes as they correspond to the vertices VS . As the edges

ES of the complete graph are determined by the vertices VS ,

one can correct all (t + 2)(t + 1)/2 bit errors by flipping all

edge labels of ΓS .

The PP can be extended to correct more than just the

minimal error patterns of a binary HPC. Suppose the iterative

decoder fails to decode and halts on an unknown stopping

(stalling) set ΓS = (VS , ES). As above, the vertex set VS can

be determined from the set of folded codewords with nonzero

syndromes. However, if the stopping set is not minimal, only

limited information is available on the edge set ES . We know

that the edge degree in each vertex is at least t + 1 as the

iterative decoder would have corrected all folded codewords

(vertices) with t or fewer errors. Thus, the cardinality |ES | of

the edge set is in the range
⌈

(t+ 1)|VS |
2

⌉

≤ |ES | ≤
|VS |(|VS | − 1)

2
, (7)

where ⌈x⌉ denotes the smallest integer not smaller than x.

To specify the operation of the PP, we introduce the notion

of the ambient error graph ΓA = (VA, EA) of the stopping set

ΓS , which is defined to be the complete graph with vertex set

VA = VS . The vertex set VS is known from the set of folded

component codewords with nonzero syndromes and ΓA is the

largest possible error graph on VS .

Single-step post-processor:

Consider an HPC that is based on a t-error-correcting compo-

nent code and suppose the iterative decoder gets stuck on a

stopping set ΓS = (VS , ES). Then,

• if |VS | ≤ 2t+ 2,

1) the PP reverses all bits corresponding to the edges

of the ambient error graph ΓA, and

2) the PP applies 1 additional round of iterative decod-

ing;

• otherwise, the PP leaves the output of the iterative de-

coder unchanged and declares a failure.

Proposition 1: Every stopping set of the HPC with at most

2t+ 2 vertices is correctly decoded by the PP.

To prove this proposition, we consider the complement ΓS

of the error graph, which is a graph on the same vertices as

ΓS such that two distinct vertices of ΓS are adjacent if and

only if they are not adjacent in ΓS . The bit reversal of the PP

transforms the stopping set ΓS into its complement ΓS .

By (7), a stopping set on v = |Vs| vertices has at least

⌈(t+ 1)v/2⌉ edges and its complement ΓS has at most (v −
1)v/2 − ⌈(t + 1)v/2⌉ edges. This number is upper bounded

by tv/2 because of the PP condition v ≤ 2t + 2. Thus, the

complementary stopping set ΓS has fewer edges than the lower

bound (7) and, therefore, it is correctable by iterative decoding.

In fact, each vertex of ΓS has edge degree at most t because

each vertex in ΓS has at least degree t+ 1, and thus a single

iteration step is sufficient to decode.

Multi-step post-processor:

Using a similar argument based on the stopping set and its

complement, one can show that for even t, the PP can be

extended to correct all stopping sets with |VS | ≤ 2t+ 3. The

bit-reversal step 1 remains unchanged; however, in step 2 more

than one round of iterative decoding may be necessary.

Example 1 (cont.ed) Suppose a codeword of the HPC that

is based on the extended (8, 4, 4) Hamming code is corrupted

by noise, which results in 4 errors at locations y34, y38, y47,

y78. These 4 errors form a stopping set with VS = {3, 4, 7, 8}
and ES = {(3, 4), (3, 8), (4, 7), (7, 8)}, which is illustrated in

Fig. 2. In Fig. 2 and Fig. 3a the ambient error graph ΓA is

shown as the complete graph on the vertices VS , which are

connected by bold dashed and solid lines. When the iterative

TABLE I: Cardinality of automorphism groups of the 16 non-isomorphic 4-regular graphs on 9 vertices.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

|Aut(Γi)| 16 32 4 8 12 18 2 2 4 2 8 8 16 72 12 18

Fig. 2: Stopping set with 4 errors of HPC in Example 1.

(a) Stopping set ΓS

(b) Complementary
stopping set ΓS

(c) No errors

Fig. 3: Illustration of post-processor operations

decoder gets stuck on the (unknown) stopping set, the PP can

determine the vertex set VS from the 4 nonzero syndromes of

the folded codewords. As |VS | ≤ 2t+2 holds, the PP applies

bit reversal to the ambient error graph ΓA. This transforms

the stopping set into its complement ΓS , which is shown in

Fig. 3b. One additional round of iterative decoding can then

remove the errors, and this results in the error graph in Fig. 3c

without errors.

The concept of ambient error graph and complement of a

stopping set can be applied to other types of binary product-

like codes that are iteratively decoded by a bounded-distance

decoder of the underlying component code(s). In particular,

one can formulate similar PP decoding rules for product and

quarter-product codes based on conditional bit flipping.

B. Error Floor of the Post-Processor

We will determine the error floor of the PP by specifying

the weight and multiplicity of the smallest stopping sets that

cannot be corrected by the PP.

Theorem 1: Let ΓS = (VS , ES) be a minimal stopping set

of the PP (and its extension for t even). Then, the number of

vertices equals

|VS | =
{

2t+ 3 for t odd

2t+ 4 for t even,
(8)

and the number of edges, i.e., the weight, is given as

|ES | =
{

(2t+ 3)(t+ 1)/2 for t odd

(2t+ 4)(t+ 1)/2 for t even
. (9)

For a minimal stopping set, clearly, the cardinality |VS | is

by 1 larger than the upper PP bounds |VS | ≤ 2t + 2 and

|VS | ≤ 2t+ 3 for odd and even t, respectively.

The cardinality |ES | is the number of edges in a regular

graph on |VS | vertices and edge degree t+ 1.

To find the multiplicity of PP stopping sets of minimum

weight w = |ES |, we count the number of different (t + 1)-
regular subgraphs on v = |VS | vertices within the complete

graph on n vertices, where n is the length of the underlying

component code of the HPC.

If we know the number of non-isomorphic (t + 1)-regular

graphs on v vertices, together with their automorphism groups,

this graph counting problem is easily solved. However, for

large t, it is considered to be hard because of the conjectured

difficulty of the graph isomorphism problem. In the paper, we

will treat the case t = 3, which is of most practical interest

[3]. For small t, other cases can be treated similarly.

First, we consider the reduced problem of counting the

number of different (t + 1)-regular graphs with v vertices.

For t = 3, there are 16 classes of non-isomorphic (t + 1)-
regular graphs Γi on 2t+3 = 9 vertices, which can be found

by a clever exhaustive search [11]. The automorphism groups

Aut(Γi) and their orders are given in the associated web-page

of [11]; for convenience, the orders |Aut(Γi)| are listed in

Table I.

For a fixed vertex labelling of 9 vertices, each graph Γi

corresponds to a distinct ‘initial’ stopping set. For each graph

Γi, there are 9!/|Aut(Γi)| different stopping sets; namely, for

each permutation σ of the 9 vertices, there are |Aut(Γi)|
equivalent permutations σγ, γ ∈ Aut(Γi) that correspond to

the same stopping set as σ. Thus, only 9!/|Aut(Γi)| out of

the 9! permutations give rise to distinct stopping sets. By

adding across all 16 graphs, one gets µ0 =
∑

i 9!/|Aut(Γi)| =
1, 024, 380.

To obtain the multiplicity of all weight-18 stopping sets, it

is sufficient to note that the v = 9 stopping set vertices can

be chosen freely out of the n vertices of the graphical model

of the HPC. Combining with the multiplicity µ0, the theorem

below follows.

Theorem 2: For HPCs based on length-n 3-error correcting

component codes, the multiplicity of the (minimal) weight-18
stopping sets of the PP is

µ = 1, 024, 380

(

n
9

)

. (10)

In comparison to the erasure-based PP in [7], the novel bit-

flipping-based PP achieves lower error floors whenever the

minimum distance d = 2t+ 1 of the binary component code

is odd or when t is even. This follows from comparing the

weight |ES | in Theorem 1 with the reported minimum weight

SHPC
min = (d + 1)(t + 1)/2 in [7]. Furthermore, in Theorem 2,

we specify the multiplicity µ of the weight-18 PP stopping

sets for t = 3, which allows one to get an approximation of

the PP error floor using (6).

V. PERFORMANCE OF SELECTED CODES

To validate the analytical error-floor performance of the

HPC and the PP, a short ‘toy’ HPC code was designed that

is based on the 3-error-correcting binary (31, 16, 7) BCH

component code. Its performance curves are shown in Fig. 4.

There is good agreement between the simulations of the

pseudo-decoder (without miscorrections) and the analytical

error-floor estimates (6). As the BCH code is very short,

miscorrections during iterative decoding result in a noticeable

gap between the performance of true and pseudo decoding. In

−1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7 −0.6
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

log
10

(p)

B
E

R

HPC decoder w/o PP

HPC decoder w/ PP

HPC pseudo−dec w/o PP

HPC pseudo−dec w/ PP

HPC(465) floor

HPC(465) PP−floor

Fig. 4: Validation of approximate analytical error floor curves.

[3], an HPC was proposed for coding over optical transport

networks (OTN) that is based on the binary (1021, 990, 8)
BCH component code. This HPC has a rate of 0.9402, which

is slightly higher than that of the Reed–Solomon code in

Appendix I.9 of the OTN standard G.975.1. In Fig. 5, we

illustrate the lowering of the error floor of the HPC to a target

BER of 10−19. Note that the analytical BER performance

as given by (5) is slightly too optimistic compared with the

performance of the true decoder; however, it captures well the

performance of the pseudo-decoder (without miscorrections).

The HPC performs close to the capacity limit of the BSC. In

both cases, the maximum number of decoding iterations was

limited to 20.

VI. CONCLUSIONS

We have introduced a novel post-processor for lowering the

error floor of iterative bounded-distance decoding of binary

HPCs. The PP rule is based on bit-flipping using the graphical

model of the HPC and its stopping sets. This PP outperforms

the erasure-based PP in [7] in many cases, e.g., when the

component code has odd minimum distance d = 2t + 1.

−4.5 −4 −3.5 −3 −2.5 −2
10

−20

10
−15

10
−10

10
−5

log
10

(p)

U
B

E
R

G.975 RS(255, 239, t=8)

HPC(65088B) decoder

HPC(65088B) pseudo−dec

HPC(65088B) analyt est

HPC(65088B) floor

HPC(65088B) PP−floor

Capacity limit: r = 0.9402

Fig. 5: Performance comparison of the reference G.975 code

and a similar-rate HPC on a BSC with crossover probability

p.

For HPCs with 3-error-correcting component codes, we have

enumerated the minimal stopping sets of the PP and obtained

an analytical approximation of the PP error-floor performance.

The same technique applies to other small values of t.
The new concept of ambient error graph and complement

of a stopping set can be applied to other types of product-

like codes that are iteratively decoded by a bounded-distance

decoder of the underlying component code(s).

REFERENCES

[1] J. Justesen and T. Høholdt, “Analysis of Iterated Hard Decision De-
coding of Product with Reed-Solomon Component Codes,” IEEE Proc.
ITW 2007, Lake Tahoe, CA, USA, Sept. 2007, pp. 174–177.

[2] J. Justesen, “Iterated Decoding of Modified Product Codes in Optical
Networks,” IEEE Proc. Inform. Th. and Appl. Workshop ITA2009, San
Diego, CA, USA, Feb. 2009, pp. 160–163.

[3] J. Justesen, K.J. Larsen, and L.A. Pedersen,“Error Correcting Coding for
OTN” IEEE Commun. Mag., Vol. 48, No. 9, pp. 70–75, Sept. 2010.

[4] Benjamin P. Smith, Error-Correcting Codes for Fibre-Optic Communica-
tion Systems, Ph.D. Thesis, Univ. Toronto, 2011.

[5] J. Justesen, “Performance of Product Codes and Related Structures with
Iterated Decoding,” IEEE Trans. Commun., Vol. 59, No. 2, pp. 407–415,
Feb. 2011.

[6] Y.-Y. Jian, H.D. Pfister, K. Narayanan, R. Rao, and R. Mazahreh, “It-
erative Hard-Decision Decoding of Braided BCH Codes for High-Speed
Optical Communication,” IEEE Proc. GLOBECOM 2013, pp. 2376–2381.

[7] S. Emmadi, K.R. Narayanan, and H.D. Pfister, “Half-Product Codes for
Flash Memory,” extended abstract and unpublished conference presenta-
tion at Nonvolatile Memories Workshop (NVMW 2015), Mar, 2015, San
Diego, CA, USA.

[8] T. Mittelholzer, T. Parnell, N. Papandreou, and H. Pozidis, “Symmetry-
based Subproduct Codes,” Proc. IEEE Intl Symp. Inform. Th. (ISIT 2015),
Hong Kong, June 2015, pp. 251 – 255.

[9] H.D. Pfister, S.K. Emmadi, and K. Narayanan, “Symmetric Product
Codes,” IEEE Proc. ITA 2015, San Diego, CA, USA, Feb. 2015, pp. 282
– 290.

[10] S. Janson, M. Luczak, “A Simple Solution to the k-Core Problem,”
Random Structures Algorithms, Vol. 30, pp. 50–62, 2007.

[11] M. Meringer, “Fast Generation of Regular Graphs and Construc-
tion of Cages,” J. Graph Theory 30, pp. 137–146, 1999 (see also
www.mathe2.uni-bayreuth.de/markus/reggraphs).

