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Product Codes for Data Storage on Magnetic Tape

Roy D. Cideciyan, Fellow, IEEE, Simeon Furrer, and Mark A. Lantz
IBM Research-Zurich, CH-8803 Rüschlikon, Switzerland

For two-dimensional (2D) product codes used in tape storage, the mapping of error-correction-coding (ECC) blocks into 2D
physical blocks on magnetic tape is generalized. Three-dimensional (3D) product codes that have the same code rate and ECC
block size as interleaved 2D product codes currently used in tape storage are proposed. For 3D product codes, a new family of
mappings of ECC blocks into 2D physical blocks on magnetic tape is introduced, which fulfills the stringent burst-error-correction
requirements of tape storage. The burst-error-correction capability of 2D and 3D product codewords recorded on magnetic tape is
analyzed as a function of track rotation, linear density, and ECC parameters. The performance limits of the tape storage channel is
determined based on computations of channel capacity and random coding bound. Hardware simulations of iterative hard-decision
decoding of product codes implemented in a field-programmable gate array demonstrate the improved error-rate performance of
3D product codes over 2D product codes.

Index Terms—Magnetic tape, data storage, error correction coding, burst-error correction, product codes, iterative decoding.

I. INTRODUCTION

MAGNETIC tape storage technology is one of the oldest
computer storage technologies still in use today. The

technology was first commercialized in 1952 and since then it
has undergone a capacity scaling of more than one million
fold from an initial reel capacity of 1.44 MB to current
cartridge capacities of 10 TB. In spite of this long history,
tape technology has huge potential to continue scaling capacity
[1]–[3]. The future scaling potential of tape combined with its
low total cost of ownership and very high reliability makes
tape technology particularly well suited to address the growing
demand for cost effective data storage solutions that is being
driven by the current explosion in the growth rates of big
data. The very high reliability of modern tape drives has been
enabled through the use of product codes that provide excellent
error-rate performance and burst-error-correction capability.
In order to maintain the success of tape technology in the
future, it will be important to continue to improve the error-
rate performance as cartridge capacities are scaled such that
the probability of encountering an error in a cartridge remains
constant [4].

Shortly after the discovery of the family of Hamming [5]
and Reed-Muller codes [6]–[8], product codes were introduced
by Elias in 1954 [9] as a coding scheme that achieves asymp-
totically error-free transmission at positive code rates. Product
codes and their generalizations [10]–[13] lend themselves to
a simple decoding strategy based on the use of decoders
for the constituent codes of a product code and iterative
decoding between component decoders. Product codes have
the capability to correct both random and burst errors. For
a brief tutorial on product codes, the reader is referred to
[14]. Starting with the standardization of digital audio compact
disc (CD) in 1980, two-dimensional (2D) product codes with
two constituent codes have found widespread use for error
correction in optical discs [15], magnetic tape storage [16],
[17], flash memory [18] and optical fiber communication
[19] wherein Reed-Solomon (RS) [20] or Bose-Chaudhuri-
Hocquenghem (BCH) codes have been employed as com-

ponent codes. In data storage, 2D product codes with small
coding overhead are often used if the size of the ECC block
(EB), which is the smallest amount of contiguous interleaved
codewords that must be read for decoding, is sufficiently large.
In general, the EB size and the EB to physical block (EB-to-
PB) mapping, which determines the order in which the bits
associated with encoded and interleaved data within an EB
are placed onto the storage medium, depend on the particular
storage application.

A comparison of EBs and physical blocks (PB) used in
hard disk drives (HDD) and magnetic tape drives reveals
fundamental differences between these disparate storage tech-
nologies and helps to highlight some of the main features of
magnetic tape storage. In particular, EB sizes used in HDD
and magnetic tape technologies differ vastly from each other.
The International Disk Drive Equipment and Materials As-
sociation (IDEMA) Long Data Sector Committee completed
the standard for an advanced recording format in 2010 to
increase the EB size for HDDs from 0.5 kB to 4 kB. In
contrast, the last generation of Linear Tape Open1 drives
(LTO-7) introduced in 2015 employs an EB size of about
6 MB which is 1500 times larger than the EB size in HDDs.
This significant difference in EB sizes is mainly because
files are written/read onto/from HDD in random access mode
for online and nearline applications2 whereas tape drives use
sequential access to write and read large files for offline
archiving applications. Furthermore, the written PB size in
tape storage after EB-to-PB mapping is not fixed as in HDD
technology because tape drives use read-while-write heads to
verify recorded fragments of data immediately after they have
been written and rewrite fragments of data downstream if the
decoded fragments contain too many errors. The written PB
size including rewritten fragments on magnetic tape can be
significantly larger than the original EB size in LTO tapes.

1Linear Tape Open and LTO are registered trademarks of HP, IBM and
Quantum. http://www.lto.org

2Although the recently introduced class of shingled HDDs do not support
random write, they still conform to the small block sizes used by conventional
HDDs.
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However, during normal operation the average increase in the
PB size on magnetic tape due to rewriting is typically less
than 3% of the EB size. To summarize, HDDs overwrite in
place small fixed-size PBs in random access mode whereas
tape drives read-while-write in streaming mode by appending
large variable-size PBs including rewritten fragments next to
each other.

Logical blocks are the smallest directly addressable unit of
user data that is read/written by a host command. The logical
block (LB) to PB (LB-to-PB) maps can be performed in two
steps by mapping LBs to EBs followed by mapping EBs to
PBs. HDDs tightly couple the size of LBs, EBs and PBs and
use fixed-size blocks because they randomly overwrite in place
and avoid read-while-write or read-modify-write operations by
performing a surface test and marking bad sectors to avoid
writing on them. Tape drives on the other hand very loosely
couple the size of LBs, EBs and PBs. LB sizes in LTO-7 tapes
can vary between 1 byte and 224−1 bytes (about 16 MB) and
have no size or boundary relationship with EBs or PBs (e.g, an
EB may be comprised of multiple and/or partial LBs). EB size
is fixed at about 6 MB. PB sizes are nominally a bit larger than
EBs after rate-32/33 modulation encoding and the insertion of
synchronization patterns but can be extended due to potential
rewrites for errors detected during read-while-write.

The small EB size in HDDs precludes the use of effi-
cient high-rate two-dimensional product codes. HDDs employ
block codes with a one-dimensional (1D) logical structure
such as low-density parity-check (LDPC) codes [21]. In the
past, HDDs have also employed interleaved RS codes or
concatenated RS-LDPC codes. Although a product code can
be viewed as a block code with 1D logical structure, from
an encoding and decoding perspective product codes used
in optical disc and tape storage systems have a 2D logical
structure where two component codes are used for encoding
and decoding. In the presence of spatial burst errors, the main
purpose of the EB-to-PB mapping is to increase the burst-
error-correction capability of the ECC scheme by reducing
the correlation between erroneous symbols in read codewords
prior to decoding, i.e., to distribute the erroneous symbols in a
spatial burst error in as many codewords as possible. Although
both HDDs and tape drives store bits on a 2D surface, disk
drives write 1D physical blocks whereas tape drives write 2D
physical blocks because disk drives store physical blocks on
1D circular tracks whereas linear tape drives write 2D physical
blocks on M linear tracks written in parallel, e.g., M = 32
in LTO-7 tape drives. Therefore, HDD technology employs an
EB-to-PB mapping of 1D-to-1D type whereas magnetic tape
technology employs an EB-to-PB mapping of 2D-to-2D type.
In general, if the EB-to-PB mapping is of mD-to-nD type, we
say that the logical structure of ECC is m-dimensional (mD)
whereas the physical block is n-dimensional (nD).

In this paper, long three-dimensional (3D) product codes
with three short component codes are proposed for magnetic
tape storage and an EB-to-PB mapping that converts 3D
product codewords into 2D physical blocks on magnetic tape
is presented. The use of a 3D product code with large block
length allows to replace many 2D product codewords with
small block length currently used in an ECC block by one

or a few 3D product codewords without changing the ECC
block size or increasing the ECC overhead. The exponential
error bounds for memoryless channels state that the probability
of error of the best block code of length N decreases expo-
nentially with block length. Therefore, the use of longer 3D
product codes with higher error correction capability should
improve the error-rate performance of shorter 2D product
codes currently used in magnetic tape storage. We evaluate
and compare the performance of various 2D and 3D product
codes by using iterative decoding.

The paper is organized as follows. In Section II, 2D product
codes with two RS component codes are presented and EB-
to-PB mappings of 2D-to-2D type used in tape storage are
generalized. In Section III, the spatial burst-error-correction
properties of product codes are presented. In Section IV, 3D
product codes for magnetic tape storage with three RS com-
ponent codes are proposed. Furthermore, a new family of EB-
to-PB maps of 3D-to-2D type and their burst-error-correction
properties are described. In Section V, the performance limits
of the magnetic tape channel with deep interleaving is deter-
mined. In Section VI, the performance of 2D and 3D product
codes with two and three RS component codes, respectively,
is evaluated using iterative decoding. Finally, Section VII
contains a brief summary and conclusions.

II. 2D PRODUCT CODES

The error-correction scheme used in current linear tape
drives is an RS-based two-dimensional product coding scheme
with deep interleaving along and across the tape tracks. More
specifically, the symbols of interleaved product codewords are
distributed in M simultaneously written linear tape tracks such
that four row codewords belonging to four product codewords
are byte interleaved to be written on tape tracks as a unit
of encoded data of about 1 kB size henceforth referred to
as a codeword interleave (CWI-4). Thereby, the EB-to-PB
mapping is devised such that all rows of a product codeword
are written on M tracks as far apart from each other as the
depth of interleaving allows. Currently, an ECC block of 256
two-dimensional product codewords are deeply interleaved
and written on M tracks as one 2D block of encoded data
henceforth referred to as a data set. In LTO-7 tapes, the data
set size is about 6 MB.

Each 2D product codeword can be viewed as a two-
dimensional array, where each row is a codeword from an
[n1, k1, d1] linear code C1 over a Galois field GF(q) and
each column is a codeword from a [n2, k2, d2] linear code C2
over GF(q). As both the row and the column code are linear,
row and column parity symbols can be generated by matrix
multiplication. Assuming A is a k2×k1 array of data symbols
over GF(q), G1 is a k1 × n1 generator matrix for the linear
C1 block code and GT2 is the transpose of a k2×n2 generator
matrix for the linear C2 block code, the encoding process that
produces n2 × n1 2D product codewords can be described in
matrix notation by

GT2 (AG1) =
(
GT2 A

)
G1. (1)
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The equality in (1) holds because of the associativity of matrix
multiplication, and therefore independently of whether we
first generate row parity symbols followed by column parity
symbols (left-hand side of (1)) or vice versa (right-hand side
of (1)), we obtain the same 2D product codeword. In general,
a 2D product code has a length of n1n2, a dimension of
k1k2 and a minimum Hamming distance of d1d2, i.e., it is
an [n1n2, k1k2, d1d2] linear block code over GF(q).

Two-dimensional product codes used in LTO tape drives
can be described in terms of an RS(N1,K1) C1 row code
over GF(256) with Hamming distance d1 =N1−K1+1 and
an RS(N2,K2) C2 column code over GF(256) with Hamming
distance d2 =N2−K2+1. An RS(64,54) C2 column code with
10 parity bytes was used in the first four LTO generations.
This code allowed the correction of one dead track out of
M = 8 simultaneously written tracks in LTO-1 and LTO-2,
and two dead tracks out of M = 16 simultaneously written
tracks in LTO-3 and LTO-4. A dead track can occur because of
a damaged or temporarily non-functioning read/write element
in the head or a malfunctioning read channel associated with
the dead track. Note that the bytes on a dead track become
erasures for RS decoding. The RS(96,84) C2 column code
with 12 parity bytes used in LTO-5 to LTO-6 tape drives
improved the format efficiency by increasing the code rate
and continued to allow the correction of two dead tracks out
of 16 tracks. The same C2 column code in LTO-7, which is
used for simultaneously writing M = 32 tracks, can correct
four dead tracks out of 32 tracks. In contrast, the C1 row codes
in LTO are weaker than the column codes to limit the total
percentage of ECC overhead, e.g. an ECC overhead of 16.7%
in LTO-7. Specifically, the first three LTO generations used
an RS(240,234) C1 row code with six parity bytes, whereas
an RS(240,230) C1 row code was used in LTO-4 to LTO-6
to improve the capability of correcting errors along the tracks.
This error-correction capability was further improved in LTO-7
by the selection of the RS(246,234) C1 code.

Each ECC block or logical data set E consists of P 2D
product codewords of size N2 ×N1

E=
{
(i(k), j(k))|0≤ i(k)<N1, 0 ≤j(k)<N2, 0 ≤k<P

}
, (2)

where the row code is RS(N1,K1), the column code is
RS(N2,K2), and the symbols of the k-th product codeword are
arranged in the lattice points of the k-th 2D lattice (i(k), j(k)).
We then form S = P/I sub data sets (SDS) by I-way column
interleaving I consecutive product codewords. In other words,
SDS m, 0 ≤ m < S, is an N2 × IN1 array consisting of I
product codewords (i(k), j(k)), mI≤k<(m+1)I , such that the
first column of SDS m is the first column of product codeword
k = mI , the second column of SDS m is the first column of
product codeword k = mI+1, ... , the I-th column of SDS m
is the first column of product codeword k = mI+(I−1), the
(I+1)-th column of SDS m is the second column of product
codeword k = mI , etc. For example, in LTO-7 tapes P = 256,
I = 4, M = 32, N1 = 246, N2 = 96 and S = 64, and there
are a total of SN2 = 64× 96 = 6144 SDS rows in a data set.
SDS rows are also referred to as codeword interleaves CWI-4
if I = 4. We remark that M is usually a power of two and the
parameters S, N2 and P are a multiple of M in tape drives.

An address a, 0≤a<SN2, is assigned to the j-th row of
SDS m which is written as a unit on a tape track including
an additional header containing the address

a = m+ jS, 0 ≤ m < S and 0 ≤ j < N2. (3)

Note that headers are in principle only needed when SDS
rows in a data set are rewritten because the addresses of
the rewritten CWI-4s are not known to the receiver and the
rewriting decision is made on-the-fly after CWI-4s are read
with a read-while-write head immediately after writing. From
(3), we obtain a simple function g(a) that allows to readily
obtain both the SDS number m and the row number j in a
data set from the address a

g(a) = (mod(a, S),floor(a/S)) = (m, j). (4)

The PBs in LTO-7 consist of two adjacent parts on magnetic
tape that are appended next to each other: the first-written PB
(FWPB) containing first-written CWI-4s and the rewritten PB
(RWPB) containing rewritten CWI-4s. The function EB-to-
FWPB, which assigns EBs to first-written CWI-4s on tape,
is predetermined and one-to-one. Therefore, we can define
the inverse function FWPB-to-EB by computing the address
a of a CWI-4 as a function of the location (x, y) where x,
0≤x<(S/M)N2, indicates an integer coordinate along the
tape characterizing a specific set of M CWI-4s that are written
simultaneously using M write elements and y, 0≤y<M ,
indicates an integer coordinate across the tape for the logical
track number. During the write process, M logical tracks are
assigned to a specific set of M physical tracks on tape that
are less than 2.9 µm wide and spaced at least 83.25 µm from
each other in LTO-7, i.e., between two simultaneously written
tracks there are many other tracks that are written during other
passes over the tape.

In the following, the FWPB-to-EB mapping used in LTO-7
is generalized as a function of four parameters S, M , N2 and
track rotation R. The address a of a CWI-4 written at physical
location (x, y) on tape is a function f2D(x, y) which can be
expressed as the sum of three terms

a = f2D(x, y) = t1 + t2 + t3, (5)

where

t1=S floor(x/(S/M)), (6)
t2=(S/M) mod(y −R floor(x/(S/M)),M), (7)
t3=mod(x+ floor(x/N2), S/M), (8)

and R, 0≤R<M , is a fixed parameter specifying the track
rotation between two consecutive rows in an SDS, i.e., if the
j-th row of SDS m is written on logical track q, the (j+1)-th
row of SDS m is written on logical track mod(q+R,M).
The first term t1 increments the address by S after S/M
CWI-4 sets consisting of S CWI-4s have been written on tape
and x has been incremented by S/M . The second term t2
adds a term that rotates the location of the next CWI-4 in an
SDS by R tracks. For S/M = 2, the third term t3 increments
the address by one if x is odd in the first half of FWPB,
0 ≤ x < N2, and x is even in the second half of the FWPB,
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N2 ≤ x < 2N2. In the first half of FWPB, CWI-4s from even-
numbered SDSs (m is even) and from odd-numbered SDSs
(m is odd) are mapped onto even-numbered CWI-4 sets (x is
even) and odd-numbered CWI-4 sets (x is odd), respectively.
In the second half of a FWPB, CWI-4s from even-numbered
SDSs are mapped onto odd-numbered CWI-4 sets and vice
versa. To balance undesired systematic sources of error, the
map a = f2D(x, y) with an odd parameter R swaps CWI-4s
from an SDS periodically between even and odd logical data
tracks because even tracks and odd tracks may have systematic
differences, e.g. due to recording head design, electronics
configuration, or signal line routing. Similarly, CWI-4s from
an SDS are shifted periodically from even- (odd-) numbered
CWI-4 sets in the first half of a FWPB to odd- (even-)
numbered CWI-4 sets in the second half of the FWPB.

Table I illustrates the EB-to-FWPB map by depicting the
CWI-4 addresses a as a function of CWI-4 set number x
and logical track number y, for 0 ≤ x ≤ 2N2−1=191, and
0 ≤ y ≤ 31 in the case of M = 32, S = 64, R = 15 and
N2 = 96. A subset of the table is presented for brevity. Nine
of the 96 CWI-4s that correspond to the rows of the first SDS
with parameter m = 0 are marked in light blue. It can be seen
that the distribution of symbols in a C2 codeword obtained
from different SDSs is spatially uniform over a data set.

III. BURST-ERROR CORRECTION

Having defined the one-to-one EB-to-FWPB map using
its inverse function (m, j) = g(f2D(x, y)), we now turn our
attention to the spatial interleaving properties of product code-
words written on tape. The half-inch magnetic tapes currently
used in LTO and enterprise tape drives are 1.27 cm wide
across the tape, about 1000 m long, and about 5 µm thick.
The EB-to-PB map provides deep interleaving to mitigate
spatial burst errors on the surface of magnetic tape in four
different ways. The first two properties of spatial interleaving
aim at rendering the error symbols at the input of the C1
and C2 component decoders to be independent from each
other. A third property of interleaving is that data can still
be decoded correctly when a fairly long lateral tape stripe is
erroneous (errors occur across the tape direction), for example,
due to instantaneous tape speed variations. The last property
of interleaving ensures that data can be decoded correctly even
if an eighth of all tape tracks that are simultaneously read are
erroneous (errors occur along the tape direction), for example,
due to the reader elements being nonfunctional. Although
LDPC codes are the state-of-the-art in many communication
channels including HDD read channels, coding schemes based
exclusively on LDPC codes have not replaced product codes
in tape storage mostly because Reed-Solomon based product
codes guarantee needed properties of burst-error correction.
Concatenated coding schemes that use both an RS code and
an LDPC code have been considered [22], [23], but the
differences between the experimental data in [22] and the
assumed model in [23] make a direct comparison difficult.
Nevertheless, the RS-LDPC code concatenation is a promising
approach that can achieve similar or even better performance
than demonstrated by product coding schemes that have only
RS codes as component codes.

In current tape storage, burst errors along the tracks are
randomized to a large degree by 4-way (I = 4) byte inter-
leaving of C1 codewords to obtain CWI-4s which are written
on tape tracks. In other words, a 4-byte burst error on a tape
track results in a single erroneous byte per C1 codeword,
and erroneous bytes in error bursts along tape tracks are
thus distributed among four C1 codewords. Therefore, the
symbol errors at the C1 decoder input are to a large extent
independent in the absence of cycle slips due to temporary
loss of synchronization. We remark that an 8-way (I = 8)
interleaving of C1 codewords results in essentially independent
byte errors at the input of C1 row decoders which constitute
the first stage of decoding [2], [3].

The second stage of decoding is C2 column decoding. It
is important to place bytes of C2 codewords in a data set as
far apart as possible from each other on the tape surface. This
is achieved by organizing the recording of SDSs in a dataset
such that N2 CWI-4s of each encoded SDS are written on M
tape tracks in a manner that aims at maximizing the minimum
Euclidean distances between CWI-4s in a data set belonging
to the same SDS henceforth denoted by δC2. In the following,
the center of a CWI-4 with address a, 0 ≤ a < SN2, on the
magnetic tape surface is given by the coordinates x(a) along
the tape and y(a) across the tape. We note that x(a) is on a
grid with a granularity of around 400 µm at a linear density
of 500 kbpi corresponding to the length of a CWI-4 and y(a)
is on an orthogonal grid with a granularity of 83.25 µm in
current 32-channel LTO tape drives. The Euclidean distance
between the centers of two CWI-4s with addresses a and b is
then given by

d(a, b) =

√
(x(a)− x(b))

2
+ (y(a)− y(b))

2
, (9)

where 0≤a<SN2 and 0≤b<SN2. The minimum Euclidean
distance between a CWI-4 with address a and (N2 − 1) other
CWI-4s belonging to the same SDS that have address b can
then be expressed by

dC2(a) = min{d(a, b) | b = mod(a, S) + jS,

0≤j<N2, j 6= floor(a/S)}, (10)

where 0 ≤ a < SN2. The distance dC2(a) is the minimum
distance between C2 symbols on tape within a CWI-4 at
address a and C2 symbols in the same C2 codeword. The
minimum Euclidean distance between any two symbols in any
C2 codeword on magnetic tape is then

δC2 = min {dC2(0), dC2(1), ..., dC2(SN2 − 1)} . (11)

The deep interleaving described in Section II depends on
the rotation parameter R which can be selected to achieve the
desired goal. Figure 1 shows the minimum Euclidean distance
between C2 codeword symbols δC2 in µm as a function of the
linear density in kbpi for M = 32, S = 64 and N2 = 96.
Thereby, for each CWI-4 the distance to the closest CWI-4 in
the same SDS is determined. Therefore, the set of minimum
Euclidean distances contains SN2 distances corresponding to
the total number of CWI-4s in a data set. It can be seen that
the rotation parameters R = 15 and R = 11 are optimum at
low and high linear densities, respectively, whereas R = 13
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TABLE I
MAPPING OF 2D ECC BLOCKS INTO 2D PHYSICAL BLOCKS (2D-TO-2D)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

2 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96

3 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97

4 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 128 130

5 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 129 131

6 230 232 234 236 238 240 242 244 246 248 250 252 254 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228

7 231 233 235 237 239 241 243 245 247 249 251 253 255 193 195 197 199 201 203 205 207 209 211 213 215 217 219 221 223 225 227 229

8 264 266 268 270 272 274 276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310 312 314 316 318 256 258 260 262

CWI 
Set 
No.

Track Number

184 5945 5947 5949 5951 5889 5891 5893 5895 5897 5899 5901 5903 5905 5907 5909 5911 5913 5915 5917 5919 5921 5923 5925 5927 5929 5931 5933 5935 5937 5939 5941 5943

185 5944 5946 5948 5950 5888 5890 5892 5894 5896 5898 5900 5902 5904 5906 5908 5910 5912 5914 5916 5918 5920 5922 5924 5926 5928 5930 5932 5934 5936 5938 5940 5942

186 5979 5981 5983 5985 5987 5989 5991 5993 5995 5997 5999 6001 6003 6005 6007 6009 6011 6013 6015 5953 5955 5957 5959 5961 5963 5965 5967 5969 5971 5973 5975 5977

187 5978 5980 5982 5984 5986 5988 5990 5992 5994 5996 5998 6000 6002 6004 6006 6008 6010 6012 6014 5952 5954 5956 5958 5960 5962 5964 5966 5968 5970 5972 5974 5976

188 6077 6079 6017 6019 6021 6023 6025 6027 6029 6031 6033 6035 6037 6039 6041 6043 6045 6047 6049 6051 6053 6055 6057 6059 6061 6063 6065 6067 6069 6071 6073 6075

189 6076 6078 6016 6018 6020 6022 6024 6026 6028 6030 6032 6034 6036 6038 6040 6042 6044 6046 6048 6050 6052 6054 6056 6058 6060 6062 6064 6066 6068 6070 6072 6074

190 6111 6113 6115 6117 6119 6121 6123 6125 6127 6129 6131 6133 6135 6137 6139 6141 6143 6081 6083 6085 6087 6089 6091 6093 6095 6097 6099 6101 6103 6105 6107 6109

191 6110 6112 6114 6116 6118 6120 6122 6124 6126 6128 6130 6132 6134 6136 6138 6140 6142 6080 6082 6084 6086 6088 6090 6092 6094 6096 6098 6100 6102 6104 6106 6108
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Fig. 1. Minimum distance between symbols in a C2 codeword versus linear
density for 2D-to-2D map in Table I.

is best at linear densities between 540 kbpi and 750 kbpi. This
ensures that the symbols of each C2 codeword in a product
codeword are far apart from each other and are spatially
uniformly distributed in a dataset that consists of SN2 CWI-4s
across M tracks. Currently, the linear density of tape storage
technology is around 500 kbpi indicating that the symbols of
C2 codewords are separated by at least 1.2 mm on the surface
of the magnetic tape for a rotation parameter of R = 15.
In other words, if the magnetic material within a circle of
diameter 1.2 mm on the magnetic tape is damaged, this will
only give rise to one erroneous symbol per C2 codeword.
As the C2 code has the capability to correct six erroneous
symbols, this demonstrates the large burst-error-correction
capability of magnetic tape storage.

The spatially uniform distribution of all bytes in C2 code-
words within a dataset according to the interleaving scheme
described in Section II allows the correction of very long burst
errors along the tape and across the tape. In particular, it allows
the correction of several erroneous tracks, a.k.a. dead tracks,
and erroneous lateral tape stripes. As N2 symbols of each

column codeword are uniformly distributed over M tracks,
each column codeword has exactly N2/M symbols on any
tape track, and therefore M/8 dead tracks can be corrected
provided that (N2/M)(M/8) = N2/8 symbols can be cor-
rected by the C2 Reed-Solomon decoder using erasure decod-
ing. Therefore, the number of RS parity symbols N2 −K2

must be at least as large as the total number of symbols on
the dead tracks that are erased, i.e., N2/8 ≤ N2 −K2. Hence
the C2 code rate must satisfy the condition

K2/N2 ≤ 0.875, (12)

which corresponds to the Reiger bound [24] for the required
burst-error-correction capability. The column codes used in
linear-tape storage technology typically satisfy (12). Similarly,
S = 2M CWI-4s that are written in two CWI-4 sets over M
tracks contain exactly one symbol from all column codewords
in a data set or equivalently exactly one SDS row from all the
SDS in a data set. Therefore, at most 2(N2−K2) CWI-4s per
track (longitudinal direction along the tape) in an erroneous
lateral stripe can be corrected provided that all symbols in
the erroneous lateral stripe have been erased. Since a CWI-4
contains about 1 kB of encoded data and is about 0.4 mm
long at a linear density of 500 kbpi, an erased lateral stripe of
length 9.6 mm can be corrected with the C2 code RS(96,84)
in LTO-7. In summary, the I-way byte interleaving of C1
codewords on tape tracks and the relatively low code rate
of the C2 RS code in conjunction with deep and uniform
interleaving of the symbols in C2 codewords within each
data set are instrumental for achieving the large burst-error-
correction capability of product codes used in tape storage.

IV. 3D PRODUCT CODES

Longer codes have the potential for improved error-rate
performance. Therefore, the motivation behind using 3D prod-
uct codes in magnetic tape storage is to have one or a few
long 3D product codewords in a data set with a suitable
EB-to-PB mapping rather than having 256 interleaved 2D
product codewords in a data set as in state-of-the-art LTO
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TABLE II
MAPPING OF 3D ECC BLOCKS INTO 2D PHYSICAL BLOCKS (3D-TO-2D)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 194 388 582 776 970 1164 1358 1552 1746 1940 2134 2328 2522 2716 2910 3104 3298 3492 3686 3880 4074 4268 4462 4656 4850 5044 5238 5432 5626 5820 6014

1 97 291 485 679 873 1067 1261 1455 1649 1843 2037 2231 2425 2619 2813 3007 3201 3395 3589 3783 3977 4171 4365 4559 4753 4947 5141 5335 5529 5723 5917 6111

2 3750 3944 4138 4332 4526 4720 4914 5108 5302 5496 5690 5884 6078 64 258 452 646 840 1034 1228 1422 1616 1810 2004 2198 2392 2586 2780 2974 3168 3362 3556

3 3847 4041 4235 4429 4623 4817 5011 5205 5399 5593 5787 5981 31 161 355 549 743 937 1131 1325 1519 1713 1907 2101 2295 2489 2683 2877 3071 3265 3459 3653

4 1292 1486 1680 1874 2068 2262 2456 2650 2844 3038 3232 3426 3620 3814 4008 4202 4396 4590 4784 4978 5172 5366 5560 5754 5948 6142 128 322 516 710 904 1098

5 1389 1583 1777 1971 2165 2359 2553 2747 2941 3135 3329 3523 3717 3911 4105 4299 4493 4687 4881 5075 5269 5463 5657 5851 6045 95 225 419 613 807 1001 1195

6 5042 5236 5430 5624 5818 6012 62 192 386 580 774 968 1162 1356 1550 1744 1938 2132 2326 2520 2714 2908 3102 3296 3490 3684 3878 4072 4266 4460 4654 4848

7 5139 5333 5527 5721 5915 6109 159 289 483 677 871 1065 1259 1453 1647 1841 2035 2229 2423 2617 2811 3005 3199 3393 3587 3781 3975 4169 4363 4557 4751 4945

8 2584 2778 2972 3166 3360 3554 3748 3942 4136 4330 4524 4718 4912 5106 5300 5494 5688 5882 6076 126 256 450 644 838 1032 1226 1420 1614 1808 2002 2196 2390

CWI 
Set 
No.

Track Number

184 3721 3915 4109 4303 4497 4691 4885 5079 5273 5467 5661 5855 5985 35 229 423 617 811 1005 1199 1393 1587 1781 1975 2169 2363 2557 2751 2945 3139 3333 3527

185 3624 3818 4012 4206 4400 4594 4788 4982 5176 5370 5564 5758 5888 6082 132 326 520 714 908 1102 1296 1490 1684 1878 2072 2266 2460 2654 2848 3042 3236 3430

186 1263 1457 1651 1845 2039 2233 2427 2621 2815 3009 3203 3397 3591 3785 3979 4173 4367 4561 4755 4949 5143 5337 5531 5725 5919 6049 99 293 487 681 875 1069

187 1166 1360 1554 1748 1942 2136 2330 2524 2718 2912 3106 3300 3494 3688 3882 4076 4270 4464 4658 4852 5046 5240 5434 5628 5822 5952 2 196 390 584 778 972

188 5013 5207 5401 5595 5789 5983 6113 163 357 551 745 939 1133 1327 1521 1715 1909 2103 2297 2491 2685 2879 3073 3267 3461 3655 3849 4043 4237 4431 4625 4819

189 4916 5110 5304 5498 5692 5886 6016 66 260 454 648 842 1036 1230 1424 1618 1812 2006 2200 2394 2588 2782 2976 3170 3364 3558 3752 3946 4140 4334 4528 4722

190 2555 2749 2943 3137 3331 3525 3719 3913 4107 4301 4495 4689 4883 5077 5271 5465 5659 5853 6047 33 227 421 615 809 1003 1197 1391 1585 1779 1973 2167 2361

191 2458 2652 2846 3040 3234 3428 3622 3816 4010 4204 4398 4592 4786 4980 5174 5368 5562 5756 5950 6080 130 324 518 712 906 1100 1294 1488 1682 1876 2070 2264

and enterprise tape drives. The proposed 3D product codes
for magnetic tape storage have three RS component codes:
RS(N1, K1) C1 code over GF(q) with minimum distance d1,
RS(N2, K2) C2 code over GF(q) with minimum distance d2,
and RS(N3, K3) C3 code over GF(q) with minimum distance
d3. Therefore, the 3D product code considered has a length
of N = N1N2N3, a dimension of K = K1K2K3 and a
minimum distance of d = d1d2d3, i.e., it is a [N , K, d]
linear code over GF(q). In general, 2D product codes can be
described as the tensor (Kronecker) product of two component
codes C1 and C2 whereas 3D product codes can be described
as the tensor product of three component codes C1, C2 and
C3. Let G1, G2, and G3 be generator matrices of the three
constituent codes of a 3D product code, then a generator
matrix G for the 3D product code [N , K, d] is

G = G1 ⊗G2 ⊗G3, (13)

where ⊗ denotes the Kronecker product of two matrices which
is associative [14]. However, note that not every generator
matrix of a product code can be expressed as the Kronecker
product of generator matrices of the constituent codes [25]. In
the following, each ECC block or logical data set E consists
of one 3D product codeword of length N1N2N3

E = {(i, j, k) | 0 ≤ i < N1, 0 ≤ j < N2, 0 ≤ k < N3}, (14)

where the symbols of the 3D product codeword are arranged
in the lattice points of the 3D lattice (i, j, k). Every 2D cross
section of the 3D product codeword in an (i, j), (j, k) or (i, k)
plane is a 2D product codeword. There are a total of P = N3

2D product codewords in (i, j) planes, N2 2D product code-
words in (i, k) planes and N1 2D product codewords in (j, k)
planes. As in the case of 2D product coding for tape storage,
we form 2D sub data sets (SDS) by I-way column interleaving
I consecutive 2D product codewords in (i, j) planes where I
is the depth of interleaving of C1 codewords written on tape
tracks. In other words, SDS m, 0 ≤ m < S, is an N2 × IN1

array consisting of I 2D product codewords in (i, j) planes,
mI ≤ k < (m + 1)I where k is the index associated with

the k-th product codeword, 0 ≤ k < P = SI , in an (i, j)
plane. One of the differences between 2D product codes and
3D product codes for tape storage is that in a 2D product
coding scheme each 2D product codeword contains the same
number of information symbols and parity symbols whereas
in a 3D product coding scheme K3 2D product codewords in
(i, j) planes contain the same number of information symbols
and parity symbols and N3 − K3 2D product codewords in
(i, j) planes contain only C3 parity symbols.

As in the case of 2D product codes mapped onto the 2D
magnetic tape surface, an address a, 0 ≤ a < SN2, is assigned
to the j-th row of SDS m, 0 ≤ j < N2, a.k.a. CWI-4, which
is written as a unit on a tape track including an additional
header containing the address defined in (3). The function g(a)
defined in (4) allows to obtain both the SDS number m and the
SDS row number j in a data set from the address a. An inverse
function FWPB-to-EB for 3D product codes is next proposed
which computes the address a of a CWI-4 corresponding to
an SDS row as a function of the location (x, y) where x,
0 ≤ x < (S/M)N2, indicates an integer coordinate along the
tape characterizing a specific set of M CWI-4s that are written
simultaneously using M write elements and y, 0 ≤ y < M ,
indicates an integer coordinate across the tape for the logical
track number. The address a of a CWI-4 written at location
(x, y) on the surface of magnetic tape is a function f3D(x, y)
which is expressed by

a=f3D(x, y)=mod(t1+(N2+1)t2+(N2+1)t3, SN2), (15)

where the terms t1, t2 and t3 have been defined in (6)-(8) and
R, 0 ≤ R < M , is a fixed parameter specifying the track
rotation between two consecutive rows in an SDS, i.e., if the
j-th row of SDS m is written on logical track q, the (j + 1)-th
row of SDS m is written on logical track mod(q +R,M).

Table II illustrates the EB-to-FWPB map by depicting
the CWI-4 addresses a as a function of CWI-4 set num-
ber x and logical track number y, for 0 ≤ x ≤ 8 and
184 ≤ x ≤ 2N2 − 1 = 191, and 0 ≤ y ≤ 31 in the case of
M = 32, S = 64, R = 13 and N2 = 96. For brevity, only
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Fig. 2. Minimum distance between symbols in a C2 codeword versus linear
density for 3D-to-2D map in Table II.

a subset of the table is shown. Eight of the 96 CWI-4s that
correspond to the rows of the SDS with parameter m = 13
are marked in light blue whereas six of the 64 CWI-4s that
correspond to the third rows with parameter j = 2 in all 64
SDSs in a data set are marked red. It can be seen that the
distribution of symbols in a C2 codeword and of C3 symbols
obtained from different SDSs is spatially uniform over a data
set.

The burst-error-correction capability of 2D product codes
described in Section III is an important feature that should be
kept by a coding scheme that has the potential to replace 2D
product codes in tape storage. 3D product codes proposed in
this paper in conjunction with the 3D-to-2D EB-to-FWPB map
for 3D product codes defined in (15) preserve the burst-error-
correction capability of 2D product codes provided that I-way
byte-interleaved RS C1 codewords are written on tape tracks
as an encoded unit and the code rate of the RS C2 code is
0.875 or less. Figure 2 shows the minimum Euclidean distance
δC2 in µm between C2 codeword symbols as a function of
the linear density in kbpi for a 3D product code mapped on
magnetic tape with parameters M = 32, S = 64 and N2 = 96.
At linear densities below 530 kbpi, track rotation R = 13 is
best whereas at higher linear densities R = 11 is optimum.
Similarly, Fig. 3 depicts the minimum Euclidean distance δC3

in µm between C3 symbols in different SDS as a function of
the linear density in kbpi for a 3D product code mapped on
magnetic tape with the same parameters as in Fig. 2.

V. PERFORMANCE LIMITS

Conventional concatenation of ECC and modulation codes,
also referred to as forward concatenation, is used in tape
storage, although HDDs already made the transition to reverse
concatenation of ECC and modulation codes about a decade
ago [26]. In tape, the barrier to the introduction of a novel
concatenation scheme has been much higher than in HDDs
partially because of backward compatibility requirements in
tape storage and the necessary agreement by all the technology
provider companies in LTO. Backward compatibility in tape
storage implies that every generation of tape drives must be
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Fig. 3. Minimum distance between C3 symbols in different SDS versus linear
density for 3D-to-2D map in Table II.

able to write the format of the previous generation and read
the format of the two previous generations. Furthermore, tape
storage is not yet close to the physical limitations of areal-
density scaling that HDDs are currently approaching. State-
of-the-art tape drives operate at an areal density that is about
a hundred times lower than the density of 1 Tbit/in2 used
in state-of-the-art HDDs and therefore tape has less need to
increase capacity by reverse concatenation and can rely instead
on conventional areal density scaling [2], [3]. Therefore, ECC
is the first operation that is performed after data compression
and encryption in tape drives.

The communication channel between the ECC encoder and
the ECC decoder can be modeled as a discrete symmetric
memoryless channel. It has been experimentally demonstrated
that an interleaving depth of I = 8 is sufficient for model-
ing the distribution of byte errors at the C1 Reed-Solomon
decoder input by the binomial distribution [2], [3]. Specif-
ically, CWI-8s, which consist of eight byte-interleaved C1
codewords, have been written on each tape track and read back
to analyze the distribution of byte errors within interleaved
C1 codewords and to show that uncorrelated byte errors at
the C1 decoder input can be assumed. These measurements
in conjunction with deep interleaving of encoded data written
on magnetic tape suggest the use of the discrete memoryless
channel model shown in Fig. 4 to compute the performance
limits of magnetic tape channels. Note that for the interleaving
scheme implemented in the LTO-7 tape format the minimum
physical distance between code words is about 1.2 mm. Tape
defects are typically much smaller than this, hence dropouts
and fades have been neglected in the following analysis.

The discrete symmetric memoryless channel in Fig. 4
is characterized by the state-transition probabilities P (j|k)
where channel input symbols over GF(256) are denoted by
k, 0 ≤ k ≤ 255, and channel output symbols over GF(256)
are denoted by j, 0 ≤ j ≤ 255. The transition probabilities in
Fig. 4 are defined by

P (j|k) =

{
1− ε, if j = k,

ε/255, if j 6= k,
(16)

where ε is the raw byte-error rate. The channel capacity C
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Fig. 4. Discrete memoryless channel.

can readily be computed for discrete symmetric memoryless
channels. The capacity of the channel in Fig. 4 in byte/channel
use is given by

C = 1 + ((1−ε) log2(1−ε) + ε log2(ε/255))/8. (17)

Shannon’s channel coding theorem [27] states that for a
channel capacity C and an ECC encoder operating at a code
rate less than C, it is possible to reproduce the bytes at the
decoder output with a probability of error as small as desired.
Figure 5 depicts the capacity C in byte/channel use as a
function of the raw byte-error rate ε. Note that C = 0 if
1− ε = ε/255, i.e., ε is about 0.996.

In LTO-7 tape drives, the code rate of the 2D product code
is 0.832 corresponding to a maximum possible raw byte-error
rate of 0.106 in Fig. 5 according to Shannon’s channel coding
theorem. Therefore, in order for the output bit-error rate at the
output of the ECC decoder to be less than 10−19 as required
by the INSIC 2015 Tape Technology Roadmap [4], the raw
byte-error rate at the input of the ECC decoder should be less
than 10.6%.

Channel capacity computations do not account for the finite
length of codewords. The random coding bound of information
theory [28], which is a tight upper bound on the ensemble
average probability of error Pe using maximum likelihood
decoding, can be used to compute the raw byte-error rate. For
a 2D or 3D product code of length N and code rate K/N , the
random coding bound for the channel in Fig. 4 with equally
likely channel input symbols is given by

Pe ≤ e−NEr(R,ε), (18)

where R=ln(256)(K/N) and Er(R, ε) is the random coding
exponent given by

Er(R, ε) = max
0≤ρ≤1

[E0(ρ, ε)− ρR], (19)

and

E0(ρ, ε)=8ρ ln(2)−ln
(
255(ε/255)

1
1+ρ +(1−ε)

1
1+ρ

)1+ρ
. (20)

Computation of the random coding bound for the 2D code
in LTO-7 with N = 23616 bytes shows that the raw byte-
error rate corresponding to an output byte-error rate of 10−20

is 8.95%, which is slightly less than the raw byte-error rate
of 10.6% associated with the channel capacity C. Similarly,
the random coding bound for the proposed 3D code with
length N = 6045696 bytes evaluates to a raw byte-error rate
of 10.46%, which is very close to capacity. In the following
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Fig. 5. Capacity in byte/channel use as a function of raw byte-error rate.

section, it is shown that iterative decoding of product codes
can achieve the desired error-rate performance for a raw byte-
error rate of 4% to 5% at the input of the ECC decoder.

VI. PERFORMANCE EVALUATION

Having computed the channel capacity of product codes on
the discrete memoryless channel in Fig. 4, we evaluate the
actual performance of 2D and 3D product codes under iterative
hard-decision decoding to determine how closely product
codes approach capacity. We focus on iterative hard-decision
decoding because it can perform well [29] and iterative soft-
decision decoding can be prohibitively complex. Note that
product codes are known not to achieve capacity [14]. It is
also worth mentioning that the Elias decoding scheme [9] was
non-iterative for the purpose of making the analysis tractable.
Although iterative hard-decision decoding of product codes
was proposed in 1968 [30], it was widely used only after the
discovery of iterative decoding based on the turbo principle in
1993 [31], [32].

Bounded-distance decoding on each component code of
the product code is iteratively performed assuming that the
occurrence of miscorrections is prevented. The notation C1→
C2→ C3 will refer to the order of decoding, corresponding to
performing first C1 decoding, followed by C2 decoding next,
and C3 decoding as the last step. As is the case with 2D codes,
the order of encoding does not matter, i.e., all six possible
encoding orders result in the same 3D product codeword.
However, the order of decoding has an impact on the error-rate
performance after each decoding step if the component codes
have different error-correction capabilities.

Hardware simulations of iterative decoding of product codes
implemented in a field-programmable gate array (FPGA)
have been employed to evaluate the output byte-error rate
performance of the 2D product code used in LTO-7 and a
3D product code that has the same ECC overhead and burst-
error-correction capability as the LTO-7 2D product code. For
each datapoint corresponding to a specific raw byte-error rate,
2× 1014 bytes have been simulated.

Figure 6 depicts the output byte-error rate performance
of the LTO-7 2D product code with constituent codes
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Fig. 6. Output byte-error rate performance of 2D coding scheme.

RS(246,234) C1 code and RS(96,84) C2 code over GF(256)
after r decoding steps as a function of the raw byte-error
rate ε. Thereby, one full iteration over a data set consists of
two decoding steps C1 → C2, i.e., r = 2, whereas two full
iterations over a data set imply four steps of decoding r = 4,
i.e., the decoding order is given by C1 → C2 → C1 → C2.
The legend for each curve in Fig. 6 contains the last decoding
step followed by the total number of decoding steps r. The
curve “undec” corresponds to the raw byte-error rate prior to
decoding. It can be seen that the output byte-error rate 10−12

corresponds after one full iteration to a raw byte-error rate of
about 1.2 × 10−2 and after two full iterations to a raw byte-
error rate of about 4× 10−2, respectively.

Figure 7 depicts the output byte-error rate performance of
a 3D product code with RS(246,240) C1 code, RS(96,84) C2
code and singly extended RS(256,250) C3 code over GF(256)
after r decoding steps as a function of the raw byte-error rate
ε. Thereby, one and two full iterations over a data set consist of
three and six decoding steps, i.e. r = 3 and r = 6, respectively.
It can be seen that the output byte-error rate 10−12 corresponds
after one full iteration to a raw byte-error rate of about 1.7×
10−2 and after two full iterations to a raw byte-error rate of
about 4.7× 10−2, respectively.

After two full iterations the error-rate curve for the 3D
product code in Fig. 7 is much steeper than the error-rate curve
for the 2D product code in Fig. 6. Therefore, extrapolating
the results shown in Fig. 6 and Fig. 7 it can be seen that the
3D product code performs better than the 2D product code
at the desired output byte-error rate range of about 10−20

specified in [4]. Note that three full decoding iterations [33]
of the proposed 3D product code is sufficient to achieve an
output byte-error rate of 10−20 at a raw byte-error rate of up
to 5× 10−2. It is worth mentioning that both the 2D and 3D
product code have the same code rate, the same burst-error-
correction capability, and the same ECC block size of 6 MB.
Furthermore, the error floors associated with the evaluated 2D
and 3D product codes are much lower than 10−20.

With increasing number of iterations, the performance bene-
fits of 3D over 2D codes decreases. In practice, however, only a
small number of iterations can be implemented at a reasonable
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Fig. 7. Output byte-error rate performance of 3D coding scheme.

implementation cost for on-the-fly (online) operation at high
data retrieval rates exceeding 300 MB/s. At medium to low
tape speeds, as well as in offline data-recovery mode, more
iterations can be performed to achieve improved performance.

Backward read/write compatibility, as discussed in Sec-
tion V, is an important requirement in tape storage. From
an implementation point of view, an extension to 3D product
codes requires minimal changes to the hardware architecture
associated with 2D product codes, and maintains support for
backward read/write compatibility.

VII. CONCLUSION

The mapping of ECC blocks into 2D physical blocks on
magnetic tape has been generalized for 2D product codes used
in tape storage. 3D product codes that have the same overhead
and ECC block size as 2D product codes currently used in tape
storage have been proposed. For 3D product codes, a new
family of mappings of ECC blocks into 2D physical blocks
on magnetic tape is introduced, which fulfills the stringent
burst-error-correction requirements of tape storage. The burst-
error-correction capability of 2D and 3D product codes has
been analyzed as a function of track rotation, linear density,
and ECC parameters. The optimum track rotation as a function
of linear density has been determined.

The tape-storage channel with deep interleaving has been
modeled as a discrete symmetric memoryless channel based
on experimental evidence and the limits of the error-rate
performance of the tape-storage channel have been determined
by computing Shannon’s channel capacity and Gallager’s
random coding bound. In particular, the raw byte-error rate
can be at most 1.06 × 10−1 if the code rate of the product
code is K/N = 0.83. This code rate is close to the Reiger
bound K/N ≤ 0.875 for the required burst-error-correction
capability.

The error-rate performance of 2D and 3D product codes
has been evaluated by hardware simulations of iterative hard-
decision decoding implemented in an FPGA. The results indi-
cate that 3D product codes improve the error-rate performance
over 2D product codes. Iterative decoding of the proposed 3D
product code achieves an output byte-error rate of 10−20 at a
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raw byte-error rate of about 5×10−2 corresponding to half of
the raw byte-error rate associated with the channel capacity.
3D product codes are a practical approach for providing
improved data reliability while maintaining the excellent burst-
error-correction capability required in magnetic tape storage.

ACKNOWLEDGMENT

The authors would like to thank Paul Greco, Thomas
Mittelholzer and Keisuke Tanaka for fruitful discussions, and
Evangelos Eleftheriou for his support of this work.

REFERENCES

[1] G. Cherubini et al., “29.5-Gb/in2 recording areal density on barium
ferrite tape,” IEEE Trans. Magn., vol. 47, no. 1, pp. 137–147, Jan. 2011.

[2] S. Furrer et al., “85.9-Gb/in2 recording areal density on barium ferrite
tape,” IEEE Trans. Magn., vol. 51, no. 4, pp. 1–7, Apr. 2015.

[3] M. A. Lantz et al., “123-Gb/in2 recording areal density on barium ferrite
tape,” IEEE Trans. Magn., vol. 51, no. 11, pp. 1–4, Nov. 2015.

[4] INSIC 2015-2025 Int’l Magnetic Tape Storage Roadmap.
[Online]. Available: http://www.insic.org/news/2015%20roadmap/15%
20index.html

[5] R. W. Hamming, “Error detecting and error correcting codes,” Bell Syst.
Tech. J., vol. 29, no. 2, pp. 147–160, Apr. 1950.

[6] N. Mitani, “On the transmission of numbers in a sequential computer,”
National Convention of the Inst. of Elect. Commun. Engineers of Japan,
Nov. 1951.

[7] I. S. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” IRE Trans. Inf. Theory, vol. IT-4, pp. 38–49, Sep. 1954.

[8] D. E. Muller, “Application of boolean algebra to switching circuit design
and to error detection,” IRE Trans. Electr. Comp., vol. EC-3, pp. 6–12,
Sep. 1954.

[9] P. Elias, “Error-free coding,” IRE Trans. Inf. Theory, vol. IT-4, pp. 29–
37, Sep. 1954.

[10] J. Justesen, “Performance of product codes and related structures with
iterated decoding,” IEEE Trans. Commun., vol. 59, no. 2, pp. 407–415,
Feb. 2011.

[11] B. P. Smith et al., “Staircase codes: FEC for 100 Gb/s OTN,” J. Lightw.
Technol., vol. 30, no. 1, pp. 110–117, Jan. 2012.

[12] H. D. Pfister, S. K. Emmadi, and K. Narayanan, “Symmetric product
codes,” in Information Theory and Applications Workshop (ITA), Feb.
2015, pp. 282–290.

[13] T. Mittelholzer, T. Parnell, N. Papandreou, and H. Pozidis, “Symmetry-
based subproduct codes,” in IEEE International Symposium on Informa-
tion Theory (ISIT), Jun. 2015, pp. 251–255.

[14] F. R. Kschischang, “Product codes,” in Encyclopedia of Telecommuni-
cations, J. G. Proakis, Ed. Wiley, 2003, pp. 2007–2012.

[15] K. A. S. Immink, “Reed-Solomon codes and the compact disc,” in Reed-
Solomon Codes and their Applications, S. B. Wicker and V. K. Bhargava,
Eds. IEEE Press, 1994, ch. 4, pp. 41–59.

[16] Standard ECMA-319, “Data interchange on 12.7 mm 384-track magnetic
tape cartridges – Ultrium-1 format,” Jun. 2001.

[17] LTO Ultrium Technology. [Online]. Available: http://www.ultrium.com/
[18] S. Emmadi, K. R. Narayanan, and H. D. Pfister, “Half-product codes for

flash memory,” in Proc. Non-Volatile Memories Workshop, San Diego,
CA, Mar. 2015.

[19] J. Justesen, K. J. Larsen, and L. A. Pedersen, “Error correcting coding
for OTN,” IEEE Commun. Mag., vol. 48, no. 9, pp. 70–75, Sep. 2010.

[20] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[21] R. G. Gallager, Low-density Parity Check Codes. MIT Press, 1963.
[22] R. D. Cideciyan, R. Hutchins, T. Mittelholzer, and S. Ölçer, “Partial
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