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Abstract

With the explosion of information stored world-wide, data intensive computing
has become a central area of research. Efficient management and processing of this
massively exponential amount of data from diverse sources, such as telecommuni-
cation call data records, telescope imagery, online transaction records, web pages,
stock markets, medical records (monitoring critical health conditions of patients),
climate warning systems, etc., has become a necessity. Removing redundancy
from such huge (multi-billion records) datasets resulting in resource and compute
efficiency for downstream processing constitutes an important area of study. “In-
telligent compression” or deduplication in streaming scenarios, for precise identi-
fication and elimination of duplicates from the unbounded data stream is a greater
challenge given the real-time nature of data arrival. Stable Bloom Filters (SBF)
address this problem to a certain extent. However, SBF suffers from a high false
negative rate (FNR) and slow convergence rate, thereby rendering it inefficient for
applications with low FNR tolerance.

In this paper, we present a novel Reservoir Sampling based Bloom Filter,
(RSBF ) data structure, based on the combined concepts of reservoir sampling
and Bloom filters for approximate detection of duplicates in data streams. Using
detailed theoretical analysis we prove analytical bounds on its false positive rate
(FPR), false negative rate (FNR) and convergence rates. We show that our FN
and convergence rate are better than those of SBF. Using empirical analysis on
real-world datasets (3 million records) and synthetic datasets with around 1 billion
records, we demonstrate upto 2× improvement in FNR with better convergence
rates as compared to SBF, while exhibiting comparable FPR. To the best of our
knowledge, this is the first attempt to integrate reservoir sampling method with
Bloom filters for deduplication in streaming scenarios.

1 Introduction
Data intensive computing has evolved into a central theme in the research commu-
nity and the industry. There has been a tremendous spurt in the amount of data being
generated across diverse application domains such as IR, telecommunication (call data
records), online transaction records, web pages, medical records, virus databases and
climate warning systems to name a few. Processing such enormous data is computa-
tionally prohibitive, and is further compounded by the presence of duplicates and re-
dundant data, wasting precious compute time. Removing redundancy in the data helps
in improving resource utilization and compute efficiency especially in the context of
stream data, which generally requires real-time processing at 1 GB/s or higher. In this
work, we consider the problem of real-time elimination of redundant records present
in large streaming datasets. A record may be considered redundant, if it had arrived
previously in the stream. Formally, this is referred to as the data deduplication or intel-
ligent compression problem. Data redundancy removal (DRR) and deduplication are
used interchangeably in this paper.

Consider, for example, a large nation wide telecommunication network, where each
call generates call data records (CDRs). Each CDR contains details about a particular
call such as the calling number, the called number and so forth. Due to errors in CDR
generation, multiple copies of a CDR may get generated. Before storing these CDRs in
a central data center, one needs to perform deduplication over around 5 billion CDRs
with real-time performance. Solutions involving database accesses as in traditional
systems are prohibitively slow. Since algorithms involving typical Bloom filters such
as [14] are extremely resource intensive with huge memory requirements (20GB or
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higher for 6B CDRs at FPR = 1e− 5), applications have to resort to disk based Bloom
filer data structures at the expense of reduced performance. Hence, there is a strong
need for deduplication algorithms that work in-memory or with reasonable memory,
have real-time performance and also having low FPR, FNR and better convergence
rates. This poses a very challenging problem.

Search engines regularly crawl the Web to update their corpus of webpages. Given
the list of URLs extracted from the content of a crawled page, a search engine must
probe its archive to determine if the URL is already present in its collection, and if re-
crawling of the URL can be avoided [16]. This involves duplicate detection, which in
practice may be imprecise but is indispensable given the number of webpages present
in the Internet. The consequence of an imprecise duplicate detection is that some
already-crawled pages will be crawled again (caused by FNR), or some new URLs
which should be crawled are missed (caused by FPR). Here, a high FNR might lead
to severe performance degradation, while a relatively high FPR results in new pages
being ignored leading to a stale corpus of webpages, both of which need to be balanced
since a search engine can archive only a small portion of the entire web [8].

[21] proposes another application for approximate duplicate detection in a stream-
ing environment. In a Web advertising scenario, advertisers pay web site publishers
for clicks on their advertisements. For the sake of profit, it is possible that a publisher
fakes some clicks (using scripts). Hence a third party, the advertising commissioner,
has to detect those false clicks by monitoring duplicate user IDs and IPs. Here, low
FNR is necessary to ensure minimal fraud. Ensuring low FNR while simultaneously
having low FPR, along with memory efficiency presents a difficult scenario.

Straightforward approaches for data redundancy removal (DRR) involve pair-wise
string comparisons, leading to quadratic complexity. This prohibits real-time redun-
dancy removal over enormous (1 to 10 billion) number of records. In order to address
this computational challenge, Bloom filters [7] are typically used. Bloom filters are
space-efficient probabilistic data structures that provide fast set membership queries,
but with a small false positive rate (FPR). Parallel Bloom filter based algorithms have
also been explored in [14].

Typical Bloom filter approaches involve k comparisons for every record, where k
is the number of hash functions computed per record to check the bits of the Bloom
filter array. This leads to poor performance, as for an in-memory DRR over billions of
records, the memory required by such Bloom filter array is very high (order of tens of
Gigabytes depending on the false positive rate). One approach is to store the Bloom
filter array on the disk and bring parts of it into memory for reading and updates.
But, this would lead to a huge fall in the overall DRR throughput (due to disk access
overheads). Further, there is a trade-off between the cache performance and memory
efficiency [24] in such Bloom filter design.

In order to address these challenges, we present the design of a novel Bloom filter
based on biased Reservoir Sampling [27, 2], referred to as RSBF (Reservoir Sampling
based Bloom Filter). Using threshold based non-temporal bias function we obtain
upto 2× improvement in FNR and much better convergence rates as compared to [8]
while maintaining nearly the same FPR. The choice of such bias functions may be of
independent research interest in this direction.

This paper makes the following contributions:
(1) We present the design of a novel Bloom filter based on biased Reservoir Sam-

pling, RSBF. Using threshold based non-temporal bias function, we obtain improved
FNR and convergence rates as compared to [8] while maintaining similar FPR.

(2) Using detailed theoretical analysis, we provide upper bounds on FPR and FNR.
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Further, we exhibit the faster convergence of our algorithm, compared to SBF , with
expected bounds on the number of 1s in the Bloom filters.

(3) We demonstrate real-time in-memory DRR using both real and synthetic datasets
of the order of 1B records. We observe upto 2× better FNR and much better conver-
gence rates compared to the prior results.

2 Preliminaries & Background
A Bloom filter is a space-efficient probabilistic data structure that is widely used for
testing membership queries on a set [6]. The efficiency is achieved at the expense of a
small false positive rate, where the Bloom filter may falsely report the presence of an
element in the set. However, it does not report false negatives, i.e. falsely reporting the
absence of an element in the set. Representing a set of n elements by a Bloom filter
requires an array of m bits (m << n), initially all set to 0. To insert an element ei into
the Bloom filter, k bits (locations) in the Bloom filter array are set. These k locations
are evaluated from k independent hash functions h1(ei), . . . , hk(ei). If all the locations
are already set to 1, then either the element ei is already a member of the set or is a
false positive. The probability of the false positive rate [7] for a standard Bloom filter
is given by:

FPR ≈
(

1− e−kn/m
)k

(2.1)

Given n and m the optimal number of hash functions k = ln 2 · (m/n). For detailed
analysis of these derivations, please refer [7].

To support a situation where the contents of a set changes over time, with elements
being continually inserted and deleted, Fan et al. [10] introduced counting Bloom fil-
ters. This approach allows elements to be updated in the Bloom filter by using a small
counter instead of a single bit at every position. Insertion now requires the correspond-
ing counters to be incremented. On the other hand, deletion requires the corresponding
counters to be decremented.

In reservoir sampling [27], one continuously maintains a reservoir of size n from
the data stream. The first n points in the data stream are added to the reservoir for
initialization. Subsequently, after t elements of the data stream have been processed,
the (t + 1)th element is added to the reservoir with probability n/(t + 1), also known
as the insertion probability. This element replaces a randomly chosen element from
the current reservoir. We note that the probability value n/(t+ 1) reduces with stream
progression. Reservoir sampling thus satisfies the following property:

Property 1 After t points in the data stream have been processed, the probability of
any point in the stream belonging to the sample of size n is equal to n/t.

One interesting characteristic of this maintenance algorithm is that it is extremely
efficient to implement in practice. When new points in the stream arrive, we only need
to decide whether or not to insert into the current sample array which represents the
reservoir. The sample array can then be overwritten at a random position. The bias
function [2] associated with the rth data point at the time of arrival of the tth point
(r ≤ t) is given by f(r, t) and is related to the probability p(r, t) of the rth point
belonging to the reservoir at the time of arrival of the tth point. Specifically, p(r, t)
is proportional to f(r, t). The function f(r, t) is monotonically decreasing with t (for
fixed r) and monotonically increasing with r (for fixed t). Therefore, the use of a bias
function ensures that recent points have higher probability of being represented in the

3



sample reservoir. Next, we define the concept of a bias-sensitive sample S(t), which
in turn is defined by the bias function f(r, t).

Definition Let f(r, t) be the bias function for the rth point at the arrival of the tth

point. A biased sample S(t) at the time of arrival of the tth point in the stream is
defined as a sample such that the relative probability p(r, t) of the rth point belonging
to the sample S(t) (of size n) is proportional to f(r, t).

3 Related Work
Duplicate detection poses a classical problem within the domain of data storage and
databases giving rise to numerous buffering solutions. With the advent of online ar-
rival of data and transactions, detection of duplicates in such streaming scenarios using
similar buffering and caching mechanisms [13] constitutes a naı̈ve solution given the
inability to store the entire information arriving in an infinite stream. Hence fuzzy du-
plicate detection methods [5, 28] present an alternative method for tackling the prob-
lem.

In this paper we put forth a novel approximate deduplication algorithm in streaming
environments using Bloom filters [6]. The literature contains several proposed Bloom
filter variants to suit various application needs for deduplication. These include, count-
ing Bloom filters [10], compressed Bloom filters [22], space-code Bloom filters [19],
and spectral Bloom filters [25] among many. Counting Bloom filters replace an array
of bits with counters in order to count the number of items hashed to a particular loca-
tion. The others use subtle variations to efficiently meet the nature of demand of the
applications.

The window model of Bloom filters [21] also contains several flavors such as land-
mark window, jumping window, along with the recently proposed sliding window [26],
all of which operate on a definite amount of history of objects observed in the stream
to draw conclusions for future processing of the stream elements.

Another exciting Bloom structure proposed recently, SBF [8] provides a stable
guarantee regarding the nature of performance of the structure given a very large
stream. This constant performance is of huge importance in real-time applications
involving de-duplication. It continuously evicts stale information from the Bloom fil-
ter to make room more recent elements. It also provides a tight upper bound of false
positive rates. In this paper, we used Biased Reservoir sampling based Bloom filter and
prove upper bounds on both FPR, FNR and fast convergence. Using empirical analy-
sis, we demonstrate around 2× better FNR compared to [8] and also better convergence
rates.

Interestingly, Bloom filters have also been applied to network-related applications,
albeit for solving different problems, such as finding heavy flows for stochastic fair
blue queue management [11], providing a useful tool to assist network routing, such
as packet classification [4], per-flow state management and the longest prefix match-
ing [9]. [18] proposes a new Bloom filter structure that supports representation of items
with multiple attributes and exhibits a low false positive rate. It is composed of mul-
tiple Bloom filters and a hash table to represent items accurately and efficiently. [17]
extends Bloomjoin, the state-of-the-art algorithm for distributed joins, to minimize the
network usage for the query execution based on database statistics. [20] discusses how
Bloom filters can be used to speed up name-to-location resolution process in large scale
distributed systems.
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A related problem of finding the number of distinct elements present in a data
stream was explored in [12]. There exists several other methodologies in the data
stream domain to approximate the frequency and norms of the input elements. Our ap-
proach as presented in this paper provides a conjugation of Bloom filters and reservoir
sampling technique to efficiently approximate duplicate detection in such unbounded
streams.

The problem of synopsis maintenance [3] [15] has been studied in great detail due
of its extensive application for query estimation [23] in data streams. Many synopsis
methods such as sampling, wavelets, histograms and sketches are designed for use with
specific applications such as approximate query answering. A comprehensive survey
of stream synopsis construction algorithms may be found in [1]. An important class of
stream synopsis construction methods is reservoir sampling [27]. The method of sam-
pling has great appeal because it generates a sample of the original multi-dimensional
data representation. Hence, it can be used with arbitrary data mining applications with
minor changes to the underlying methodologies and algorithms.

[2] proposes a new approach on memory-less temporal bias function based reser-
voir sampling for continually evolving data streams. It demonstrates that such bias
functions lead to efficient implementation: O(1) processing time per stream element.
While biased reservoir sampling is a difficult problem (with the one pass constraint), [2]
shows that it is possible to design very efficient replacement algorithms for such impor-
tant class of “memory-less” bias functions. In addition, incorporation of bias results in
upper bounds on reservoir sizes in many cases limits the maximum space requirements
to nearly constant even for an infinitely long data stream. This enables its application
in a variety of space-constrained scenario.

In this paper, we present a non-temporal threshold based bias function for reservoir
sampling for the deduplication problem using Bloom filters, resulting in low FNR.
Further, we establish theoretically and show empirical results to support the efficiency
and fast convergence rates of our algorithm.

4 Reservoir Sampling based Bloom Filter Approach
Our design is motivated by the reservoir sampling technique [27] and is targeted for
detecting duplicates in large data streams. We consider k Bloom filters each of size s
bits. Initially all the bits are set to zero. Each element of the stream is mapped to one of
the s bits for each of the k different Bloom filters. Each of these k bits is generated by
a uniform random hash function. These k locations are probed to determine whether
an element is distinct or duplicate, similar to the procedure followed in regular Bloom
filters.

However, each element ei in the stream is inserted with a probability pi, as in
reservoir sampling, where i is the current length of the stream. When ei is inserted,
the k hash bits generated for the corresponding Bloom filters are set to 1. In order
to accommodate future elements in the stream within a limited memory space and
simultaneously prevent high false positive rates, we reset k bits to 0. These k bit
locations, one from each of the Bloom filters are chosen uniformly at random. This
deletion operation takes place only when an element in the stream is inserted. However,
it leads to the occurrence of false negatives in the structure. We observe that the use
of reservoir sampling technique in the Bloom filters increases the probability that an
element will not be inserted (due to a possible duplicate) into the Bloom filters with
decrease in the insert probability as the stream progresses. As a result, the false negative
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Symbols Meanings
M Available memory (in bits)
k Number of bloom filters
s Size of each bloom filter (in bits)
pi Prob. of insertion by Reservoir Sampling
p∗ Insertion threshold prob. for distinct elements
hi Hash position within the ith bloom filter
S Stream of input elements

Table 1: Symbol List

rate of the structure increases, since even new elements in the stream may be repeated
rejected by the reservoir, thereby degrading its performance.

To address this problem, we propose a novel extension which can be considered as
a weak form of biased reservoir sampling performed on the stream. After the reservoir
sampled insertion probability falls below a specific threshold, say p∗, any element in
the stream when observed as unique by probing its corresponding bits in the k Bloom
filters will also be inserted, following the insertion procedure. This helps to keep the
false negative rate in check as the next time the same element arrives, it will then be
correctly reported as a duplicate. This procedure also enables the Bloom filters to
evolve with changes in the data skew of the stream, and help RSBF to dynamically
adapt itself to a changing stream.

We emphasize that the insertion procedure ofRSBF selects k bits (one bit for each
of the Bloom filters) to be set to 1 and another k bits to be reset to 0. This approach
leads to a near constant number of 1s and 0s in RSBF , stability as discussed later in
the paper. Hence, RSBF exhibits significantly lower FNR and faster convergence rate
to stability with comparable FPR as that of SBF , making it a more attractive structure
for modern day applications. In the remaining paper we describe in details and validate
with theoretical bounds and empirical results the efficient performance of RSBF .

5 Theoretical Framework
In this section, we present theoretical bounds and analysis for FPR, FNR and the frac-
tion of ones (convergence rates) of our RSBF data structure. Later we present extensive
results justifying the validity of our approach.

5.1 False Positive Rate
Here we compute the false positive rate, (FPR) of our proposed algorithm. A false
positive, FP occurs when a distinct element of the stream is reported as a duplicate.

Consider the FPR at em+1, the (m + 1)th element of the stream. We assume that
the elements of the stream are uniformly drawn at random from a universe Γ, with
|Γ| = U .

Let Punique be the probability that em+1 has not occurred in the first m elements
of the stream.

Punique =

(
U − 1

U

)m

(5.1)
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Let em+1 hash to H = {h1, h2, . . . , hk} positions, where hi ∈ [1, s] for the ith Bloom
filter. em+1 will be reported as a duplicate when all the bit positions in H are set to
1 after handling m stream elements. Since all the Bloom filters are identical and are
independently processed, the argument for one of them can be easily extended for the
others.

Initially, all the bits of the Bloom filters are set to 0. Let the latest transition of h1,
from 0 to 1, occur at the lth iteration for element el, and thereafter h1 is never reset,
i.e. set to 0. A bit will not be reset to 0 in an iteration, if the current stream element is
not selected for insertion or a different bit of the Bloom filter is chosen for deletion, if
the element is to be inserted. We represent the probability of such a transition of h1 by
Ptrans. Therefore,

Ptrans = P (el is inserted).P (el selects h1).P (h1 is not reset again)

= pl.
1

s
.

m∏
i=l+1

[
(1− pi) + pi.

s− 1

s

]
=

1

l
.

m∏
i=l+1

(
1− 1

i

)
=

1

m

This transition may happen during any of the iterations from (s + 1) to m. Hence,
l ∈ [s+ 1,m] giving,

Prange =

m∑
l=s+1

Ptrans =

m∑
l=s+1

1

m
=
m− s
m

(5.2)

Since the different Bloom filters are independent, the analysis for other bit positions
in H hold similarly as given by Eq. (5.2). The final decision (distinct or duplicate)
regarding em+1 is taken after probing all the bit positions of H , and hence,

PH =
(

1− s

m

)k
≈
(

1− k.s

m

)
(5.3)

It can be observed that the transition of the bits may also be possible during the first
s elements of the stream. Since the first s elements of the stream are always inserted,
all the bit positions in H should be set at least once during this period for an element
to be reported as duplicate. Therefore, the probability that the bit in a Bloom filter is
set in the initial s iterations is given by,

Ps set = 1−
(
s− 1

s

)s

≈
(

1− 1

e

)
(5.4)

This bit, similarly as earlier, must not be reset during the (s + 1)th to mth iterations,
which is given by,

Preset′ =

m∏
i=s+1

[
pi.

(
1− 1

s

)
+ (1− pi)

]
=

s

m
(5.5)

Using Eqs. (5.4) and (5.5), the probability of all the bits at positions in H being set is,

PHs
=

([
1− 1

e

]
.
s

m

)k

(5.6)

Either of these two events may contribute to the FPR, hence the probability of
em+1 being reported as an FP can be obtained by using Eqs. (5.1), (5.3), and (5.6),
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which is given by,

PFPR =

(
U − 1

U

)m

.

[
1− k.s

m
+

([
1− 1

e

]
.
s

m

)k
]

(5.7)

Analyzing Eq. (5.7), we observe that with increase in stream length m, the fraction(
U−1
U

)m
decreases monotonically, when U is constant. Contrary to this, the other

term in Eq. (5.7), which is also a fraction, increases with an increase in m. Therefore,
these two terms balance each other to produce an almost constant FPR with increase
in stream length m. This leads to a stable performance of RSBF similar to that of
SBF . However, RSBF achieves this convergence much faster as opposed to SBF .
In Section 6, we exhibit extensive experimental results that validates this claim.

5.2 False Negative Rate
A false negative (FN) error occurs in a stream when a duplicate element is recognized
as distinct. In this section, we focus on determining the probability of occurrence of an
FN. As per the working of RSBF (Algorithm 1), an element e will be an FN if it has
occurred in the stream earlier and one of the following two cases hold:

1. At least one of the k bits of the hash positions of e (set during the previous
occurrence of e) has been reset during the insertion of another stream element
into the reservoir.

2. When e occurred earlier in the stream it was not inserted due to low insertion
probability of the stream then (by Reservoir Sampling). However, according to
the threshold p∗ in Algorithm 1, we insert every distinct element in the stream
if the current insertion probability, pi ≤ p∗. Therefore, if previous appearances
of e had occurred before p∗ and were not inserted, then it is likely to be detected
as an FN when e repeats for the first time after the insertion probability of the
reservoir falls below p∗.

We now consider the probability of occurrence of an FN for an element em+1, at the
(m+1)th iteration. Let the previous occurrence of element em+1 be at position x, where
it was inserted into the reservoir. Therefore, Pr(em+1 occurs at x and is inserted) =
Px = px/U . Now, for all iterations from (x + 1) to m, either em+1 has not occurred
in the stream or was not inserted. Thus, Pr(em+1 has not occurred OR em+1 has not
been inserted after x) is given by,

Px′ =

m∏
i=x+1

[
U − 1

U
+

1− pi
U

]
≤
[
1− s

U.m

]m−x

Px′ ≤ e
−s(m−x)

U.m

[
∵

s

U.m
is small

]
(5.8)

Now, Pr(em+1 was last inserted at position x) is given by,

Pl = Px · Px′ ≤
s

U.x
· e
−s(m−x)

U.m (5.9)

Since em+1 was last inserted at position x, the k bits corresponding to em+1 were all
set to 1. Therefore, em+1 will be a FN if at least one of those k bits is reset to 0. Due
to the deletion operation in case of insertion of an element into the reservoir, some of
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those k bits can be reset again. Let y be an iteration where there is a transition from 0
to 1, after which it is not reset again till m and hence x ≤ y ≤ m. Therefore, Pr(a bit
is set at y) = Py = py/s = 1/y. Also, Pr(that bit is not reset after y) is given as

Py′ =

m∏
i=y+1

[
pi

(
1− 1

s

)
+ (1− pi)

]
=

y

m
(5.10)

Hence, Pr(the last transition of the bit from 0 to 1 in a buffer at y) can be expressed as
a product of Py and Py′ which is equal to 1/m. As y can vary from x to m, therefore
the Pr( the bit remains set at m) =

∑m
y=x

1
m . So, the Pr(at least one of those k bits

is reset at m) = Pr = 1 − Pr(the bit remains set at m)k = 1 −
(
m−x+1

m

)k
. Now,

Pr(em+1 is last inserted at x AND at least one of those k bits is reset at m) is given by

Plr = Pl · Pr ≤
s

U.x
· e
−s(m−x)

U.m ·

[
1−

(
m− x+ 1

m

)k
]

(5.11)

Let

γ = s · e
−s(m−x)

U.m =
s

1 + s(m−x)
U.m +

[ s(m−x)
U.m ]

2

2! + · · ·

=
1

1
s + m−x

U.m + s(m−x)2

2!(U.m)2 + · · ·
≤ 1 (5.12)

Therefore, substituting Eq. (5.12) in Eq. (5.11) we have,

Plr ≤
1

U.x
·

[
1−

(
m− x+ 1

m

)k
]

(5.13)

However, the value of x can vary within the range [(s+ 1),m]. Hence, the probability
of em+1 being reported as a FN becomes,

PFNR =

m∑
x=s+1

Plr ≤
m∑

x=s+1

1

U.x
·

[
1−

(
m− x+ 1

m

)k
]

=
1

U
· ln
(

m

s+ 1

)
− 1

U
·

m∑
x=s+1

1

x
·
(

1− x− 1

m

)k

≈ 1

U
· ln
(

m

s+ 1

)
− 1

U
·

m∑
x=s+1

1

x
·
(

1− x.k

m

)
=

1

U
· ln
(

m

s+ 1

)
− 1

U
·
[
ln

(
m

s+ 1

)
− k. (m− s)

m

]
=
k. (m− s)
U.m

(5.14)

If em+1 had occurred in the first s iterations, then it had definitely been inserted,
and em+1 will be a FN if at least one of the bits is 0 at the (m + 1)th iteration. The

9



probability that the last insertion of em+1 occurs in the first s iterations is,

Pin s =

[
1−

(
U − 1

U

)s]
·

m∏
i=s+1

[
1

U
· (1− pi) +

U − 1

U

]
≈
[
1−

(
1− s

U

)]
· e− s

U.m ·(m−s)

=
s

U
· e− s

U.m ·(m−s) (5.15)

Similar to the previous arguments, probability of transition of a bit from 0 to 1 is 1/m.
As the position y can vary within [s,m], the probability that the bit is set after (m+1)th

iteration is
(
m−s
m

)
. Hence for all the Bloom filters, the probability of at least one bit

being zero is given by,

Pset = 1−
[
1− s

m

]k
≈ s.k

m
(5.16)

From Eq. (5.15) and (5.16) the FNR in this context is given by s.k
U.m . Using Eqs. (5.14),

(5.12) and the above result, the probability of em+1 being reported as a FN can be
bounded by,

PFNR ≈ O
(
k

U

)
(5.17)

5.3 Setting of Parameters
We explore the procedure of setting the parameters for the proposed algorithm to opti-
mize its performance. Given a fixed amount of memory space, M in bits, we theoreti-
cally search for the best setting of the number of Bloom filters, k and the size of each
Bloom filter, s, such that s.k = M . The algorithm takes M and the threshold FPR,
FPRt as inputs, and computes the optimal value of k and s to find a suitable operating
point for RSBF with low overall FPR and FNR.

Assume that the algorithm conforms to the threshold FPR, FPRt after the initial
s elements of the stream has been processed. An FPR will occur for an element es+1

if all the corresponding bits in the Bloom filter for es+1 are set. Considering a single
Bloom filter, the particular bit into which es+1 hashes to will be set if at least one of
the s elements maps into it. Therefore,

Pset = 1− P (bit is not set by any of the s elements)

= 1−
(

1− 1

s

)s

≈
(

1− 1

e

)
(5.18)

Hence for all bits of es+1 in the Bloom filters, Eq. (5.18) becomes

PFPRs =

(
1− 1

e

)k

(5.19)

Also, es+1 should not have occurred in the initial s elements. This can be captured by
the factor ((U − 1)/U)

s. Considering U to be large, this factor tends to 1, and hence
we ignore this term in the present discussion.
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Equating FPRt and Eq. (5.19) we have(
1− 1

e

)k

= FPRt

k =
ln (FPRt)

ln
(
1− 1

e

) (5.20)

and, s =
M

k
(5.21)

We find that FPR decreases with increase in the value of k, while FNR is the
lowest when k = 1. Hence, to optimize this trade-offs, we take the value of k as the
arithmetic mean of 1 and that obtained in Eq. (5.20). Given the value of k, s can thus
be appropriately set according to Eq. (5.21).

For applications requiring a low FNR, we can set k = 1, and for low FPR re-
quirements k is set as Eq. (5.20). Hence, the RSBF algorithm can dynamically be
suited to a particular application needs. Section 6 exhibits that such choice of parame-
ters help RSBF perform better than the competing algorithms.

5.4 Stability Factor
SBF introduced the concept of stability of a Bloom filter, whereby the number of 1s
or 0s in the structure become constant after a time period. It should be noted that as the
FPR and FNR is dependent on the 1s and 0s present in the Bloom filter respectively,
stability of their counts nearly guarantees constant performance of the data structure.
In the analysis that follows, we show that our RSBF structure attains stability much
earlier compared to SBF , which guarantees to achieve stability theoretically at infinite
stream length.

In the following theorem, we intend to find out the expected fraction of ones in the
RSBF. The fraction of ones (or zeroes) is important because the false positive rate (or
FNR) is dependent on the fraction of ones (or zeroes). The faster we attain stability,
the better will be the overall performance of the structure.

Let E(X) be the expected count of 1s in one of the k Bloom filters of RSBF; then
the expected fraction of ones in RSBF , (ζ) can be approximated by E(X)

s , where s is
the size of each Bloom filter (in bits).

Theorem 5.1 Given an RSBF with k.s bits, at any iteration i, the expected fraction of
ones (ζ) is a constant, ∀i > s.

Proof 1 Let λ denote the count of ones in iteration (i− 1). We begin our analysis with
a single Bloom filter as other Bloom filters (and the operations on them) are identical.
We observe that by Algorithm 1, the count of ones can either increase or decrease by
one only or remain the same in iteration i. Therefore, the expected count of ones can
be expressed as,

E(X) = (λ− 1) Pr(λ− 1) + λPr(λ) + (λ+ 1) Pr(λ+ 1) (5.22)

since Pr(λ± j) = 0, where j ≥ 2.
The count of ones in a Bloom filter can decrease by one when an element is inserted

and the bit selected to be set was already set to 1, and during deletion, one of the set
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bits is reset to 0. The probability is given by,

Pr(λ− 1) = pi

[
λ (λ− 1)

s2

]
(5.23)

The count of ones can remain the same when the ith element ei in the stream is not
inserted. Further, if the element is inserted, the count of ones can still remain the same
if a 0 bit is selected to be set to 1 and a 1 bit is reset to 0 during deletion. Also, if the bit
to be set to 1 is already set and that to be reset is already 0, the count of ones remain
constant. Hence,

Pr(λ) = (1− pi) + pi

[
λ (s− λ+ 1)

s2
+
λ (s− λ)

s2

]
(5.24)

Similarly, the count can increase by one if a 0 bit is set to 1 and during deletion any 0
bit is selected.

Pr(λ+ 1) = pi

(
s− λ
s

)2

(5.25)

Substituting Equations 5.23, 5.24 and 5.25 in Equation 5.22, we have,

E(X) = pi

[
λ

(
1− s
s

)2

+ 1

]
+ λ (1− pi)

= λ+ pi

[
λ

((
s− 1

s

)2

− 1

)
+ 1

]
= λ+ pi.ε (5.26)

For any value that λ can assume, we have 0 ≤ |ε| ≤ 1 and therefore the fraction
of ones, E(X)/s in a buffer is a constant. Moreover, the fraction |pi.ε| is monotoni-
cally decreasing with increasing values of i. This analysis holds identically for all the
remaining (k − 1) buffers. Therefore ζ is a constant.

We now calculate the variance of the count of ones in a single Bloom filter, V ar[X]
which can be easily extended to the remaining Bloom filters, as discussed previously.
Given,

V ar[X] = E[X2]− (E[X])
2

by simple algebraic manipulations, we have

V ar[X] ≈ 2

(
λ

s

)
pi

[
λ

s
− 1

]
+ pi − p2i (5.27)

Let λ = β.s, where 0 ≤ β ≤ 1. Substituting this value in Eq. (5.27), we have,

V ar[X] = pi

(
β2 + (β − 1)

2
)
− p2i (5.28)

Eq. (5.28) implies that the variance of the count of ones in the Bloom filters forRSBF
is significantly low. For instance, when β = 0.5 the variance is only (pi/2 − p2i ).
Further, as the length of the stream increases, the variance of the number of ones de-
creases in the Bloom filters for RSBF . This analysis implies a faster convergence to
stability for RSBF which is validated by experimental results provided in Section 6
for different datasets.
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Algorithm 1: RSBF (S)

Require: Threshold FPR (FPRt), Memory in bits (M ), and Stream (S)
Ensure: Detecting duplicate and distinct elements in S

Compute the value of k from FPRt.
Construct k Bloom filters each having M/k bits of memory.
iter ← 1
flag ← 0
for each element e of S do

Hash e into k bit positions, H = h1, · · · , hk.
for each hi in H do

if bit at position hi in the ith bloom filter is not set then
Result← DISTINCT
flag ← 1
break

end if
if flag = 0 then
Result← DUPLICATE

end if
Compute probability of insertion of e, Pe

if (Pe ≤ (s/iter)) OR (iter ≤ s) then
for all positions hi in H do

Set the bit at hi of the ith bloom filter.
end for

else
if (Pe > p∗) AND (Result = DISTINCT ) then

for all positions hi in H do
if hi = 0 then

Find a bit in ith bloom filter which is set to 1, and reset to 0.
Set the bit at hi position to 1

end if
end for

else
No operation.

end if
end if
iter ← iter + 1

end for
end for
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6 Results & Analysis
We implemented both RSBF and SBF [8] algorithms and compared their performance
based on real as well as synthetic datasets. The real dataset containing clickstream
data1 having around 3M records and random dataset with 1B records were used to
evaluate the quality of membership query results generated. We performed two sets of
experiments to capture: (a) Variation of FNR, FPR and convergence with increasing
number of records in the input, and (b) Variation of FNR and FPR with increasing
amounts of memory for sampling the input stream, using multiple datasets for increas-
ing percentage of duplicates.

6.1 Quality Comparison
In this section we present the variation of FNR and FPR along with convergence rates
with increasing number of records in the input stream. The memory used for the un-
derlying Bloom filter data structure is kept constant for both SBF and RSBF in these
experiments. For sake of clarity, points are plotted in the curves at every 1K input
stream records.

Fig. 1 presents the comparison of FPR for real dataset with more than 3M records.
Initially, till the number of input stream records reaches the threshold, RSBF has better
FPR (0.001) than SBF (around 0.0025). RSBF in this stage accepts all the input
records in its reservoir and the available memory determines the threshold count. It
can also be observed that uptil the threshold point RSBF will not incur any FNR.

As the number of records increase, the FPR performance of RSBF gradually be-
comes comparable to that of SBF. We note here that, even with a small memory of 2KB
for around 3M elements, the FPR achieved is quite low, 0.0025. This demonstrates that
both RSBF and SBF attain low FPR for large number of records with a significantly
small memory space.

Fig. 2 presents the comparison of FPR for the synthetic dataset with 1B records.
With 128MB memory, as the number of records increases, the FPR for RSBF stabi-
lizes at 0.8%, while that for SBF stabilizes around 0.7%. With larger memory, 512MB
memory, as the number of records increases, the FPR for both RSBF and SBF stabi-
lizes at around 0.06%. Thus both RSBF and SBF attain comparable FPR for massive
number of records, with the performance becoming nearly equal at larger memory. The
use of reservoir sampling in RSBF enables the data structure in general to sieve out
duplicates which occur in higher probability as the stream length increases, given the
finite size of alphabet set of the input elements.

Fig. 3 compares the FNR between RSBF and SBF with increase in the number of
records. For around 3M records and FPR threshold of 0.1, both RSBF and SBF show
an initially increases in FNR, stabilizing as the number of records increases further.
However, we observe that for both 2KB and 4KB memory, RSBF clearly outperforms
SBF by a significant margin. For 2KB memory, RSBF has a stable FNR of 10% which
is around 1.5× better as compared to SBF which produces a stable FNR of 15%. With
increase in memory the performance gap between the two further increases in favor of
RSBF . We observe that for 4KB memory, RSBF attains a stable FNR of nearly 12%
which is around 1.83× better than that of SBF with a stable FNR of 22%.

Fig. 4 also compares the FNR between RSBF and SBF albeit on synthetic dataset
having 1B records and FPR threshold of 0.1. For both RSBF and SBF the FNR again

1obtained from http://www.sigkdd.org/kddcup/index.php?section=2000&method=
data

14



 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0  500  1000  1500  2000  2500  3000

F
P

R

Size of Stream (x10
3
)

|Dataset|=3367020, Memory=2KB, Thres. FPR=0.1

RSBF
SBF

Figure 1: FPR Comparison

 0

 0.003

 0.006

 0.009

 0.012

|Dataset|=1x10
9
, Memory=128MB, Thres. FPR=0.1

F
P

R

RSBF
SBF

 0

 0.0003

 0.0006

 0.0009

0 200 400 600 800 1000

Size of Stream (x10
6
)

|Dataset|=1x10
9
, Memory=512MB, Thres. FPR=0.1

F
P

R

RSBF
SBF

Figure 2: FPR Comparison

initially increases but then stabilizes. We observe that for both 128MB and 512MB
memory, RSBF similarly outperforms SBF. For 128MB memory, RSBF has a stable
FNR of 22% which is around 1.73× better compared to SBF which has an FNR of
38%. With 512MB memory, for RSBF we observe a stable FNR of 7%, around 1.86×
better than SBF with a stable FNR of 13%. Thus, RSBF consistently demonstrates
better FNR than SBF upto to a factor of 1.86×, for different datasets.

We emphasize that such significant reduction in FNR is novel with respect to stable
Bloom filters and extremely vital for practical applications such as search engines. This
performance of RSBF can be attributed to the forced insertion of a stream element
into the reservoir when the insert probability for the system falls below the threshold
p∗ as described earlier (Section 4). This approach eliminates the possibility of an FNR
occurring due to repeated rejection of an element from being inserted into the reservoir
given the lone operation of reservoir sampling. It can also be observed that essentially
it helps RSBF to adapt its reservoir in dynamic streaming environments. Hence, it
partially acts as a simple bias function for RSBF . SBF , on the other hand fails to
meet such demands.
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[8] proposes SBF having a unique feature, stability of the number of 1s present
in the Bloom filter leading to a stable performance of SBF in terms of FPR and FNR.
This stability poses an attractive feature for applications for guaranteeing a constant
performance with increasing stream lengths. However, SBF converges to its stable
point at a theoretical stream length of infinity. Practically, this represents a very large
input stream. RSBF also exhibits such stability but converges to a stable performance
at a much earlier point. This enables applications to guarantee efficiency at a much
smaller stream length.

Fig. 5 compares the difference in the number of 1s for successive number of records,
in the underlying Bloom filter data structures. By studying the variation in the differ-
ence in number of 1s with increasing number of records, one gets insights into the
convergence behavior of the two algorithm. Here again, the total number of records is
around 3M and FPR threshold used is 0.1. For 2KB memory, RSBF stabilizes quickly
as the difference in the number of 1s stabilizes to nearly 0 at only 500K records. How-
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ever, SBF does not stabilize even at 3M records. For 4KB memory, RSBF observes
stability at around 1.5M records, but SBF fails to stabilize even at 3M records. This
demonstrates that our algorithm, RSBF has much better convergence rate than SBF.

Fig. 6 similarly compares the difference in the number of 1s of successive number
of records for the synthetic dataset. With 512KB memory, the difference in the number
of 1s stabilizes to zero faster for RSBF (shortly after 50 million records) as compared
to SBF, which has not yet stabilized at 455 million records. This exactly validates
Eq. (5.26) that the number of 1s in RSBF becomes nearly constant much ahead of
SBF .
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We further emphasize the faster convergence of RSBF in Fig. 7 which compares
the FNR of both the algorithms with increase in stream length. We observe that the
increase of FNR in RSBF is around 0.1% over a stream length of 0.35M elements,
having an average deviation of 0.3 × 10−6 per element. On the other hand, SBF
demonstrates an increase in FNR of around 0.3% over 0.3M element with the average
deviation as 1×10−6. Therefore, one can figure out thatRSBF converges to an almost
stable FNR much earlier in the stream than SBF . This in turn reinforces the faster
convergence of the stability curves of RSBF compared to SBF , described earlier.

6.2 Detailed Analysis
In this section, we present detailed analysis of the algorithms, RSBF and SBF compared
against variation of memory used and percentage of distinct elements in the stream.

Table 2 presents the FNR and FPR with 100K records and 76% distinct records
while varying memory used for the underlying Bloom Filter data structure from 16K
bits to 4.2M bits. Here, both the FNR and FPR of RSBF and SBF are close to each
other for different values of memory used. This is due to the fact that the stream size
is quite small and neither of the structures have reached their stability point. Table 3
presents the FNR and FPR with 10M records and 49% distinct records with varying
memory from 16K bits to 4.2M bits. Here again, we observe comparable results for
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Space SBF RSBF SBF RSBF
(in bits) % FNR % FNR % FPR % FPR
16384 85.06 84.49 10.05 11.22
65536 74.37 74.85 8.093 8.384

4194304 5.51 6.29 0.00382 0.00263

Table 2: Dataset of 100K elements (76% Distinct)

both FNR and FPR in RSBF and SBF as the number of duplicates and distinct elements
in the stream are roughly equal. However, with 10M records, and percentage of distinct
elements lesser than 49%, RSBF has better FNR than SBF as exhibited in other dataset
values given below.

Table 4 presents the FNR and FPR with 695M records and 15% distinct records
while varying memory used for the underlying Bloom Filter data structure from 262K
bits to 4.2B bits. Here, FNR achieved by RSBF is better than SBF and this gap is higher
when larger memory is used. At around 67M bits, RSBF has FNR of 58.3%, while SBF
has FNR of 82.48%; while at 1B bits, RSBF has FNR of 23.12%, while SBF has FNR
of 37.79%. However, the FPR values remain similar across both these algorithms.

Table 5 presents the FNR and FPR with 1B records and 10% distinct records while
varying memory used for the underlying Bloom Filter data structure from 262K bits to
4.2B bits. Here again, FNR achieved by RSBF is better than SBF. At around 67M bits,
RSBF has FNR of 58%, while SBF has FNR of 82%; while at 1B bits, RSBF has FNR
of 23.47%, while SBF has FNR of 37%. The ratio of FNR between SBF and RSBF
increases to 1.74× at 4.2B bits. However, the FPR values remain similar across both
these algorithms. This demonstrates, that our algorithm, RSBF has consistent superior
FNR compared with SBF, with FPR values close to SBF though sometimes higher by
a small margin.
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Space SBF RSBF SBF RSBF
(in bits) % FNR % FNR % FPR % FPR
16384 88.83 87.52 11.08 12.464

262144 88.11 86.89 10.86 12.12
4194304 77.33 77.73 7.822 7.914

Table 3: Dataset of 10M elements (49% Distinct)

7 Conclusions & Future Work
Real-time data redundancy removal for streaming datasets poses a challenging prob-
lem. We have presented the design of a novel Bloom filter based on biased Reservoir
Sampling. Using threshold based non-temporal bias function, we obtain improved
FNR and convergence rates as compared to [8] while maintaining similar FPR. Using
detailed theoretical analysis, we prove upper bounds on FPR and FNR. Further, we
prove better convergence (stability of number of 1s) of our algorithm with expected
bounds on the number of 1s compared to other algorithms. We demonstrate real-time
in-memory DRR using both real and synthetic datasets of the order of 1B records. We
demonstrate upto 2× better FNR and much better convergence rates compared to the
best [8] prior results. To the best of our knowledge, RSBF offers the best known
FNR and convergence rates for streaming datasets. In future, we hope to parallelize
our current algorithm which in turn may lead to further advancements of parallel data

Space SBF RSBF SBF RSBF
(in bits) % FNR % FNR % FPR % FPR
262144 88.86 87.47 12.51 11.1

67108864 82.48 58.2818 8.3 8.4
1073741824 37.79 23.12 0.742 0.89
4294967296 12.94 7.37 0.069 0.072

Table 4: Dataset of 695M elements (15% Distinct)

19



Space SBF RSBF SBF RSBF
(in bits) % FNR % FNR % FPR % FPR

67108864 82.58 67.66 8.262 10.262
1073741824 38.17 23.47 0.7 0.83
4294967296 13.163 7.53 0.0634 0.0664

Table 5: Dataset of 1B elements (10% Distinct)

redundancy removal research.
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