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Abstract

Blockchain, introduced as the backbone of the Bitcoin cryptocurrency, is an emerging technology. Ab-
stracting the currency logic away opens Blockchain to endless applications from finance to healthcare
and Internet of Things. Asymmetric cryptography and more specifically digital signatures are a key
component of the blockchain system. In this work, we introduce threshold signatures for the Hyper-
ledger Fabric, an implementation of a permissioned blockchain system. Threshold signatures enhance
the resilience and robustness of the system while preserving the distributed nature of the Blockchain. In
particular: (1) we implement two threshold signature schemes, (2) evaluate their performance, (3) dis-
cuss their advantages and limitations and (4) introduce a Framework to hide the implementation details
and make threshold signatures available to any potential application in Hyperledger Fabric.

1



Acknowledgment

This report documents the results of the M.Sc. thesis project of Chrysoula Stathakopoulou as a student at
D-ITET of ETH Zurich, carried out in collaboration with IBM Research - Zurich. We thank Prof. Roger
Wattenhofer of the Distributed Computing Group (DCG) at the Computer Engineering and Networks
Laboratory (TIK) of ETH Zurich for supporting this work.

We would like to thank Elli Androulaki, Angelo De Caro, Andreas Kind, Alessandro Sorniotti,
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Chapter 1

Introduction

1.1 Motivation

In this work, we introduce threshold signatures for the Hyperledger Fabric (HLF) blockchain system.
As we see in detail in the following chapters, signatures are an indispensable component of blockchain
systems. Our goal is to provide a group of participants with the functionality to generate a single fault
tolerant signature.
Distributing trust is not a new idea. Shamir [20] already in 1979 argues about the necessity of threshold
cryptography for key management. He indicates that storing a key in a single location is not robust, while
keeping multiple copies of the same key introduces security breaches. Also, he points out that no single
entity should be trusted to keep a company’s secret signature key.
Reiter and Birman [18] introduce threshold cryptography to replicate a service in a way that it remains
available, correct and maintains causality of the requests even if several replicas are corrupted. Threshold
cryptography allows the client to maintain only one public key for the service, instead of one public key
for each replica. In this way, the client needs no more storage and computational cost than in the case of
a non-replicated service.
Based on the aforementioned idea of Reiter and Birman, Cachin [2] describes an architecture for dis-
tributing trusted services in an asynchronous environment such as the Internet and suggests real world
applications. In detail, he suggests that certification authorities (CA) and secure directories, which are
used for example for DNS authentication, are both examples of services that can be distributed. Another
example given is a digital notary.
The advantages of threshold signatures for DNS are further addressed by Cachin and Samar [5]. DNS
Security Extensions (DNSSEC) use a technique called zone signing to provide authentication. However,
the private key for signing the zone must be stored somewhere. Having, a single entity and subsequently
a single private key introduces reliability and security issues. To tackle this issue, they use a threshold
RSA signature scheme to securely replicate the authoritative servers.
Another use case of threshold cryptography for digital signatures is the COCA system by Zhou et al. [25].
They suggest a certification authority for online certificate validation in an asynchronous communication
model and they use replication to achieve availability.
As the aforementioned literature suggests, threshold cryptography is a powerful tool that has been widely
explored for service replication. We believe that the time has come to introduce threshold cryptography
in blockchain systems. Goldfeder et al. [12] already discuss the advantages of a threshold signature
scheme for Bitcoin. In this work we implement threshold signature schemes suitable for an asynchronous
distributed blockchain system, such as the HLF.

1.2 Contribution

The primary contribution of this work is an implementation in Go language of a threshold signature
library for HLF. Two different schemes are implemented as options: a threshold RSA scheme [21] and
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a threshold version of the BLS signatures [1]. The schemes are benchmarked and compared in terms of
efficiency.
The library is integrated in the Hyperledger Fabric project1 and, as an application, it is used in the core
of the transaction endorsement procedure.

1.3 Overview

The rest of this paper is organized as follows. In Chapter 2 a background regarding the blockchain sys-
tems and threshold cryptography is given. In the Chapter 3 the problem is introduced and the suggested
solution is outlined. In Chapter 4 the implementation of the cryptographic libraries and their use in the
blockchain fabric is discussed. In Chapter 5 results of benchmarks on the two cryptographic libraries are
presented. In Chapter 6 this work is concluded.

1https://github.com/hyperledger/fabric
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Chapter 2

Background

2.1 Blockchain systems

A blockchain system consists of three key components: (1) a public ledger, (2) a consensus algorithm,
and (3) a smart contract which is the application that runs on top of the blockchain. This architecture
allows participants to engage into transactions without trusting each other and without revealing their
identity.
The public ledger consists of a chain of blocks, as the name Blockchain suggests. The blocks are a
log of the transactions performed by the participating in the blockchain entities. Each block contains a
cryptographic hash of the previously created block, hence constructing a conceptual chain. This chain
provides the ordering of the transactions and guaranties causality. If somebody were to perform the
same transaction twice, a problem known as a double spending attack, they would have to change all
the blocks on the chain back to the block where the transaction appears for the first time. The ledger
however is replicated and each of the participants of the system has its own replica. Therefore, an
effort to manipulate the ledger would be detected. In the same sense, if somebody were to claim that
a transaction has not been performed, or that the order of the transactions were different, they would
have to forge the ledger, resulting in a different view than the one the legitimate participants maintain
and, hence, be detected. In conclusion, the ledger is immutable and one can only append new blocks of
transactions.
From the examples above it becomes evident that the participants need to maintain a synchronized view
of the ledger. This is why the second component, the consensus algorithm, is needed. The consensus
algorithm should guarantee the ordering of the transactions on the replicas of the ledger on each of
the participants. For the blockchain system to be secure under realistic assumptions, the consensus
algorithm should be able to guarantee the ordering of the transactions in an asynchronous and Byzantine
environment. The latter means that an arbitrary number of participants can fail or misbehave. There is a
known upper bound to the number of misbehaving participants. Strictly less than 1

3 of the nodes of the
network can have such a behavior while the consensus is still possible.
Finally, smart contracts provide the business logic of the Blockchain. Szabo first introduced the idea of
smart contracts [23] and Wood redefined it in the context of a blockchain for Ethereum project [24]. They
allow two or more participants to enforce an agreement in the form of application code that is deployed
over the blockchain. A cryptocurrency exchange is a special case of such a contract.

2.1.1 Hyperledger Fabric

Hyperledger Fabric (HLF) is an implementation of a permissioned blockchain system for running smart
contracts. Fabric is developed under the umbrella of the Hyperledger Project1, an open source collabo-
rative effort to create an enterprise, cross-industry blockchain system.

1https://www.hyperledger.org
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The Hyperledger Fabric provides the infrastructure for performing transactions among mistrusting par-
ties, which are logged in the immutable distributed ledger. There are three types of transactions:

• Deployment transactions initialize the smart contract and install it on the blockchain. We will refer
to smart contracts hereinafter using the term chaincode.

• Invocation of the chaincode is the execution of the application code.

• Query transactions on the distributed ledger read the current state related to a certain chaincode.

To maintain the same view of the ledger on every participating node HLF uses an ordering service. It
runs on an independent set of nodes for scalability, called orderers. The orderers run a deterministic
consensus protocol such as PBFT [6] or Paxos[15].
Finally, as mentioned above, Hyperledger Fabric is a permissioned blockchain. To this effect a mem-
bership service provider is implemented as a component of the Fabric. An instance of a membership
service provider is responsible for issuing and validating certificates. Each organization that constitutes
a stakeholder of the blockchain should have its own membership service so as to authorize its members
to submit transactions associated with certain chaincodes.

2.1.2 Other Blockchain Systems

Bitcoin [17] is undoubtedly the most popular blockchain system. However, Bitcoin is fundamentally
different from the blockchain systems we examine in this work. It is a permissionless blockchain system,
which means that anyone can participate. Instead we focus on permissioned blockchain systems as HLF.
Moreover, Bitcoin is a cryptocurrency system, whereas we focus on general purpose blockchain systems,
decoupled from the currency logic.
Ethereum [24], as mentioned in section 2.1 is such a general purpose blockchain system but, as Bitcoin,
is permissionless. However, there are permissioned blockchain systems based on Ethereum such as
Quorum2. Other examples of permissioned blockchain systems available today are Tendermint3 and
Kadena4. The concepts discussed in this work are also applicable to these permissioned blockchain
systems.

2.2 Threshold Cryptography

As mentioned in the previous section, a blockchain system consists of three key components: the pub-
lic ledger, the ordering mechanism and the smart contracts. Yet, there is another indispensable element
that binds everything together and this element is cryptography and, more specifically, digital signatures.
Digital signatures provide the blockchain system with integrity, pseudonymity, non-repudiation and au-
thenticity. Integrity is guaranteed because if a signed message is modified, there is no efficient way to
modify the signature so that it matches the message. Pseudonymity is provided since the participants do
not need to disclose any personal information, instead they use a private cryptographic key to sign their
transactions. Finally, an entity that has signed a transaction digitally cannot later deny doing so, while
no other entity having access to the corresponding public key can fake a valid signature and therefore
impersonate the original signer.
While digital signatures are being widely used in blockchain systems, such as Bitcoin and the current
implementation of Hyperledger Fabric, there is a technology invented more than 20 years ago, which, as
we will explore in detail in the following chapter, fits the needs of a blockchain system but has not been
exploited so far to a great effect. And this technology is threshold cryptography.
Threshold cryptography, was introduced by Desmedt [9]. Let us assume a group of n parties P =
{P1, P2, · · · , Pn} up to t of which may be corrupted, n, t being fixed integers. P replaces the operation

2https://www.jpmorgan.com/country/US/EN/Quorum
3https://tendermint.com/
4http://www.kadena.io
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of a cryptosystem C, while maintaining the robustness and security properties of C. We call such a system
a (t+ 1)-out-of-n threshold cryptosystem. We will focus on asymmetric or public key cryptography and
more specifically threshold digital signature schemes.
Digital signature scheme is a triple (KeyGen, Sign, V er) of efficient algorithms.

• KeyGen is the key generation algorithm. It outputs a key pair (P, S). P is the public key and S
the secret or private key.

• Sign is the signing algorithm. Given a message µ and the secret key S, it outputs a digital signature
σ.

• V er is the verification algorithm. Given a message µ, the corresponding signature σ and the public
key P , it succeeds if σ is a valid signature of the message µ.

A digital signature scheme must have the two following security properties:

• The authenticity of a digital signature σ generated by a secret key S must be able to be verified by
the corresponding public key P .

• It must be computationally infeasible for an adversary to generate a valid signature σ without
knowing the secret key S that generates the signature.

For a threshold signature scheme we have n, t as before. For a signature reconstruction at least k valid
signature shares are required. The number k is not necessarily equal to t + 1. Instead n, k and t must
satisfy the following more general requirement.

t < k ≤ n− t (2.1)

This scheme is defined in [4] as an (n, k, t) dual-threshold signature scheme.
We will study non-interactive threshold signature schemes. This means that upon a signature request of
a message µ, each signing party independently calculates a signature share and the client that requests
the signature of the message µ must construct it by combining the signature shares. These schemes are
comprised of the following algorithms.

• A key generation algorithm ThresKeyGen that generates a key pair (P, S) and a set of n secret
key shares S = {S1, S2, · · · , Sn} . Moreover, it generates a set of verification keys V that is
specific to the particular scheme.

• A signing algorithm ThresSig that, given a message µ and a secret key share Si, outputs a signa-
ture share σi.

• A signature share verification algorithm SigShareV er, that given a message µ, a signature share
σi, the public key P , and the appropriate for the scheme verification key V , succeeds if σi is a
valid signature share of the ith party for the message µ.

• A share combination algorithm SigShareComb that given a set of at least k valid signature shares
{σi1 , σi2 , · · · , σik} outputs the signature σ.

• A signature verification algorithm V er equivalent to the one for the non-threshold scheme.

The security properties that a digital signature scheme must satisfy are extended for the threshold
signature schemes as follows:

• The authenticity of a digital signature σ generated by a set of k secret keys shares S1, · · · , Sk
must be able to be verified by the corresponding public key P of the scheme. The authenticity of
a digital signature share σi generated by a secret key share Si must be able to be verified by the
corresponding verification key Vi. A combination of k valid signature shares {σi1 , · · · , σik} must
produce a valid signature σ.
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• It must be computationally infeasible for an adversary to generate a valid signature without sub-
mitting a signing request to at least k − f uncorrupted signing participants.

Figure 2.1. Threshold signature construction from signature shares.

We must point out that for the schemes we study in this work the verification algorithm is the same for the
threshold and corresponding non-threshold scheme since the signature generated by the SigShareComb
algorithm is the same as the one generated by the Sig algorithm of the non-threshold scheme with input
the secret key S and the same message µ. Also, the resulting signature is the same regardless of the
combination of valid signature shares. These nice properties are required for the use of the threshold
signatures the HLF.
Let us now have a look at a (t+1)-out-of-n secret sharing scheme, which is in the core of the SigShareComb
algorithm. The goal is to share a secret s, element of a finite filed Fq, among n parties P in such a way
that at least t+ 1, or, generally, some k > t parties are needed to reconstruct the secret and any group of
t or fewer parties cannot infer any information about s.
Shamir Secret Sharing [20]: A trusted dealer D /∈ D chooses uniformly at random a polynomial f(X)
over Fq of degree t, such that f(0) = s. The dealer generates secret shares si = f(i), i ∈ {1, .., n}
and secretly sends si to Pi. The secret s can be reconstructed from t + 1 shares with indeces in the set
S ⊂ {1, · · · , n} using polynomial interpolation:

s = f(0) =
∑
i∈S

λS0,isi (2.2)

where
λS0,i =

∏
j∈S,j 6=i

j

j − i
(2.3)

are the Lagrange coefficients. Dishonest parties may contribute incorrect shares at reconstruction time.
The scheme is, however, robust since we can exclude the corrupted shares using the share verification
algorithm.

2.2.1 Threshold RSA Signatures

In this section, we present the RSA based threshold signature scheme proposed by Shoup [21]. The
security proof is based on the random oracle model.

9



The actors are, as before, a group of n parties P = {P1, P2, · · · , Pn} up to t of which may be corrupted
and a trusted dealer D /∈ P.

Key Generation

The dealer chooses P = 2p+ 1, Q = 2q + 1 large prime numbers of equal length such that p, q are also
prime numbers. Such numbers as P,Q are called safe prime numbers. The RSA modulus is calculated
asN = PQ. A prime number for the public key exponent e is chosen, such that e > n. The public key is
then the pair (N, e). The secret key d is computed, such that de = 1 mod m. The dealer then constructs
a secret polynomial f(X) =

∑t
i=0 aiX

i ∈ Z[X] such that f(0) = d by choosing the coefficients ai
uniformly at random from {0, · · · ,m− 1}, m = pq. The secret key shares are

si = f(i)∆−1 mod m, i ∈ {1, · · · , n} (2.4)

where ∆ = n!. The dealer also generates a group of verification keys that accompanies the public key.
The global verification key v is a value chosen at random in Qn, where Qn = Zm × Z2 × Z2 is the
subgroup of squares in Z∗m of order m. The local verification keys are calculated as vi = vsi ∈ Qn.
Finally, a random value u ∈ Z∗n with Jacobi symbol (u | n) = −1 is added to the verification key.

Signature Share Generation

Given a hash functionH , a message µ and the random element u ∈ Z∗n with Jacobi symbol (u | N) = −1
the message is hashed as follows

x = H(µ) =

{
x̂ if (x̂ | N) = 1

x̂ue if (x̂ | N) = −1
(2.5)

where x̂ = H(µ). Each party Pi can generate a signature share as

σi = x2si ∈ Qn (2.6)

The signature share must be accompanied by a proof of correctness for the signature share verification. To
that end the paper adopts a non-interactive version of ChaumFLs and PedersenFLs protocol [8]. Shortly,
in [8] the prover chooses a random r ∈ Zq, where q is here the prime order of the group Gq, generated
by g ∈ Gq and g is part of the public key. Then, the prover sends (a, b) = (gr, xr) to the verifier. The
verifier chooses a random challenge c and sends it to the prover and the prover sends back the z = r+cs,
where s is the secret key.
To collapse this communication step and make the protocol non-interactive, Shoup uses a hash function
H ′ with output of length L1, where L1 is a secondary security parameter. The party Pi (prover) choses
uniformly at random a number r ∈ {0, · · · , 2L(N)+2L1}, where L(N) is the length of the RSA modulus.
Pi calculates v′ = vr and x′ = x̃r, as the equivalent of (a, b) in [8], where x̃ = x4, and gets the challenge
from H ′

c = H ′(u, x̃, vi, x
2
i , v
′, x′) (2.7)

and
z = sic+ r (2.8)

The proof of correctness that accompanies the signature share si is the tuple (c, z).

Signature Share Verification

The party that assembles the signature, in order to validate the signature shares, needs to prove that
logx̃(x2i ) = logv(vi). To do that it verifies that

c = H ′
(
u, x̃, vi, x

2
i ,
vz

vci
,
xz

x2i
c

)
(2.9)

Notice that z is of length L(N) + 2L1 and therefore the exponentiation to the power of z in 2.9 is an
expensive operation, the repercussions of which we will examine in chapter 4.
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Signature Share Combination

To get the signature σ we need to collect at least k valid signature shares, where k needs to satisfy 2.1.
As before, x represents the hash of the signed message and S = {i1, i2, · · · , ik} ⊂ {1, 2, · · · , n} is the
set of the indeces of k collected valid signature shares. We compute

w =
∏
j∈S

σ
2λS0,j
j (2.10)

where

λSi,j = ∆

∏
j′∈S\{j}(i− j′)∏
j′∈S\{j}(j − j′)

(2.11)

and because of ∆ = n! the λSi,j coefficients are always integers. From the Lagrange interpolation we
have that

d = f(0) =
∑
j∈S

λS0,jsj mod m (2.12)

and from eq. 2.6, 2.10, 2.12 it follows that

we =
(∏
j∈S

x2sj2λ
S
0,j
)e

= x4e
∑

j∈S λ
S
0,jsj = x4ed = x4

We now want to compute the signature σ such that σe = x. Since e is a prime and thus gcd(4, e) = 1,
from the Extended Euclidean Algorithm we can compute a, b such that 4a + eb = 1 and therefore
σ = waxb.

Signature Verification

The signature verification is simple and equivalent to the verification of a standard RSA signature. For
H, µ as before the verifier must verify that σe = H(µ).

2.2.2 Threshold BLS Signatures

The second scheme we implement was proposed by Boneh et al. [1]. The main contribution of their work
is a signature scheme with considerably shorter signatures than, for instance, the RSA scheme, while
maintaining the same level of security. The scheme assumes that the computational Diffie-Hellman
problem is hard to solve on certain elliptic curves over a finite field but the decision Diffie-Hellman
problem is easy.
In detail, we define G1, G2 as multiplicative cyclic groups of prime order p and g1, g2 fixed generators
for G1, G2 respectively. Moreover, there exists an efficient isomorphism ψ : G2 → G1 with ψ(g2) = g1.
Finally, e is a bilinear map e : G1 × G2 → GT , such that |G1| = |G2| = |GT |. The map e is bilinear,
i.e. for all v ∈ G1, u ∈ G2 and a, b ∈ Z e(va, ub) = e(v, u)ab, and non degenerate, i.e. e(g1, g2) 6= 1.
Before we can describe the signature scheme, we should discuss Gap co-Diffie-Hellman groups. For
co-CDH (computational Diffie-Hellman) problem, given g2, ga2 ∈ G2 and h ∈ G1 as input, one must
compute ha ∈ G1. For the co-DDH (decision Diffie-Hellman) problem, given g2, ga2 ∈ G2 and h, hb ∈
G1 as input, one must output “yes” if a = b, “no” otherwise. When the answer is “yes” (g2, g

a
2 , h, h

b)
is called a co-Diffie-Hellman tuple. A gap co-Diffie-Hellman group pair is a pair of groups (G1, G2) on
which the co-DDH is easy but the co-CDH is hard.
Now we can present the BLS signature, based on elliptic curves.
Let E/Fq be an elliptic curve over the finite field Fq and P a point of prime order p, where p does not
divide q(q − 1) and p2 does not divide |E(Fq)|. Let also a > 1 be a security multiplier and we assume
that a < p. Then there exists a point Q linearly independent of P . With such points P ,Q as generators
we set G1 =< P >, G2 =< Q >. Then the Weil Pairing on the curve E gives a computable, non-
degenerate bilinear map e : G1 × G2 → F∗qa , which enables us to solve the co-DDH problem on the
group pair (G1, G2). The Weil Pairing is described in [16].
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Key Generation

We pick a random s ∈ Zp and compute V ← sQ. The public key is V ∈ E(Fqa) and the private key is
s.

Signature Generation

Given a private key s ∈ Zp and a message µ, we compute R ← H̃(m) ∈ G1 and σ ← sR ∈ E(Fq). H̃
is a hash function, as described in [1], that maps a message µ ∈ {0, 1}∗ to an element of the group G1.
In fact, we can output as a signature only the x-coordinate of σ which results in a signature of half the
length. But in this case for the verification we must accept also the symmetric, with respect to x-axis,
point.

Signature Verification

Given the public key V ∈ G2, a message µ ∈ {0, 1}∗ and a signature σ ∈ E(Fq) we must verify if
(Q,V,R, σ) is a co-Diffie-Hellman tuple, i.e. if e(σ,Q) = e(R, V ).
As suggested in [1], from the signature scheme described above, we can build a non-interactive threshold
signature scheme based on Shamir secret sharing and polynomial interpolation, as with threshold RSA.
The actors are a group of n parties P = {P1, P2, · · · , Pn} up to t of which may be corrupted and a
trusted dealer D /∈ P

Key Generation

The trusted dealer generates a public - secret key pair (s, V ), V = sQ, where s is a random element in
Zp and V ∈ G2, same as for the non-threshold scheme. Also, the dealer constructs a random polynomial
α ∈ Zp of degree t, such that α(0) = s. The secret key share is

si = α(i), i = 1, · · · , n (2.13)

Also the dealer calculates n public key share values

Vi = siQ, i = 1, · · · , n (2.14)

that serve as verification keys.

Signature Share Generation

Given a message µ ∈ {0, 1}∗ and the secret key share si ∈ Zp, the message is mapped to G1, as before,
with a hash function R← H̃(µ) and the signature share is calculated as

σi = siR ∈ G1 (2.15)

Signature Share Verification

The signature share verification is equivalent to the signature verification. Given a message µ ∈ {0, 1}∗,
a signature share σi ∈ G1 and the verification key Vi ∈ G2 the prover must verify that (Q,Vi, H(m), σi)
is a co-Diffie-Hellman tuple. Q is the generator of the group G2, which is a public parameter of the
system, and H̃ is the hash function that maps the message µ to an element R in G1. If the verification is
successful, σi is a valid signature share of the party Pi.
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Signature Share Combination

To get the signature σ, as in the threshold RSA scheme, we need to collect at least k valid signature
shares, where k needs to satisfy eq. 2.1. Let S = {i1, i2, · · · , ik} be the set of indeces of the collected
signature shares. Then the signature is reconstructed by the equation

σ =
∏
i∈S

σλii (2.16)

where

λi =

∏
j∈S\{i} 0− j∏
j∈S\{i} i− j

(2.17)

are the Lagrange coefficients.

Signature Verification

Given a message µ ∈ {0, 1}∗, the signature σ ∈ G1 and the public key V ∈ G2 the prover must verify
that (Q,V, H̃(µ), σ) is a co-Diffie-Hellman tuple. Q is the generator of the group G2, which is a public
parameter of the system, and H̃ is the hash function that maps the message µ to an element R in G1.

2.3 Related Work

Even though there is vivid academic research in blockchain technology and Bitcoin, introduced already
in 2008 [17], and despite that threshold cryptography had been introduced even earlier, the applications
of threshold cryptography in blockchain systems have only very recently started being explored.
Goldfeder et al. [12] introduce threshold signatures for Bitcoin. First, they suggest a threshold ECDSA
scheme. They argue that if a company wants to perform a Bitcoin transaction, multiple employees must
contribute to the signature instead of one. Whereas Bitcoin already supports multisignatures, they present
the advantages in terms of flexibility, confidentiality, anonymity, and scalability that threshold signatures
have. To allow more flexible access control policies they extend the key generation so that fresh keys can
be derived from previous keys without revealing knowledge about the private key. They also discuss how
to maintain accountability in the case of a shared wallet. Moreover, they suggest the use of threshold
signatures for secure delegation. Finally, they suggest the use of threshold signatures for a two-step
authentication so that the users do not need to store their private key in a single device.
Another notable contribution is the threshold signature scheme suggested by Gennaro et al. [10] for the
enhancement of Bitcoin security. The authors point out that it is insecure to store the cryptographic
key for authorizing transactions in a single location. Instead they suggest storing secret key shares in
multiple of the userFLs devices and they propose a two-factor authentication scheme based on threshold
signatures. The suggested signature scheme is a threshold version of the ECDSA signature scheme
based on [12]. The scheme is presented as optimal, in the sense that it requires a minimum number
of parties n ≥ t + 1 to protect from an adversary that compromises up to t parties. However, the
corrupted parties just try to learn information about the encryption scheme while complying with the
protocol. If the participants are allowed to diverge from the protocol and generate invalid signature
shares, the scheme requires n ≥ 2t+1, same as the signature schemes described in the previous sections.
Moreover, the scheme suggested in [10] is interactive and is executed in rounds and therefore introduces
a communication overhead.
Another effort to leverage distributed signatures to enhance the security and performance of Bitcoin is
the work of Kogias et al. [14]. They introduce ByzCoin, a cryptocurrency that replaces the proof-of-
work used to reach a consensus in Bitcoin with a dynamic version of the PBFT protocol to achieve
strong consistency. They use collective signing (CoSi) [22] to improve the scalability of PBFT. The
actors in the collective signing scheme is an authority, which produces the signatures, and a group of
witnesses that participate in the signing. The scheme is built on Schnorr signatures [19]. However, the
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CoSi protocol is performed in rounds and therefore introduces communication cost. Also, CoSi does not
specify a threshold of required co-signatures f above which the scheme is guaranteed to work correctly.
More importantly, the authority that also acts as a leader for the protocol remains a single point of failure.
The contributions presented above examine how to leverage distributed cryptography for Bitcoin. Re-
garding Bitcoin, the threshold ECDSA scheme by Gennaro et al. [10] has the advantage of compatibility,
since the transaction can be indistinguishable from the non-threshold scheme. Instead this work focuses
on a permissioned blockchain, Hyperledger Fabric. Fabric has a modular design and allows the user to
choose the cryptographic scheme. Therefore, we don’t need to stick to ECDSA. In the next chapter, we
examine in depth the applications of threshold signatures for Hyperledger Fabric and justify the schemes
we decided to implement.
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Chapter 3

Threshold Signatures for the Blockchain

“All for one and one for all”
— Alexandre Dumas, The Three Musketeers

3.1 Problem Description

A single signing identity introduces a single point of failure. More importantly, the very nature of a
blockchain system is decentralized and the key idea is the distribution of trust among the participants. A
single signing identity cancels the notion of distributed trust.

A straightforward solution is to deploy multiple signing identities instead of just one and replace the
digital signature with a group of signatures. The trust is now distributed since no signing identity can
sign alone. However, this approach has several shortcomings. A validator must store the public keys
of all the signing identities and verify each of the required signatures. Also, a transaction that is signed
by a group of private keys has a length that grows linearly with the number of signatures. Therefore,
the transmission time is linearly increased. Moreover, assuming n is the number of required signatures,
instead of having one point of failure we now introduce n points of failure, since a missing or an invalid
signature is enough to make the whole group invalid.
What we want is a distributed yet fault tolerant signature scheme. A single signature should be generated
by a group of signing identities, a subset of whom we can tolerate to fail or be corrupted.

3.2 Solution

A threshold signature scheme is the solution to the aforementioned problem. As described in the previous
chapter, for a k-out-of-n threshold signature scheme k participants are required to reconstruct a valid
signature while the rest n− k participants can fail to deliver any or can deliver invalid signature shares.
Therefore, no single point of failure exists anymore and an attacker cannot submit a valid signature unless
they compromise at least k nodes. The validator now needs to know only one public key and needs to
verify only one signature. Moreover, the identity of the k signers who collaborated to reconstruct the
signature cannot be inferred, unlike the case with the multiple signatures where each signature is linked
with the corresponding public key of the signing identity.
We should point out that secret sharing, although it enhances the availability, is not a secure solution,
despite what is claimed in the recent work of Zhou et al. [26]. In the secret sharing scenario, the signing
identities would collaborate to reconstruct the private key from their private key shares and then use the
private key to sign. But this means that at some point at least one of the participants would know the
private key and they would be able to use it in the future to sign without the contribution of the rest of
the participants.
We choose to implement two threshold signature schemes because each has distinct advantages.
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The first scheme is a threshold version of the RSA signature scheme, as it is introduced by Shoup [21]
and described in Section 2.2.1. This scheme has the following advantages:

• Non-interactive: No interaction among the signing parties is needed to generate the signature. Each
signer generates a signature share independently and sends it to the node that needs to assemble all
the signature shares to reconstruct the signature. This property requires a simple communication
protocol; a unicast or broadcast functionality is enough to exchange the signature shares. More-
over, it makes the reconstruction more efficient, since the signing parties can generate and send
their signature shares in parallel.

• Deterministic: The reconstructed signature is the same, regardless the of combination of signature
shares that produced it.

• Equivalent to non-threshold RSA signature: The reconstructed signature is the same as the sig-
nature that would have been produced by the private key corresponding to the public key of the
threshold signature scheme.

However, threshold RSA has some shortcomings:

• Long keys: Today the suggested length of an RSA key is 2048 bits1.

• Trusted key dealer: A trusted third party is required to generate the key shares and distribute them
to the signing parties.

The second scheme is a threshold version of the short signatures suggested by Boneh et al. [1], an elliptic
curve pairing-based signature scheme, as described in Section 2.2.2. This scheme, same as the threshold
RSA scheme is non-interactive and deterministic and the reconstructed signature is equivalent to the
non-threshold BLS signature. Additionally, it comes with the following advantages:

• Short keys: As indicated in [1] 342 bits are enough to provide a security level equivalent to DSA
using a 2048 bits prime, which is comparable to RSA with 2048-bit keys.

• Suitable for proactive security: In proactive sharing schemes, the secret shares can be refreshed in
a way such that the secret key remains the same while at the same time an exposure of a share to an
attacker does not compromise the system after the share has been refreshed. Proactive security not
only enhances the security of the system but allows great flexibility in the access control policies.
Cachin et al. [3] suggest a protocol for proactive cryptosystems for a discrete logarithm based
scheme in asynchronous networks.

However:

• BLS signatures are not standardized and not widely used.

• Trusted key dealer: as with threshold RSA a trusted third party is needed for key share distribu-
tion. However, because BLS signatures are a discrete logarithm scheme, an algorithm could be
implemented in the future, based on [11], so that the key share generation is also done in a dis-
tributed way. Kate and Goldberg [13] propose a realistic distributed key generation scheme for an
asynchronous communication model.

3.3 Threshold Signatures for Hyperledger Fabric

Numerous potential applications of a threshold signature scheme exist within the Hyperledger Fabric.
First, as described in Section 2.1.1 Hyperledger Fabric is a permissioned blockchain and comes with a
membership service provider implementation. Each peer is associated with an identity, i.e. a certificate.

1https://www.keylength.com/en/5/
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Currently, the certificate is signed by exactly one root Certificate Authority (CA). The root CA can be
a commercial CA. However, the dependency on a single CA as a trusted third party contradicts the
distributed nature that a blockchain system should have. Instead, a peer should be associated with a
certificate signed by a group of CAs with a threshold signature, distributing, in this way, the trust.
Threshold signatures can be also used for Byzantine Consensus protocols. Let us assume a distributed
system of n parties, t out of which can be faulty. The parties want to reach an agreement regarding a
value. In such an algorithm, as explained in [7], there is a step where every party must gather n − t
messages with valid signatures. A widely-known example for an asynchronous system is the Practical
Byzantine Fault Tolerance algorithm by Castro and Liskov [6]. This algorithm is implemented as an
option for the ordering service of the Hyperledger Fabric. Similarly to the general case, before a peer
commits a message, it must gather at least t+1 properly signed messages. In the current implementation,
each peer signs their messages with their private key and, therefore, they must validate t+ 1 signatures.
A threshold signature scheme can be used instead. Each peer signs using their private key share and now
they need to reconstruct and validate a single signature. An example of an algorithm that uses a threshold
signature scheme to reach a Byzantine Agreement in an asynchronous environment is the work of Cachin
et al. [4]. As a result, the validation procedure is accelerated by a factor of n.
Hyperledger Fabric should also provide threshold signatures as a service for chaincode applications.
Multi-party computation, voting, distributed random number generation are examples of applications
that can use threshold signatures in their core.
Last but not least, we introduce the use of threshold signatures for transaction validation in Hyperledger
Fabric. Shortly, in Hyperledger Fabric version 1, before submitting their transactions for ordering, clients
need to ask a set of special nodes, called endorsers to endorse their transaction, i.e. verify that it produces
the expected result. The endorsers then sign the transaction and send it back. Only when an appropriate
set of signatures is collected the transaction can be ordered. Currently, each endorser signs the endorse-
ment with their private key. Instead, the endorsers can participate in a threshold signature scheme and
produce a single signature for the endorsed transaction. This use case is discussed in detail in Section
4.3
Summarizing, there are various applications of threshold signatures for a permissioned blockchain sys-
tem such as Hyperledger Fabric. To this end, the goal of this thesis is to provide a modular software
framework that integrates the threshold signature functionality in the Hyperledger Fabric project. As a
use case example the framework is used to replace traditional signatures with threshold signatures for
the transaction endorsement.
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Chapter 4

Implementing Threshold Signatures for
Hyperledger Fabric

“Trust but verify.”
— Ronald Reagan, Russian proverb

4.1 Threshold Signatures Framework Architecture

As discussed in the previous chapter, the multiple applications of threshold signatures in Hyperledger
Fabric call for a modular and pluggable solution. The framework implemented as part of this work
enables threshold signatures to be used anywhere in HLF. Let us now have a closer look at the imple-
mentation details.
In the core of the implementation we have two threshold signature libraries with the same interface:
threshold RSA and threshold BLS. The libraries implement the algorithms described in Sections 2.2.1
and 2.2.2 respectively. Here we have a high level description of the main methods.

• GenerateKeys: Takes as arguments the number of signing participants, the number of signature
shares required to reconstruct the signature, and the number of corrupted signature shares the
system can tolerate. For the threshold RSA scheme it also takes as argument the RSA modulus
size which is also the size of the signature. For the threshold BLS scheme this size is fixed. It
generates the private and public keys of the scheme. In the public key structure the verification
keys are also included, as well as the public information of the cryptosystem.

• GenerateSignatureShare: Takes as arguments a message and a secret key share and returns
a serialized signature share. For the threshold RSA scheme the signature share, modeled with the
SignatureShare structure, also includes the proof of correctness.

• AssembleSignature: Takes as arguments the message, an array of interpolation points, the
total number of the signing participants of the system and the number of required signing partic-
ipants. The interpolation point, modeled with the InterpolationPoint structure, includes
the signature share and the ID of the signing participant. The method performs the polynomial
interpolation and returns a signature.

• VerifySignatureShare: Given a message, the public key, which includes the verification
keys, a signature share, and the ID of the signer, the method returns true if the signature share is
valid.

• VerifySignature: Given a message, the public key, and a signature, the method returns true
if the signature is valid.
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For the threshold RSA scheme signature verification the standard Go RSA library1 is imported. For the
threshold BLS signature scheme, the non-threshold version is also implemented since there is no standard
Go library. Regarding big integer arithmetic, for the threshold RSA library the standard Go library2 is
used. In threshold BLS library, big integer arithmetic and elliptic curve functionality suitable for pairing
cryptography is imported from amcl3 library.
For each scheme, we have an implementation of a ThresholdSigner interface that models the com-
munication party. A ThresholdSigner could be instantiated by an endorser, a consenter, a submit-
ter, or any other future sort of peer. This structure is initialized from a yaml configuration file. The
ThresholdSigner instance is either responsible for generating signature shares, hence we will call
it signer, or responsible for combining signature shares in a signature and/or verifying signatures, hence
we will call it verifier. A signer configuration file must include the secret key share.
We want the threshold signature schemes to be imported as plugins and thus allow future integration of a
different signature scheme. Also, the application that uses the threshold signature functionality should be
agnostic of the scheme-specific methods that run under the hood. The ThresholdSigner interface
serves exactly this purpose. A controller provides a constructor NewThresholdSigner that
takes as parameters the name of the scheme the application wants to use and a configuration and returns
the implementation of the interface that uses the corresponding cryptographic library. A UML class
diagram of the framework architecture is presented in Figure 4.1. The ThresholdSigner interface
exposes the following methods:

• Sign: Given a message, it returns a signature share signed with the secret key share.

• Verify: Given a message and a signature, it succeeds if the signature is valid.

The interface also provides four methods for signature reconstruction.

• AssembleSignatureOptimistic,
AssembleSignaturePessimistic:
Given an array of signature shares grouped with the IDs of the signers that generated them, they
return a valid signature. Each method follows a different algorithm. We explore the reconstruction
algorithms in detail in the Section 4.2.

• AssembleSignatureOptimisticAsync,
AssembleSignaturePessimisticAsync:
These methods are the asynchronous version of the methods described above. They are called
upon the arrival of each signature share and they also take as argument a communication channel.
When a valid reconstructed signature is available they write it in the communication channel.

To reconstruct the signature the ThresholdSigner must gather signature shares. To that end a ded-
icated data structure is implemented. We face two challenges. First, the ThresholdSigner must be
able to store signature shares for different message. We use a hash map data structure where the key is
the hash (SHA 256) of the message and the value is an array of signature shares for that message. Sec-
ond, the signature shares may arrive asynchronously. However, the reads and writes in the data structure
must be performed in a thread safe way. To achieve this, we use a mutex and lock before reading from
or writing to the data structure. The data structure is named SafeMap.
The data structure also provides an efficient way to get combinations of the signature shares. As we see
in the next section, a way to reconstruct a signature is to try all the possible combinations of k signature
shares until we find a valid combination. Each time a new signature share arrives the combinations in-
crease exponentially and nodes can quickly run out of memory. To avoid that and allow better scalability
we save the combinations that we have already tried in the previous round. We save just the indeces of the
signers that produced the signature share instead of the combinations of the signature shares themselves

1https://golang.org/pkg/crypto/rsa/
2https://golang.org/pkg/math/big/
3https://github.com/manudrijvers/amcl/
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because this also requires a lot of memory. We save them as a string in a hash map so that checking for
their existence is efficient.
Finally, the framework includes a key generation command line tool that generates the private and public
keys for the threshold RSA and BLS signature scheme and outputs them in yaml configuration files,
that can be used for the ThresholdSigner initialization.
The implementation is in Go 1.74, as the core of Hyperledger Fabric project. The software includes
unit tests, benchmarks, and example configuration files.

Figure 4.1. Class diagram of the Threshold Signatures framework.

4.2 Signature Share Combination Algorithms

To provide robustness a threshold signature scheme must tolerate corrupted signature shares. Therefore,
part of the threshold signature schemes is a signature share verification algorithm.
Let us assume a simple scenario with a client C that wants a threshold signature on a message m and
n signing servers S1, S2, · · · , Sn that form a (n, k, t) dual-threshold cryptosystem with n, k, t satisfy-
ing 2.1. Also, the client is equipped with an algorithmA that combines signature shares into a signature.
C broadcasts a signature request to the servers and waits for them to reply with their signature shares.
At this point we have multiple design alternatives. The simplest and more straight forward case is the
following. We assume that we have a reliable and synchronized network that will deliver all the signature
shares to the client, however up to t servers are allowed to be corrupted and deliver an invalid signature
share.
The client waits for n responses and calls the algorithm A that takes as an argument an array of the
signature shares and a ThresholdSigner instance initialized with the public and verification keys

4https://golang.org/doc/go1.7
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and the parameters of the cryptosystem. The algorithm validates the signature shares and if it finds k of
them to be correct it reconstructs the signature. We call this algorithm SynchronousPessimistic
because it assumes in a pessimistic way that some of the signature shares will be corrupted 1.

Algorithm 1 Synchronous Pessimistic Signature Share Combination

1: function ASSEMBLESIGNATUREPESSIMISTIC(signatureShares)
2: validShares← [ ]
3: for s ∈ signatureShares do
4: if VerifySignatureShare(s) then
5: validShares.add(s)

6: if lenght(validShares) > k then
7: return AssembleSignature(validShares)

8: return Error

However, validating all the signature shares is computationally expensive. As Cachin and Samar [5]
suggest, the algorithm can be optimistic and assume that the first k signature shares are valid and use
them to reconstruct the signature. If the signature shares are valid the reconstructed signature will be
valid as well. If the signature is not valid the algorithm will try a different combination. We call this
algorithm SynchronousOptimistic 2.

Algorithm 2 Synchronous Optimistic Signature Share Combination

1: function ASSEMBLESIGNATUREOPTIMISTIC(signatureShares)
2: oldCombinations← [ ]
3: for i ∈ 0, · · · , n− k do
4: combinations← k-combinations(signatureShares[1..k + i])
5: for c ∈ combinations do
6: if c /∈ oldCombinations then
7: s← AssembleSignature(c)
8: if VerifySignature(s) then
9: return s

10: oldCombinations.add(c)

11: return Error

In the average case, we expect this algorithm to be much faster that the pessimistic approach, especially
if the signature scheme is the threshold RSA, where as we pointed out in Section 2.2.1, the signature
share verification is very expensive. However, this algorithm scales badly if many shares are corrupted
because the number of possible combinations increases exponentially.
Nevertheless, if the network does not guarantee the delivery of the signature shares, or, if some of the
servers crash, the client will get stuck waiting for the signature shares. Instead, we can allow the servers
to fail in an arbitrary way if the algorithm A is asynchronous. Instead of giving all the signature shares
in an array as an argument, we call the algorithm every time a signature share arrives. A Golang
communication channel is also given as an argument to the algorithm and the algorithm will write the
signature to the channel when enough valid signature shares are available, for the pessimistic version 3,
or when a valid signature share combination is found, for the optimistic version 4.
Finally, as an optimization for the pessimistic case, we can parallelize the signature share validation by
spawning a thread for each signature share verification.
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Algorithm 3 Asynchronous Pessimistic Signature Share Combination

1: function ASSEMBLESIGNATUREPESSIMISTICASYNC(sigShare, channel)
2: validShares← [ ]
3: invalidShares← 0
4: if VerifySignatureSahre(sigShare) then
5: validShares.add(sigShare)
6: if lenght(validShares) = k then
7: channel← AssembleSignature(validShares)

8: else
9: invalidShares← invalidShares+ 1

10: if invalidShares = t then
11: channel← Error

Algorithm 4 Asynchronous Optimistic Signature Share Combination

1: function ASSEMBLESIGNATUREOPTIMISTICASYNC(sigShare, channel)
2: signatutreShares← [ ]
3: oldCombinations← [ ]
4: signatureShares.add(sigShares)
5: if lenght(signatureShares) ≥ k then
6: combinations← k-combinations(signatureShares)
7: for c ∈ combinations do
8: if c /∈ oldCombinations then
9: s← AssembleSignature(c)

10: if ValidSignature(signature) then
11: channel← s

12: oldCombinations.add(c)

13: if lenght(signatureShares) = n then
14: channel← Error

4.3 Threshold Signatures for Transaction Endorsements

First, let us explore in detail the transaction flow as it is currently implemented.
The blockchain network is comprised of nodes of a specific role. In the current version (v1.05) of HLF
we distinguish two different types of nodes.

• The nodes that provide the consensus service are called consenters. They run a consensus protocol
to guarantee the ordering of the transactions.

• A peer is a node that maintains the ledger. A peer can also have one of the following special roles:

– The submitting peers provide a client interface for submitting transactions.

– The endorsing peers have the role of simulating a transaction to ensure that the outcome is
deterministic and stable before it is submitted ordering service. Each chaincode is associated
with an endorsement policy, defining a set of endorsers required to validate a transaction.
This action is called endorsement.

In Figure 4.2 we can see an example of a blockchain network for the current version of HLF. Endorsers
may belong to a certain organization.

5https://github.com/hyperledger/fabric/blob/master/proposals/r1/
Next-Consensus-Architecture-Proposal.md

22



Figure 4.2. Blockchain network and transaction flow example for HLF v1.0.

When a client submits a transaction to a submitting peer, the submitting peer, after verifying the clientFLs
signature, wraps the transaction in a proposal message, Figure 4.3, and sends it to a set of endorsing
peers, or endorsers.

Figure 4.3. Proposal message.

The endorsers are selected according to an endorsement policy associated with the transaction chaincode.
Such a policy is a logical expression that dictates which peers are suitable for endorsing transactions
of the specific chaincode and how many of them must endorse the transaction. The endorsers, upon
receiving the proposal, verify the signature of the client and simulate the transaction. Then, they send
a proposal response message, Figure 4.4, to the submitting peer, signed with their private key,
containing the result of the simulation, i.e. if the transaction is valid.
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Figure 4.4. Proposal Response message.

The submitting peer waits until it receives enough valid endorsements and then wraps them in a chaincode
action payload message. It adds this message in a transaction envelope message, Fig-
ure 4.5, signs it and submits it to the ordering service. Afterwards, every peer, upon receiving the
transaction from the ordering service, they validate each one of the endorsements and, provided that the
signatures of the endorsers are valid and that the endorsement policy for the chaincode is satisfied, they
write the transaction in their ledger.

Figure 4.5. Transaction Envelope message.

The transaction endorsement and validation is summarized in Figure 4.6.

Figure 4.6. Transaction flow in HLF v1.0.

In the transaction flow described above, the validator needs to validate the signatures of all the endorsers.
Moreover, the transaction message needs to contain all the endorsement messages. This approach is
inefficient. To that end, as mentioned in Section 3.3, we modify the transaction endorsement procedure
so that the endorsers participate in a threshold signature scheme. In this way, the submitting peer after
collecting the required number of endorsements, signed by the endorsers with their secret key share,
reconstructs the signature and adds only one endorsement message to the transaction that contains
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the reconstructed signature, as we can see in Figure 4.7. Also, the validator needs now to verify only one
signature, thus accelerating the transaction validation.

Figure 4.7. The transaction envelope with a single endorsement message containing the reconstracted signature.

To integrate the threshold signatures in the endorsement procedure a new membership service provider
(MSP) needed to be implemented. The MSP provides a signing identity object to the peer. The new
membership service implements the ThesholdSigner interface. Therefore, when the endorser calls
the sign method of the signing identity instead of creating a signature with a private key, it creates a
signature share with a private key share.
Minimal changes needed to be done in HLF core. First, some modifications needed to be done in the
submitting peer. The submitting peer is responsible for collecting the endorsements. Therefore, in
the case of a threshold signature scheme, the submitting peer uses one of the algorithms described in
Section 4.2 to combine the signature shares of the collected endorsements to a signature. Also, for the
Lagrange interpolation in the signature reconstruction, the signature share must be associated with the ID
of the signer. To achieve this an extra field was added to the endorsement message, as we can see in
Figure 4.8. The endorser certificate, already existing in the message, could not be used for identification
because it is the same for all the endorsers, since there is only one public key for the threshold signature
scheme.

Figure 4.8. The modified endorsement message with the new ID field.

Finally, for the validator, the signature validation is the same as if the signature was from a non-threshold
scheme. The modified transaction endorsement and validation flow is summarized in Figure 4.9.
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Figure 4.9. Transaction flow with threshold signatures.
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Chapter 5

Evaluation

In this chapter, we evaluate the performance of the threshold signature schemes we implemented. We
perform benchmarks to examine how they scale while increasing the number of participating nodes. We
compare threshold RSA to threshold BLS and we also compare them to multisignature schemes.
First, we examine the performance of the signature reconstruction operation. We are comparing the
performance of the two different approaches we introduced in Chapter 4, the pessimistic and the opti-
mistic approach. We assume a network of n signing participants f out of which might be faulty. For
our benchmarks, we set n = 3f + 1 and we request k = f + 1 valid signature shares for the signature
reconstruction. We evaluate two scenarios. In the first scenario all the signature shares we receive are
valid. In the second, we have a maximum number of f corrupted signature shares that are distributed
within the n signature shares in a uniformly random way. For the benchmarks, we use the synchronous
methods because we want to measure the time required per signature reconstruction operation and we do
not want to introduce further delay assuming asynchronous network delivery. In the Figures 5.1, 5.2, 5.3
we can see the performance of the threshold RSA signature scheme for increasing values of the RSA
modulus N=1024, 2048, 3072. On the horizontal axis we have the number of participants n = 3f + 1
and on the vertical axis we can see the required time per operation in milliseconds. Today, for a secure
RSA scheme, keys of length 2048 bits are reasonable, while in the future we expect that 3072 bits will
be required1.

1https://www.keylength.com/en/3/
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Figure 5.1. Threshold RSA signature reconstruction benchmark for modulus size N = 1024
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Figure 5.2. Threshold RSA signature reconstruction benchmark for modulus size N = 2048
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Figure 5.3. Threshold RSA signature reconstruction benchmark for modulus size N = 3072

As we can see in Figures 5.1, 5.2, 5.3 the optimistic approach is more efficient when we do not have
corrupted signature shares. To understand this, we need to have a look in the core of the reconstruction
operation for each approach. In the optimistic approach, we have a polynomial interpolation followed by
a signature verification. For the pessimistic approach, we have k signature share verifications followed
by a polynomial interpolation. An important factor here is that, as we see in Table 5.2, the signature
share verification is more expensive than the signature verification. Also, in the pessimistic approach as
the number of participants increases, the signature share verification operations that must be performed
increase as well. However, when we have corrupted signature shares, in the optimistic approach, the time
per signature reconstruction operation increases exponentially and, after a threshold, is slower than the
pessimistic approach. This happens because for the optimistic approach if the reconstructed signature
from the first k signature shares is found invalid we search for a valid signature of a k-combination out of
k+i signature shares where i = 1, · · · , n−k. The number of k-out-of-n combinations is

(
n
k

)
= n!

k!(n−k)!
which increases exponentially.
Moreover, in the Figures 5.1, 5.2, 5.3 we can observe that the time per signature reconstruction operation
increases as the RSA modulus N size increases. This is also illustrated in Figure 5.4. This is expected,
since for both signature verification and signature share verification the most expensive operation is an
exponentiation to N and 2N + L1 respectively, where L1 a secondary security parameter respectively,
which depends on the modulus size N . Also, the signature share verification is more expensive than the
signature verification because N < 2N + L1. Finally, regarding the scenario with corrupted signature
shares, we can observe that for an increasing value of N the number of nodes for which the optimistic
approach is better than the pessimistic also increases. In Table 5.1 we can see the number of participants
up to which the optimistic approach is faster even for the scenario with the corrupted signature shares.
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Modulus size Number of participants
1024 bits 10
2048 bits 12
3072 bits 14

Table 5.1. Number of participants up to which the optimistic approach is faster than the pessimistic approach for
threshold RSA even with corrupted signature shares.

Figure 5.4. Threshold RSA signature reconstruction benchmark for increasing modulus size.

We now evaluate the performance of the threshold BLS signature scheme and compare it to threshold
RSA. For the threshold BLS scheme of modulus size 254 bits the corresponding RSA modulus size with
equivalent security is N = 3072 bits2. In Figure 5.5 we observe that, as for threshold RSA, also for
threshold BLS, when we do not have corrupted parties the optimistic approach is more efficient. For
the pessimistic approach k signature share verifications are required, while for the optimistic approach
only one. In the scenario where we have corrupted signature shares again the optimistic approach scales
exponentially. In fact, because for threshold BLS the signature verification and the signature share veri-
fication are the same, as we see in Table 5.2, the optimistic approach with corrupted signature shares is
always worse.

2https://www.keylength.com/en/3/
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Figure 5.5. Threshold BLS signature reconstruction benchmark.

In Figures Figures 5.7, 5.8 we can see the threshold BLS and the corresponding threshold RSA scheme
together, for the two scenarios, with all valid signature shares and f invalid signature shares respectively.
We observe that in the pessimistic approach the two algorithms have similar performance, since the
cost for the signature share verification is similar. For the optimistic approach, when we do not have
invalid signature shares, we can see that threshold RSA performs faster for approximately up to 100
nodes. To understand this we must take two factors into consideration. As we see in Table 5.2 the
signature verification is much faster for threshold RSA which results in a faster signature reconstruction
for up to 100 nodes. However, the internal reconstruction of the signature from the signature shares with
polynomial interpolation, as we see in Figure 5.6 is faster for threshold BLS. This happens because in
the case of threshold RSA, as we saw in Section 2.2.1 we have some additional operations which for
large numbers are not negligible. Therefore, as the number of participants increases it affects the cost of
the signature reconstruction .

Threshold RSA Threshold BLS ECDSA
Signature

Verification
Signature Share

Verification
Signature &

Signature Share
Verification

Signature

0.022 ms/op 69.878 ms/op 53.807 ms/op 0.123 ms/op

Table 5.2. Signature and signature share verification comparison.
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Figure 5.6. Internal signature reconstruction from signature shares with polynomial interpolation.

From our evaluation of the signature reconstruction operation, we conclude that the choice between the
optimistic and the pessimistic approach is relevant to the application. When we expect that the corrupted
signature shares are very sporadic, or that all the nodes of the network can be trusted, the optimistic
approach is suggested. For threshold RSA the optimistic approach is also suggested for an application
that requires only a small set of participating nodes. Such applications are realistic. An example is
the two-factor authentication in [10] or an endorsement policy for HLF that requires a small number
of endorsements. Also, HLF is a permissioned blockchain and therefore we do not expect corrupted
parties to be the norm. For a big network where we would expect a lot of corrupted nodes, such as the
Bitcoin network, the pessimistic approach is suggested. However, a combination of the two algorithms
is also possible. For example, the client that wants to reconstruct the signature can run both algorithms
in parallel and get the signature from the algorithm that finishes first.
We now compare the two threshold signature schemes to multisignatures. Multisignatures is a different
distributed signature scheme. As mentioned in Section 2.3 multisignatures are already implemented as
an option for the Bitcoin protocol and as we saw in Section 4.3 are also used in HLF for the endorsement
policies and in the core of the PBFT protocol. We implemented two multisignature schemes, one with
RSA and one with ECDSA signatures. For the multisignature schemes each participant has a public-
private key pair. The equivalent of a signature share is a signature by the private key of the participant
and the equivalent of the signature share verification is the verification of the signature by the public key
of the signer. The equivalent of the pessimistic signature reconstruction of a threshold signature scheme
is to verify each signature until k valid signatures are collected and output an array of all the k valid
signatures. An equivalent for the optimistic approach does not exist; if we construct a set of the first k
signatures we cannot know if the set is valid without validating each signature. Finally, the signature
verification of the reconstructed signature equivalent is the verification of the set of the k signatures.
We first compare the signature reconstruction operation for an increasing number of participants. As
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before n = 3f + 1, k = f + 1. We compare a threshold RSA (trsa) and a multisignature RSA scheme
(mrsa) both of public exponent E = 216 + 1 and modulus size N = 3072 bits, the threshold BLS
signature scheme (tbls) with modulus size 254 bits and a multisignature ECDSA (mecdsa) scheme with
modulus size 256 bits. As we can see in Figures 5.7, 5.8 the multisignature reconstruction is much
more efficient. This is explained if we take into consideration that the verification of a single signature
for RSA and ECDSA , which we call signature share verification for the multisignature scheme, is
much faster than the threshold RSA and threshold BLS signature share verification. Also in the case
of multisignatures we don’t have the additional cost of the polynomial interpolation.

Figure 5.7. Comparison of signature reconstruction operation for threshold signatures and multisignatures with all
the signature shares valid. For the multisignature schemes the operation costs less than 20 ms.
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Figure 5.8. Comparison of signature reconstruction operation for threshold signatures and multisignatures with f
random signature shares invalid. For the multisignature schemes the operation costs less than 20 ms.

We also compare the verification of the reconstructed signature. As we can see in Figure 5.9 for the
threshold schemes the required time per operation is always the same since we always verify only one
signature. For the multisignature schemes the verification time increases linearly since we have to per-
form i ∈ k, · · · , n signature verification operations.
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Figure 5.9. Comparison of signature verification operation for threshold signatures and multisignatures.

Finally, we must also consider the size of the reconstructed signature, since the size of the signature
affects the network propagation time. In Table 5.3 we can see the size of the assembled signature form
k signature shares. For the threshold signature schemes the size of the signature is fixed whereas for the
multisignatures the assembled signature is an array of k signatures. In Figure 5.10 we can see how the
size of the signature is affected by the number of nodes in the network. Again we assume n = 3f + 1
and k = f + 1.

Signature size
Threshold RSA 384 bytes
Threshold BLS 64 bytes

ECDSA multisignatures 64 ∗ k bytes
RSA multisignatures 384 ∗ k bytes

Table 5.3. Reconstructed signature size in bytes.
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Figure 5.10. Comparison of signature verification operation for threshold signatures and multisignatures.

From the evaluation we can conclude that the signature reconstruction for the threshold signature schemes
is more expensive than in the case of multisignature schemes. However, the signature verification of the
threshold signature schemes requires a fixed amount of time and thus scales better for a large number of
participants. Moreover, the signature size is fixed for the threshold signature schemes and therefore it
does not increase the network traffic nor the delay as the number of participants increases.
The evaluation was performed on a Linux virtual machine, run by Virtualbox version 5.1.6 r110634
(Qt5.5.1) in a Windows 7 laptop. The technical characteristics are presented in Tables 5.4, 5.5

Operating System Windows 7 Professional, 64-bit
Memory 16.0 GB (15.6 GB usable)

CPU Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz 2.70GHz
Model ThinkPad w530

Table 5.4. Technical characteristics of the host.

Operating System Ubuntu 16.04.2 LTS, 64-bit
Memory 12.0 GB

Number of CPUs 4

Table 5.5. Technical characteristics of the virtual environment.
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Chapter 6

Conclusion

In this work we explored the advantages of threshold signatures for permissioned blockchain systems and
introduced threshold signatures for HLF. Two threshold signature schemes: (1) threshold RSA and (2)
threshold BLS, suitable to the properties and needs of HLF, were implemented and evaluated. Further-
more, two different algorithms for the threshold signature reconstruction were implemented and evalu-
ated. Additionally, a framework was designed and implemented to make available the threshold signature
schemes to HLF. As an application, threshold signatures were integrated to the transaction endorsement
procedure. Finally, further potential use cases of threshold signatures in HLF were suggested.
We chose to implement threshold RSA and BLS because they are non-interactive and deterministic.
Also, the resulting signature is equivalent to the non-threshold version of the scheme, allowing thus a
seamless integration into HLF. From the performance evaluation, we concluded that threshold RSA is
more efficient. On the other hand, threshold BLS has shorter signatures and also is suitable for distributed
key generation and proactive security.
Regarding the suggested algorithms for signature reconstruction, we concluded that the choice has to do
with the characteristics of the network. For a small and/or reliable network the optimistic approach is
more efficient. The optimistic approach does not scale well if we have a lot of corrupted signature shares.
However, a system can combine the two methods.
Finally, we compared RSA and BLS threshold signatures to RSA and ECDSA multisignatures. The
signature assembling for multisignatures scales better for an increasing number of nodes. However,
for the threshold signature schemes a validator needs to validate only one signature whereas for the
multisignatures the number of the signatures that must be validated increases linearly with the number
of participants. Finally, a threshold signature has a fixed size whereas for multisignatures the size again
increases linearly with the number of participants.
Our framework will allow any potential future application to use a threshold signature scheme. Moreover,
it allowed a minimalistic integration with the transaction endorsements; only a few lines of code of the
core HLF implementation needed to be changed. Also, future threshold signature implementations can
be easily added as pluggins. The source code will be made public under the repository of HLF 1.
Concluding, threshold signatures are a powerful tool introduced more than two decades ago, when
blockchain systems did not exist. Today we can leverage it to enhance the security and resilience of
blockchain systems.

1https://gerrit.hyperledger.org/r/#/admin/projects/fabric
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