
RC 21727 (4/20/2000)
Computer Sciences/Mathematics

IBM Research Report

Extracting Library-Based Object-Oriented Ap-
plications

Peter F. Sweeney, Frank Tip

IBM Research Division
T.J. Watson Research Center
Yorktown Heights, New York
pfs@us.ibm.com
tip@watson.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted
for publication. It has been issued as a Research Report for early dissemination of its contents. In view of
the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should
be limited to peer communications and specific requests. After outside publication, requests should be filled
only by reprints or legally obtained copies of the article (e.g., payment of royalties).

IBM
Research Division
Almaden � T.J. Watson � Tokyo � Zurich



Extracting Library-Based Object-Oriented Applications

Peter F. Sweeney and Frank Tip
IBM Thomas J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598

pfs@us.ibm.com tip@watson.ibm.com

April 20, 2000

Abstract

In an increasingly popular model of software distri-
bution, software is developed in one computing en-
vironment and deployed in other environments by
transfer over the internet. Extraction tools perform
a static whole-program analysis to determine unused
functionality in applications in order to reduce the
time required to download applications. We have
identified a number of scenarios where extraction
tools require information beyond what can be in-
ferred through static analysis: software distributions
other than complete applications, the use of reflec-
tion, and situations where an application uses sepa-
rately developed class libraries. This paper explores
these issues, and introduces a modular specification
language for expressing the information required for
extraction. We implemented this language in the
context of Jax, an industrial-strength application ex-
tractor for Java, and present a small case study in
which different extraction scenarios are applied to a
commercially available library-based application.

1 Introduction

In an increasingly popular software distribution
model, software is developed in one computing en-
vironment, and deployed in other environments by
transfer over the internet. Since the time required
to transfer an application is generally proportional to
the transferred number of bytes, it becomes impor-
tant to make applications as small as possible. Ap-
plication extractors are tools that reduce application
size by determining unused functionality that can be
removed from the application without affecting pro-

gram behavior.
Previously, extractors have been designed primar-

ily with complete applications in mind. Such whole-
application extractors require the user to specify
an application’s entry point(s), and rely on a static
whole-program analysis to determine functionality
that can be removed without affecting program be-
havior. However, the extraction of software distribu-
tions other than complete applications raises several
issues:

� Modern object-oriented applications typically
rely on one or more independently developed
class libraries. With the advent of virtual ma-
chine technology, library code is amenable to
the same analyses as application code, since
the same representation is used in each case.
When an application is distributed separately
from the libraries it depends upon, an extraction
tool needs to be aware of the boundary between
the two.

� Different kinds of software distributions (e.g.,
complete applications, web-based applications
that execute in the context of a browser, and ex-
tensible frameworks) have different sets of en-
try points, and require the application extractor
to make different assumptions about the deploy-
ment environment. In fact, the same unit of soft-
ware may even play different roles, depending
on the deployment scenario.

� The use of dynamic features such as reflec-
tion1 poses additional problems for extraction

1For convenience, we will henceforth use the term “reflec-
tion” to refer to all mechanisms for loading and accessing pro-

1



tools, because a static analysis alone is inca-
pable of determining the program constructs
that are used, and hence the program constructs
that can be removed.

� There are also some interesting interactions be-
tween the above issues. For example, consider
a situation where an application A is to be dis-
tributed together with an independently devel-
oped class library L in which reflection is used.
In general, the use of reflection inLmay depend
on the features in L that are used by A. We will
discuss how this observation affects extraction.

Each of these issues requires information that cannot
be obtained using static analysis alone, and has to be
provided to the extraction tool by the user. This pa-
per explores the above issues in detail, and provides
a uniform solution in the form of a small, modu-
lar specification language MEL (Modular Extraction
Language) for providing the information required to
extract various kinds of programs. MEL’s features
are essentially language-independent, with the ex-
ception of some Java-specific syntax used to refer to
program components such as classes, methods and
fields. In order to validate our approach, we im-
plemented MEL in the context of Jax, an industrial-
strength application extractor for Java developed at
IBM Research [18]. We discuss how several of
the program transformations and optimizations per-
formed by Jax are adapted to take into account MEL
scripts, and present a small case study in which dif-
ferent extraction scenarios are applied to a commer-
cially available library-based Java application.

The remainder of this paper is organized as fol-
lows. In Section 2, we present the requirements on
extraction tools in the presence of class library us-
age. Section 3 introduces a specification language
for defining the extraction of various kinds of library-
based applications. Section 4 presents a mechanism
for translating specifications to a small set of as-
sertions. Section 5 discusses an implementation of
MEL, and reports on a small case study. Section 6
summarizes related work, and Section 7 presents
conclusions and directions for future work.

gram components by specifying their name as a string value, and
for examining program structure.

2 Requirements

In this section, we analyze a number of frequently
occurring distribution scenarios, and determine what
information is required by extraction tools beyond
what can be obtained through static analysis.

2.1 Distribution scenarios

Figure 1 shows several distribution scenarios that
may occur in the presence of: a library vendor l re-
sponsible for creating and distributing a class library
L, an application vendor a responsible for creating
and distributing an L-based application A, and two
users, u and v, of applicationA.

It is reasonable to assume that library vendor l will
want to make library L as small as possible, in order
to reduce the download times experienced by cus-
tomers, but also to reduce the load of the server from
which the library is downloaded. Hence, l creates an
extracted version Lext of L, and distributes Lext in-
stead of L. Clearly, Lext should offer the same func-
tionality as L, but size-reducing optimizations can
still be applied to parts of L not exposed to users.

Application vendor a presumably downloadsLext
for use during development of application A. When
application A is ready for distribution, there are two
options, depending on whether or not the user al-
ready has the prerequisite library L installed. Fig-
ure 1 shows a user u who does not have (the correct
version of) L. Assuming that u does not expect to
download or create other L-based applications, it is
desirable for u to download a distribution ALext that
comprises the functionality of A, and the parts of L
used by A, but that omits the parts of L that are not
used by A. Since applications typically use only a
small part of the functionality of libraries they rely
on, the removal of the parts of L not used by A is
likely to significantly reduce the size of the distribu-
tion.

There are also scenarios where it is preferable to
keep the distributions of L and A separate. Fig-
ure 1 shows another user v of application A, who
has downloaded Lext directly from l, because he is
planning to deploy multiple applications that rely on
the library. Since v already has Lext, he only needs
to download the application itself from vendor a. To
this end, a creates an extracted version Aext of A

2



code

code
code

code

application vendor

code

from another

v:

L
L L

A B

ext ext

extext

VM VM VM VM

std. libraries std. libraries std. libraries std. libraries

AL
ext

A

l: library
vendor

a: application
vendor

application
user #1

application
user #2

u:

Figure 1: Illustration of different distribution scenarios.

that can be downloaded by v. It is important to real-
ize that keeping the distributions of A andL separate
has repercussions for the extraction of A itself. If
we want to accommodate scenarios where v obtains
a different version2 of L, then the extractor should
derived Aext from A without making assumptions
about the specific version of L that happens to be
available in a’s development environment. The stan-
dard Java libraries are an obvious example of this sit-
uation.

We will now investigate the issues related to the
use of reflection. In essence, reflection allows one to
access a program construct by specifying a run-time
string value that represents the construct’s name, and
to examine the structure of the classes used in a pro-
gram. Such features are problematic for extraction
tools because, in general, a static analysis cannot de-
termine which program constructs are accessed us-
ing reflection, and should therefore not be removed
or transformed. Therefore, extractors require addi-
tional information from the user that specifies which
program constructs are accessed using reflection. In
our experience, determining the program constructs
that may be accessed using reflection is a fairly easy

2This could either be an earlier version of L that was ob-
tained from library vendor l, or a completely different imple-
mentation of the library from a different vendor.

task for a programmer familiar with the code. How-
ever, it can be quite difficult to determine how reflec-
tion is used in third-party libraries, especially if the
source code for these libraries is unavailable. In the
example of Figure 1, the extraction of ALext from
A and L by application vendor a requires additional
information about the use of reflection in L. This
can be difficult to determine from distribution Lext
alone, because it does not contain the source code
for the library. To complicate matters further, the set
of program constructs in L accessed using reflection
may depend on the features in L that are used by A.
In general, different L-based applications may cause
different usage of reflection within L. Our solution
to these problems (discussed in detail below), will
be to have library vendor l distribute a script along
with Lext that contains the information required to
extract any L-based application. Our scripts allow l

to specify that a program construct is only accessed
using reflection under certain conditions (e.g., when
a certain method is reachable).

We have only discussed a few example distribution
scenarios. Other likely scenarios include:

� Extracting a library together that multiple appli-
cations that use it.

� Extracting a library in the context of another li-

3



brary that uses it. We believe that such situ-
ations, where multiple layers of libraries exist
and where only the topmost layer is exposed to
an application, is likely to become increasingly
common.

2.2 Roles of software units

We will adopt the non-descriptive term software unit
in the sequel to denote any collection of classes that
constitutes a logical entity. Recall that there is no
difference between code in a class library and code
in an executable application, and it is only the way
in which software units are used and composed that
determines how extraction should be performed. In
the remainder of this paper, the term role will be used
to refer to the way in which a software unit is used.
We will consider four roles that frequently occur in
the context of Java:

� An application is an executable software unit
with an external interface consisting of a single
main() method. It is assumed that classes in
applications are not further extended by deriva-
tion after extraction.

� An applet is an executable software unit that is
executed in the context of a browser. An applet
extends class java.applet.Applet and its
external interface consist of a set of methods in
java.applet.Applet that it overrides. It
is assumed that classes in applets are not further
extended by derivation after extraction.

� A library is not assumed to be executable by
itself, but is used as a building block by other
units. Classes in libraries may be extended by
derivation, and the external interface of a li-
brary consists of any method that has public
or protected access rights.

� A component is similar to a library in the sense
that it is an incomplete program used as a build-
ing block by other units but unlike a library
it is assumed that classes in a component can-
not be extended by derivation. The external in-
terface of a component contains every method
with public access rights.

Other roles such as JavaBeans [16] and servlets [7]
can be modeled similarly.

2.3 Specifying the extraction domain

There is no distinction between classes in different
software units at the language level. Consequently,
it is necessary to specify the “boundaries” between
software units when performing extraction. In our
approach, the user selects the set of classes that
should be extracted, and worst-case assumptions are
made about the behavior of classes that are not se-
lected.

In practice, there are very few situations where
all classes should be extracted. One can think of
the structure of an application as “layered”, with the
bottom layer consisting of the standard libraries, the
middle layer consisting of class libraries built on top
of the standard libraries (perhaps consisting of sub-
layers), and the topmost layer consisting of the ap-
plication itself. It is usually the case that classes be-
low a certain layer do not need to be shipped and
extracted because they are already available in the
deployment environment. In particular, the standard
class libraries are generally available, and are usually
excluded from the extraction process3. It is impor-
tant to realize that this is not merely an issue of avoid-
ing redundant work and shipping redundant code, but
potentially also one of correctness. If an application
class contains a call to a method in the standard li-
braries, inlining that call on one platform may result
in code that does not work on another platform.

2.4 Dealing with dynamic features

Java’s reflection mechanism allows programs to do
various forms of self-inspection. Figure 2 shows
an example program that uses structural reflection
(sometimes also referred to as introspection). In
this program, the class that represents the type T
of object t is retrieved using a call to method
java.lang.Object.getClass(), and stored
in variable c. The program then calls method
java.lang.Class.getDeclaredMethods()
to obtain a vector of objects representing the
methods in T. For each method in this vec-
tor, the name is retrieved (by way of a call to
java.lang.reflect.Method.getName()),

3In the case of embedded systems and network PC’s that run
a fixed set of applications it may be desirable to include the stan-
dard class libraries in the extraction domain.

4



import java.io.*;
import java.lang.Class;
import java.lang.reflect.Method;

public class Example1 f
public static void main(String args[])f
T t = new T();
Class c = T.getClass();
Method[] methods = c.getDeclaredMethods();
for (int i=0; i < methods.length; i++)f
Method m = methods[i];
String methodName = m.getName();
System.out.println(methodName);

g
g

g;

class T f
void foo()f � � � g;
void bar()f � � � g;

g;

Figure 2: A Java program that uses reflection.

and printed to standard output. Hence, the program
generates the following output:

foo
bar

Clearly, program behavior depends on the pres-
ence and the name of the methods in class T, even
though these methods are not invoked anywhere. It
is obvious that the use of reflection in Figure 2 pre-
cludes program transformations such as the removal
or renaming of methods in class T because such ac-
tions would affect program behavior.

Dynamic loading, another form of reflection, is a
heavily-used4 mechanism for instructing a Java Vir-
tual Machine to load a class X with a specified name
s, and return an object c representing that class. Re-
flection can be applied to c to create X-objects on
which methods can be invoked. The crucial issue is
that s is computed at run-time. This implies that,
in general, static analyses cannot determine which
classes are dynamically loaded5.

4Nine of the thirteen benchmarks studied in [18] use dynamic
loading.

5In some cases, the type of a dynamically loaded class can be
inferred by constant propagation of the string literals that rep-
resent the class name. However, we have observed that these
names are often read from files or manipulated in non-trivial
ways.

import java.io.*;
import java.lang.Class;

public class Example2 f
public static void baz(String name)f
try f
Class c = Class.forName(name);
Object o = c.newInstance();
I i = (I)o;
i.zap();

g
catch (ClassNotFoundException e)f
System.out.println("Error: " +
"Could not find " + name); g

catch (IllegalAccessException e)f
System.out.println("Error: " +
"Illegal access to " + name); g

catch (InstantiationException e)f
System.out.println("Error: " +
"Abstract " + name); g

g
g;

interface I f
public void zap();

g;

Figure 3: A Java program that uses dynamic loading.

Figure 3 shows a program fragment that ex-
hibits a fairly typical use of dynamic loading.
Class Example2 contains a method baz which
takes a single argument of type String, and dy-
namically loads a class with that name by call-
ing method java.lang.Class.forName(). A
reference to the dynamically loaded class is stored
in variable c. The program then calls method
java.lang.Class.newInstance() to create
a new object of the dynamically loaded type, casts it
down to an interface type I, and calls method zap
on the object. Observe that class instantiation (of the
dynamically loaded class) and method invocation (of
the default constructor of that class) occur implicitly.
This poses problems for optimizations such as dead
method removal because the analyses upon which
these optimizations are based typically need to know
which classes are instantiated, and which methods
are invoked.

Java provides a mechanism for implementing
methods in a platform-dependent way, typically us-
ing C or C++. The mechanism works roughly as
follows: The native keyword is used to designate

5



import java.lang.Class;

public class L f
public static void f()f

� � �
Class c = Class.forName("M");
� � �

g

public static void g()f
� � �
Class c = Class.forName("N");
� � �

g
g;

class M f � � � g;

class N f � � � g;

Figure 4: Example class library that uses dynamic load-
ing.

a method as being implemented in a different lan-
guage, and the corresponding method definition is
provided in an object file (e.g., a dynamically linked
library) associated with the Java application. The na-
tive code in the object file may instantiate classes,
invoke methods, and access fields in the applica-
tion. This obviously poses problems for any pro-
gram transformation that relies on accurate informa-
tion about class instantiation and method invocation,
because object code is notoriously hard to analyze.

It should be evident from the above examples that,
without additional information, the use of reflection,
dynamic loading, and native methods requires that
extremely conservative assumptions be made during
extraction: It would essentially be impossible to re-
move, rename, or transform any program construct.
The approach taken in this paper relies on the user
to specify a list of program constructs (i.e., classes,
methods, and fields) that are accessed using these
mechanisms, and to make the appropriate worst-case
assumptions about these constructs.

2.5 Modeling different usage contexts

Section 2.1 already alluded to issues related to the
use of third-party libraries in which reflection is used.
In order to create MEL scripts that are reusable in
different contexts, it is often desirable to specify that

a given program construct is only accessed using re-
flection under certain conditions. To illustrate this
issue, Figure 4 shows a small class library consisting
of three classes L, M and N. Class L has two methods:
f and g. A call to method f results in the dynamic
loading of class M, and a call to method g results in
the dynamic loading of class N. Note that a client that
calls f but not g will only access M, and a client that
calls g but not f will only access N. A specification
of the library’s behavior that states that any client of
L accesses both M and Nwould clearly be overly con-
servative.

Section 3 introduces a mechanism that allows con-
ditional specifications of the form “program con-
struct X should be preserved when method m is ex-
ecuted”. This allows one to express how dynamic
loading or reflection is dependent on the part of a
software unit’s functionality that is used. Conse-
quently, it enables the creation of a single, reusable
configuration file for a software unit that can be used
to extract that unit accurately in the context of differ-
ent clients.

We conclude this section with an observation. In
the above discussion, we have sketched two very dif-
ferent scenarios involving library L. In one exam-
ple (the distribution of Lext by l), all externally ac-
cessible L-methods should be treated as entry points
in determining which methods are reachable. In the
other scenario, (the distribution of ALext by a), only
L-methods invoked from A, and methods transitively
reachable from those methods should be preserved.
Hence, the decision on which methods to preserve re-
quires information not present in the code of L. This
precludes an approach based on annotating the code
of Lwith additional information, unless different an-
notations are used to support different scenarios.

3 A Specification Language

Figure 5 presents a BNF grammar for a simple spec-
ification language, MEL (Modular Extraction Lan-
guage), that allows users to specify at a high level
how to extract a library-based application. The se-
mantics of the various features in MEL are closely
related to the discussions in Section 2. A MEL script
comprises:

1. A domain specification, consisting of a class

6



MELScript ::= Item�
Item ::= DomainSpecifier j

Statement j Import
DomainSpecifier ::= ClassPath j Include
ClassPath ::= path <Directory> j

path <ZipFile>
Include ::= include <Class> j

include <PackageName>
Statement ::= Role j Preserve
Role ::= application <Class> j

applet <Class> j
library <Class> j
component <Class>

Preserve ::= SimplePreserve j
CondPreserve

SimplePreserve ::= preserve <Class> j
preserve <Method> j
preserve <Field>

CondPreserve ::= SimplePreserve
when reached <Method>

Import ::= import <FileName>

Figure 5: BNF Grammar for the user-level information
in MEL

.

path where classes can be found, and a set of
include statements that specify the extraction
domain. Any class not listed in an include
statement is considered external to our analyses
in the sense that it will not be extracted, and that
worst-case assumptions will be made about its
behavior.

2. A set of statements. There are two kinds of
statements. Role statements serve to designate
the role of some or all of the classes included
in the extraction domain as application,
applet, component, or library. The se-
mantics of these roles were discussed earlier in
Section 2.2. Preserve statements are used to
specify that program constructs (i.e., classes,
methods, and fields) should be preserved be-
cause they are accessed either outside of the ex-
traction domain or through reflection, and that
worst-case assumptions should be made about
these constructs. Following the discussion of
Section 2.5, program constructs can be condi-
tionally preserved depending on the reachabil-
ity of a specified method using a conditional
preserve statement.

import L;

public class A f
public static void main(String args[])f

� � �
L l = new L();
l.g();
� � �

g
g;

Figure 6: Example application that uses the library of
Figure 4.

path � � �
include L
library L
preserve M when reached L.g()
preserve N when reached L.f()

Figure 7: Specification lib.mel for the class library of
Figure 4.

path � � �
include A
application A
import lib.mel

Figure 8: Specification app.mel for the application of
Figure 6.

3. A list of imported configuration files. The se-
mantics of the import feature consist of tex-
tual expansion of the imported file into the im-
porting file.

Figure 6 shows an example application A that uses
the library of Figure 4. Observe that A’s main()
routine creates an L-object and invokes L’s method
g(). Figures 7 and 8 present MEL scripts lib.mel
and app.mel for the library of Figure 4 and the ap-
plication of Figure 6, respectively. The conditional
preserve statements in lib.mel ensure that class M is
preserved if methodL.g() is reached, and that class
N is preserved if method L.f() is reached. Since A
only calls method L.g(), class N will not be ex-
tracted.

7



Statement ::= Assertion j ConditionalAssertion
Assertion ::= SimpleAssertion
Assertion ::= extendible <Class>
Assertion ::= overridable <Method>
SimpleAssertion ::= instantiated <Class>
SimpleAssertion ::= reached <Method>
SimpleAssertion ::= accessed <Field>
SimpleAssertion ::= preserveIdentity <Class>
SimpleAssertion ::= preserveIdentity <Method>
SimpleAssertion ::= preserveIdentity <Field>
CondAssertion ::= SimpleAssertion

when reached <Method>

Figure 9: BNF grammar for the extractor-level informa-
tion in MEL.

4 Implementation Strategy

The specification language presented in Figure 5 was
designed to make it easy for programmers to spec-
ify how a collection of software units should be ex-
tracted. However, the algorithms used by extraction
tools typically require low-level information such as
methods that are potentially executed, and classes
that are potentially instantiated. To bridge the gap
between user-level and extractor-level information,
we add a number of assertion constructs to MEL,
and provide a translation from user-level statements
to these assertions. An important benefit of this ap-
proach is that all roles and usage scenarios can be
treated uniformly by the extractor.

Figure 9 shows a BNF grammar for MEL as-
sertions. The instantiated, reached, and
accessed assertions are provided for express-
ing that a class is instantiated, a method is
reached, or a field is accessed, respectively. The
preserveIdentity assertions express that a
program construct may be accessed from outside
the extraction domain or accessed through reflec-
tion, which implies that the construct’s name or sig-
nature should not be changed. The extendible
and overridable assertions serve to express that
a class may be extended, and that a method may
be overridden after extraction, respectively. In Sec-
tion 5, we discuss the impact of the latter two types
of assertions on the closed-world assumptions made
by optimizations such as call devirtualization.

The reached, accessed, instantiated,
and preserveIdentity assertions also have a
conditional form. Conditional assertions are used

to model the conditionalpreserve statements that
specify situations where reflection is used in a spe-
cific method.

Table 1 shows how statements are translated to
assertions. The table contains a row for each type
of MEL statement in which the rightmost column
shows the assertions generated for that statement.
The translation process for roles can be summarized
as follows:

� Worst-case assumptions are made to determine
a set of methods that can be invoked from out-
side the extraction domain. Each such method
is assumed to be reached, and its identity
is preserved to indicate that external references
may rely on its name and signature. Different
roles require different treatment. For example,
for applications, only themain() method
is referenced externally and needs to be added
to the set. However, for classes that play a
library role all public and protected
methods are added.

� For each role of a class, the appropriate as-
sumptions are made to determine the fields that
may be accessed from outside the extraction
domain, and all such fields are asserted to be
accessed. For example, all public fields
of components are assumed to be accessed.

� Any class that plays an applet role is instan-
tiated by the JVM when the applet is loaded by
a browser. We model this by asserting that each
applet class is instantiated.

� For classes that play a library role, we have
to assume that further subclassing and method
overriding may take place after extraction. To
preserve this behavior, we assert that the class
should be extendible and all of its virtual
methods should remain overridable.

The translation of preserve statements into as-
sertions assumes that the identity of any program
construct accessed outside the extraction domain or
through reflection should be preserved. Hence, any
program construct that is referenced in a preserve
statement receives the preserveIdentity asser-
tion. For preserved classes, we make the conserva-
tive assumption that they are instantiated if they are

8



statement derived assertions
application C preserveIdentity C

reached C .main(java.lang.String[])
preserveIdentity C .main(java.lang.String[])

applet C instantiated C
preserveIdentity C
preserveIdentity C .m forevery C .m that overrides java.applet.Applet.m
reached C .m forevery C .m that overrides java.applet.Applet.m

component C preserveIdentity C
preserveIdentity C .m forevery public methodC .m
reached C .m forevery public methodC .m
preserveIdentity C .f forevery public fieldC .f
accessed C .f forevery public field C .f

library C preserveIdentity C
extendible C
reached C .m forevery public or protected method C .m
preserveIdentity C .m forevery public or protected method C .m
overridable C .m forevery public or protected virtual methodC .m
accessed C .f forevery public or protected field C .f
preserveIdentity C .f forevery public or protected field C .f

preserve C instantiated C whenC is not an interface or an abstract class
preserveIdentity C

preserve C .m reached C .m
preserveIdentity C .m

preserve C .f accessed C .f
preserveIdentity C .f

preserve C when reached D.n instantiated C when reached D.n
preserveIdentity C when reached D.n

preserve C .m when reached D.n reached C .m when reached D.n
preserveIdentity C .m when reached D.n

preserve C .f when reached D.n accessed C .f when reached D.n
preserveIdentity C .f when reached D.n

Table 1: Translation of statements into assertions.

9



not abstract or an interface. Each preserved
method is assumed to be invoked, and is therefore
asserted to be reached. Similarly, each preserved
field is assumed to be accessed. The translation
of conditional preserve statements involves car-
rying over the condition from the statement to the
assertion, but is otherwise completely analogous.

It is hard to make any completeness arguments
about MEL. In our design of the high-level MEL
statements, we have attempted to make it easy for
the user to specify commonly occurring extraction
scenarios. In addition, the low-level MEL assertions
are sufficient to ensure that a program construct will
not be affected by an extractor. In our implemen-
tation, we have given the user direct access to the
lower-level MEL assertions as a fall-back option for
extraction scenarios that are not supported by high-
level MEL statements. One instance where this has
already proven to be useful is a situation where the
main class of an application contained an unaccessed
field called “copyright” containing a copyright mes-
sage. Since these fields are not accessed, an explicit
preserveField MEL assertion had to be sup-
plied to preserve the field.

5 Implementation

In order to validate our approach, we implemented
MEL in the context of Jax [18]6. The implementa-
tion also permits users to specify MEL assertions di-
rectly, and has mechanisms for specifying the name
of the generated zip file, and for selectively disabling
optimizations. Jax provides two mechanisms to sup-
port MEL. In “batch mode”, a MEL script is read
from a file, and the application is processed accord-
ingly. A Graphical User Interface (GUI) that allows
users to create MEL scripts interactively is also pro-
vided.

We will discuss how a number of program trans-
formations and optimizations performed by Jax can
be adapted to operate on various kinds of library-
based applications by taking into account MEL as-
sertions. These optimizations were originally pre-
sented as whole-programs optimizations, by making

6Version 6.0 of Jax (released in August 1999) supports MEL
in its full generality, although the syntax of the MEL keywords
in the system differs slightly from the syntax used in this paper.

the “closed world” assumption that the entire pro-
gram is available at analysis time.

5.1 Call graph construction

Since all of the optimizations under consideration
rely directly or indirectly on the construction of a call
graph, we will first discuss how call graph construc-
tion algorithms can be adapted to take into account
MEL assertions. We will use Rapid Type Analysis
(RTA), an efficient call graph construction algorithm,
as a specific example. Other call-graph construction
algorithms (see e.g., [9, 11]) can be adapted simi-
larly.

RTA [5, 4] is a popular algorithm for constructing
call graphs and devirtualizing call sites that only re-
quires class hierarchy information and global infor-
mation about instantiated classes, and that has been
demonstrated to scale well in practice [18]. RTA
is most easily implemented as an iterative algorithm
that uses three worklists containing (i) reached meth-
ods, (ii) reached call sites7, and (iii) instantiated
classes. The worklist of reached methods is initial-
ized to contain the set of methods called from out-
side the application (e.g., an application’s main()
method), and the other two worklists are initialized to
the empty set. Then, following steps are performed
repeatedly:

� The body of a reached method is scanned. Any
call sites and class instantiations that were not
previously encountered are added to the appro-
priate worklist.

� Each call to a method C:f is resolved with re-
spect to each instantiated class D, where D is
a subclass of C. This involves performing a
method lookup for f in class D. If the lookup
resolves to a method that was not previously
reached, it is added to the worklist of reached
methods, and the call graph is updated with
edges that reflect the flow of control between
caller and callee.

This iterative process continues as long as addi-
tional methods, call sites, and instantiated classes are
found. In cases where a class C in the extraction

7Since all calls to any given method f are resolved similarly,
any reasonable implementation combines them.

10



domain overrides a method f in a class outside the
extraction domain, we make the worst-case assump-
tion that there is a call to this method on any object
of any instantiated class.

In order to adapt RTA to take into account MEL
assertions, we first need to adapt the initialization of
the worklists. The worklist of reached methods is
initialized to contain any method m for which an as-
sertionreached mwas generated. The worklist of
reached call sites is initialized to contain the empty
set. Finally, the worklist of instantiated classes is ini-
tialized to contain any classC for which an assertion
instantiated C was generated.

Then, in the iterative part of the algorithm, we add
the following additional steps, which are executed
when a method m is added to the worklist of reached
methods.

� Whenever a method m is added to the work-
list of reached methods for which an assertion
instantiated C when reached m

exists, class C is added to the worklist of in-
stantiated classes if it does not already occur in
that list.

� Whenever a method m is added to the work-
list of reached methods for which an asser-
tion reached m0 when reached m ex-
ists, method m0 is added to the worklist of
reached methods if it does not already occur in
that list.

5.2 Dead method removal

Dead Method Removal [18] is an optimization that
removes redundant method definitions. This opti-
mization relies on the information gathered during
call graph construction to determine situations where
a method can be removed completely, as well as sit-
uations where a method’s body can be removed but
where its signature needs to be retained. The latter
situation arises in the following cases:

� There is a reached virtual call site that refers
statically to method C:m, but C:m is not the
target of any dynamic dispatch or direct call.

� There is a classC that (i) contains an unreached
method C:m, and (ii) implements an interface

I containing a declaration I:m of the same
method that is called elsewhere in the applica-
tion.

Note that, in the latter case, method C:m cannot be
removed because the resulting class file would be
syntactically invalid. In both cases, no additional in-
formation is necessary beyond the information deter-
mined during call graph construction.

5.3 Call devirtualization

Call devirtualization [6, 3] transforms virtual method
calls into direct method calls. This transformation
can be applied to a virtual call site x to a methodC:m
if (i) there is only one method that can be reached
from x, and (ii) method C:m cannot be overridden
after extraction of the application. The first condition
can be verified by inspection of the call graph, and
the second condition is met if there is no assertions
overridable C:m or extendible C, where
C:m is the method invoked at call site x. Other
optimizations that rely on closed-world assumptions
such as method call inlining [15] and call devirtual-
ization can be adapted similarly.

5.4 Dead field removal

Dead field removal [17] removes fields that are not
accessed, as well as fields that are write-accessed
but not read-accessed. This optimization requires
that the bodies of all reached methods are scanned
for read and write operations to fields8. Fields that
are neither read nor written can simply be removed.
Fields that are only written are also removed along
with the write-operations that access these fields.
Dead field removal can be adapted to handle MEL
assertions by considering a field C:f to be read-
accessed if there exists a accessed C:f assertion.
Conditional accessed assertions can be treated in
the same way as conditional reached assertions.

5.5 Name compression

Name compression reduces application size by re-
placing the names of classes, methods, and fields

8This is most easily done during call graph construction
when method bodies have to be traversed anyway.

11



with shorter names. The names of a class or field
x can be changed if x is not instantiated or ac-
cessed outside the extraction domain, respectively.
The conditions under which methods can be re-
named are a bit more complicated. Certain meth-
ods such as constructors, class initializers, and class
finalizers cannot be renamed. Virtual methods re-
quire that the method does not override a method
outside the extraction domain, and if one virtual
method overrides another, both must be renamed
correspondingly9. In the presence of MEL asser-
tions, a number of additional constraints have to
be imposed on the renaming of program constructs.
Any program construct for which there exists an
assertion preserveIdentity x cannot be re-
named, and any method m for which there exists an
assertion overridable m cannot be renamed.

5.6 Class hierarchy transformations

Removal of unused classes, and merging of a de-
rived classC with its base classB reduce application
size. The latter transformation involves moving the
methods10 and fields from C to B, and updating the
references to these methods accordingly. The main
benefit of class merging has to do with the fact that
in Java class files, each class is a self-contained unit
with its own set of literals, referred to as its constant
pool. Classes that are adjacent in the hierarchy typ-
ically have many literals in common, and merging
such classes reduces the duplication of literals across
the different class files. Class merging may also en-
able the transformation of virtual method calls into
direct method calls. Space limitations do not permit
a complete discussion of class merging here, and we
refer the reader to [18, 19] for details. In order to take
into account MEL assertions, any class C for which
there exists an assertion preserveIdentity C

should not be removed, or merged into its base class.

9Actually, the situation is slightly more complex. Consider a
situation where a class C extends a class B and implements an
interface I , and where a method f is declared in I , defined inB,
but not defined in C itself. Then, the occurrences of f in I and
B are related and should be renamed correspondingly.

10A minor practical issue that comes up here is that construc-
tor methods need to be made unique. At the Java class file
level, this can be accomplished by adding additional dummy
arguments.

5.7 A Case Study

We now present a small case study in which different
extraction scenarios are applied to Cinderella11, an
interactive geometry tool used for education and self-
study in schools and universities. Cinderella consists
of an application, which can be used for construct-
ing interactive geometry exercises, and an applet in
which students can attempt to solve these exercises.
Two interesting observations can be made about Cin-
derella. First, the application and the applet are de-
rived from the same code base, which is contained in
a single zip file. Second, Cinderella relies on a class
library called “ANTLR” for parsing.

Table 2 shows different distribution scenarios for
Cinderella. The first two rows, labeled Antlr
(orig.) and Both (orig.) are concerned
with the original distributions of Cinderella and
ANTLR, respectively. The columns of the table
show the size of the zip file, and the numbers of
classes, methods and fields, respectively. The next
row, labeled Antlr shows the result of extract-
ing ANTLR as a stand-alone library. The reduc-
tion in size was obtained by removing several meth-
ods and fields that are only accessible inside the
library. The next three rows, labeled Applet,
Application, and Both shows the size of ex-
tracting the application, the applet, and their com-
bination without ANTLR. Finally, the last three
rows, labeled Applet + Antlr, Application
+ Antlr, and Both + Antlr show the results
of extracting the application, the applet, and their
combination together with the parts of ANTLR that
they use.

The following observations can be made from
these experiments:

� The applet’s functionality is (roughly) a sub-
set of the application’s functionality, because
adding the applet to the distribution does not in-
crease size by much.

� On the other hand, the size of the applet is sig-
nificantly smaller than the combined distribu-
tion. Hence, users that only require the applet
will prefer the distribution containing only the
applet.

11See www.cinderella.de.

12



distribution zip file classes methods fields

Antlr (orig.) 226,648 130 1392 684
Both (orig.) 664,826 337 3057 2391

Antlr 181,535 130 1369 677

Applet 172,486 154 1241 789
Application 380,299 263 2382 1733
Both 390,463 268 2424 1743

Applet+Antlr 184,486 177 1355 842
Application 391,813 285 2490 1784
+Antlr
Both + Antlr 403,327 293 2541 1797

Table 2: Results of multiple distribution scenarios for
“Cinderella”.

� From the fact that the distributions that include
ANTLR
are
not much bigger than the distributions without
ANTLR, we can infer that Cinderella uses only
a small subset of ANTLR’s functionality.

� Extracting ANTLR by itself results in a non-
trivial (about 20%) reduction of distribution
size. This confirms that extracting stand-alone
class libraries is worthwhile.

6 Related Work

We will begin this section with a brief historical per-
spective on this work. The approach taken in this
paper was motivated by our experiences with Jax, an
application extractor for Java [18]. Jax was devel-
oped as tool for extracting applications, and initially
relied on ad-hoc solutions for several of the problems
we study in this paper. For example, there was a
fixed “boundary” between applications and the stan-
dard libraries and based on the names of classes, and
a simple, low-level mechanism was provided to spec-
ify that certain program constructs accessed using re-
flection should be preserved. As a result, Jax was
only suitable for distribution scenarios in which an
application is shipped by itself, or where an applica-
tion and a library are extracted and shipped together.
The benchmarks studied in [18] are all instances of
one of these scenarios. The work in this paper was
motivated by our goal to accommodate other distri-
bution scenarios such as independently shipped li-
braries, and to unburden the developer of a library-

based applications from having to specify informa-
tion (e.g., the use of reflection) about the library.

The extraction of applications was pioneered in
the Smalltalk community, where it is usually referred
to as “packaging” [12, 10, 14]. Smalltalk packaging
tools typically have mechanisms for excluding cer-
tain standard classes and objects from consideration,
and for forcing the inclusion of objects and meth-
ods. While the latter mechanism is sufficient to han-
dle programs that use reflection, we are not aware of
any Smalltalk extractor that models different types
of applications, or that provides a feature to preserve
certain program constructs conditionally.

Agesen and Ungar [2, 1] describe an application
extractor for the Self language that eliminates unused
slots from objects (a slot corresponds to a method or
field). In his PhD thesis [1, page 146], Agesen writes
that there is no easy solution to dealing with reflec-
tion other than “rewriting existing code on a case
by case basis as is deemed necessary” and suggests
“encouraging programmers writing new code to keep
the limitations of extraction technology in mind”. In
contrast, we allow the user to specify where reflec-
tion occurs, so that applications that use reflection
can be extracted.

Chen et. al [8] describe Acacia, an extraction tool
for C/C++ based on a repository that records sev-
eral relationships between program entities. Several
types of reachability analyses can be performed, in-
cluding a forward reachability analysis for determin-
ing entities that are unused. Chen et al. identify sev-
eral issues that make extraction difficult such as the
use of libraries for which code is unavailable, and
situations where functionality should be preserved
because source modules are shared with other ap-
plications. Unlike our work, Acacia is an analysis
tool aimed at providing information to the user, and
does not actually perform any program transforma-
tions such as dead code elimination. A number of is-
sues that we study such as the use of reflection is not
discussed, and no mechanism appears to be available
for supplying additional information to the extractor.

In the context of Java, we are aware of a number
of several commercially available extraction tools.
DashO-Pro12 and Condensity13 are tools with sim-

12DashO-Pro is a trademark of preEmptive Solutions, Inc.
See www.preemptive.com.

13Condensity is a trademark of Plumb Design, Inc. See

13



ilar goals as Jax. We are not aware of any published
work on the algorithms used by these tools, or on the
internal architecture of these tools.

There is a large body of work on reverse engineer-
ing that attempts to extract designs or object models
from applications (see e.g., [13]). This work could
benefit from application extraction technology be-
cause, by eliminating dead code, more precise de-
signs could be extracted, and spurious relationships
between classes or program constructs would not ap-
pear in the extracted designs. Similar to applica-
tion extractors, design extraction tools face problems
with dynamic language features such as reflection, in
the sense that additional information from the user is
needed to perform extraction.

7 Conclusions and Future Work

We have identified a number of situations where the
extraction of software requires information that can-
not be obtained by static analysis techniques alone.
This includes software distributions other than com-
plete applications, the use of reflection in applica-
tions, and situations where library-based applications
are extracted and distributed separately.

To address these issues, we have proposed a small,
modular specification language, MEL, that allows
one to specify the information required for extraction
in a uniform manner. We have argued that the modu-
lar nature of MEL scripts allows for a useful separa-
tion of responsibilities: each module of a MEL script
can be written by a programmer who is familiar with
the code, and extraction of an application that relies
on third-party libraries only requires a MEL script
for that library.

We have discussed how several whole-program
transformations performed by extractors can be
adapted to various other kinds of software units
by taking into account the information contained in
MEL specifications. Our approach was implemented
in the context of Jax, an application extractor for Java
[18], and we present a small case study that involves
several realistic extraction scenarios for a commer-
cially developed Java application.

We intend to support the extraction of other widely
used library types such as JavaBeans [16]. Other

www.condensity.com.

topics for ongoing research include adding more so-
phisticated conditional features to MEL such as con-
ditions based on paths in call graphs, and boolean
conjunction and disjunction of conditions. Further-
more, we are considering “safety” features such as
the insertion of run-time checks to ensure that the in-
formation specified in a MEL script is correct and
complete.

Acknowledgements

We are grateful to John Field, Harold Ossher, Gregor
Snelting for comments on drafts of this paper.

References
[1] AGESEN, O. Concrete Type Inference: Delivering Object-

Oriented Applications. PhD thesis, Stanford University,
December 1995. Appeared as Sun Microsystems Labora-
tories Technical Report SMLI TR-96-52.

[2] AGESEN, O., AND UNGAR, D. Sifting out the gold: De-
livering compact applications from an exploratory object-
oriented programming environment. In Proc. of the
Ninth Annual Conf. on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’94) (Port-
land, OR, 1994), pp. 355–370. ACM SIGPLAN Notices
29(10).

[3] AIGNER, G., AND HÖLZLE, U. Eliminating virtual func-
tion calls in C++ programs. In Proc. of the Tenth European
Conf. on Object-Oriented Program (ECOOP’96) ((Linz,
Austria), July 1996), pp. 142–166.

[4] BACON, D. F. Fast and Effective Optimization of Stati-
cally Typed Object-Oriented Languages. PhD thesis, Com-
puter Science Division, University of California, Berkeley,
Dec. 1997. Report No. UCB/CSD-98-1017.

[5] BACON, D. F., AND SWEENEY, P. F. Fast static analy-
sis of C++ virtual function calls. In Proc. of the Eleventh
Annual Conf. on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’96) (San Jose,
CA, 1996), pp. 324–341. SIGPLAN Notices 31(10).

[6] CALDER, B., AND GRUNWALD, D. Reducing indirect
function call overhead in C++ programs. In Proc. of the
21st Annual ACM Symposium on Principles of Program-
ming Languages (1994), pp. 397–408.

[7] CALLAWAY, D. R. Inside Servlets: Server-Side Program-
ming for the Java Platform. Addison-Wesley, 1999.

[8] CHEN, Y.-F., GANSNER, E. R., AND KOUTSOFIOS, E. A
c++ data model supporting reachability analysis and dead
code detection. IEEE Transactions on Software Engineer-
ing 24, 9 (Sept. 1998), 682–694.

[9] DEAN, J., GROVE, D., AND CHAMBERS, C. Optimiza-
tion of object-oriented programs using static class hier-
archy analysis. In Proc. of the Ninth European Conf.

14



on Object-Oriented Programming (ECOOP’95) (Aarhus,
Denmark, Aug. 1995), W. Olthoff, Ed., Springer-Verlag,
pp. 77–101.

[10] DIGITALK INC. Smalltalk/V for win32 Programming,
1993. Chapter 17: ”Object Libraries and Library Builder.

[11] DIWAN, A., MOSS, J. E. B., AND MCKINLEY, K. S.
Simple and effective analysis of statically-typed object-
oriented programs. In Proc. of the Eleventh Annual Conf.
on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’96) (San Jose, CA, 1996),
pp. 292–305. SIGPLAN Notices 31(10).

[12] IBM CORPORATION. IBM Smalltalk User’s Guide, ver-
sion 3, release 0 ed., 1995. Chapter 36: Introduction to
Packaging, Chapter 37: ”Simple Packaging, Chapter 38:
”Advanced Packaging.

[13] JACKSON, D., AND WAINGOLD, A. Lightweight extrac-
tion of object models from bytecode. In Proc. of the Inter-
national Conf. on Software Engineering (ICSE ’99) (Los
Angeles, CA), 1999).

[14] PARCPLACE SYSTEMS. ParcPlace Smalltalk, object-
works release 4.1 ed., 1992. Section 16: Deploying an
Application, Section 28: Binary Object Streaming Service.

[15] SCHEIFLER, R. W. An analysis of inline substitution for
a structured programming language. Commun. ACM 20, 9
(Sept. 1977), 647–654.

[16] SUN MICROSYSTEMS. JavaBeans, version 1.01 ed. 2550
Garcia Avenue, Mountain View, CA 94043, July 1997.

[17] SWEENEY, P. F., AND TIP, F. A study of dead data
members in C++ applications. In Proc. of the ACM
SIGPLAN’98 Conf. on Programming Language Desigen
and Implementation (PLDI ’98) (Montreal, Canada, June
1996), pp. 324–332. ACM SIGPLAN Notices 33(6).

[18] TIP, F., LAFFRA, C., SWEENEY, P. F., AND STREETER,
D. Practical experience with an application extractor for
Java. In Proc. of the Fourteenth Annual Conf. on Object-
Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA’99) (Denver, CO), 1999), pp. 292–305.
SIGPLAN Notices 34(10).

[19] TIP, F., AND SWEENEY, P. F. Class hierarchy specializa-
tion. In Proc. of the Eleventh Annual Conf. on Object-
Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA’97) (Atlanta, GA, 1997), pp. 271–285.
ACM SIGPLAN Notices 32(10).

15


