
RI 14009, 15 Dec 2014                                                         Computer Science 
 
 
 

IBM Research Report 
 
 

Simplifying Web Programming 
 
 

Nishant Sinha 
IBM Research, India 

 
Rezwana Karim 

Rutgers University, USA 
 

Monika Gupta 
IBM Research, India 

 
 
 
IBM Research Division 
Almaden - Austin  - Beijing - Delhi – Bangalore - Haifa - T.J. Watson - Tokyo - Zurich 
 
LIMITED DISTRIBUTION NOTICE:  This report has been submitted for publication 
outside of IBM and will probably be copyrighted is accepted for publication.  It has 
been issued as a Research Report for early dissemination of its contents.  In view of 
the transfer of copyright to the outside publisher, its distribution outside of IBM prior 
to publication should be limited to peer communications and specific requests.  After 
outside publication, requests should be filled only by reprints or legally obtained 
copies of the article (e.g., payment of royalties).  Copies may be requested from IBM 
T.J. Watson Research Center, Publications, P.O. Box 218, Yorktown Heights, NY 
10598 USA (email:  reports@us.ibm.com)..   Some reports are available on the 
internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home . 
 
 

 
 



Simplifying Web Programming

Nishant Sinha
IBM Research

India
nishant.sinha@in.ibm.com

Rezwana Karim
Rutgers University

USA
rkarim@cs.rutgers.edu

Monika Gupta
IBM Research

India
monikgup@in.ibm.com

ABSTRACT
Modern web programming is plagued by a jungle of heterogeneous
programming frameworks and lacks adequate abstractions for end-
to-end rapid, structured, design and development. We studied the
current problems faced by developers using an online survey, and
found that integrating client-side interactivity with the back-end is
a major source of inefficiency. Based on the reported issues, we
developed a new programming environment, called WEBNAT, to
reduce the burden of client-server programming. WEBNAT makes
it easy to specify bindings of client-side views with server-side data
and provides multiple abstractions that enable succinct specifica-
tions for interactive web applications. We conducted a user study to
understand its usefulness and barriers to adoption. Our participants
were able to learn and use WEBNAT in less than 2 hours showing
minimal learning curve. We also discovered that although novices
embrace the system readily, experience developers are more cau-
tious about adopting a new web programming framework.

1. INTRODUCTION
Programming for the web is quite intimidating. The web de-

veloper faces a jungle of low-level web technologies to deal with,
for client-side, e.g., HTML, CSS, JavaScript (JS) libraries, server-
side, e.g., PHP, J2EE, Django, Ruby on Rails (RoR), and database
interaction, e.g., MySQL, MongoDB, Derby. Writing even concep-
tually simple applications (apps) requires inordinate amount of ef-
fort: learning multiple languages and frameworks (most apps com-
bine 5 or more frameworks), diving into nitty-gritty details of each
framework and writing glue code, often repeatedly, to make mul-
tiple layers inter-operate. Consequently, the entry barrier for web
programming is high even for skilled programmers let alone novice
end-users.

To discover the key hurdles during development, we conducted
an online survey with 40 web developers, having varied experience
levels and backgrounds. Most participants were pained by lack of
tools for efficient UI design and handling cross-browser compat-
ibility. The next key issue was about structuring the application
(separating layers) and writing glue code for synchronizing states
across the browser, server-side logic and the database. Finally, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISEC’15, Bangalore, Karnataka, India.
Copyright 2015 ACM ACM XXX-1-YYYYY-000-8/00/0015 ...$15.00.

responses also complained about writing secure apps and complex
server/database configuration setup needed for development. In
summary, besides UI design, writing structured apps and debug-
ging erroneous glue code continues to be a challenge for developers
in spite of many sophisticated web frameworks being available.

The model-view-controller (MVC) paradigm [32] is the de-facto
structuring principle for web apps. The MVC pattern advocates
separation of concerns between three entities: models capturing
app data, views describing the visual appearance and the controller
which handles transformations between models and views along
with navigation control. Without proper separation of concerns,
it is easy for programmers to slip into unstructured programming
mode where they may intermingle MVC components of the appli-
cation and duplicate functionality unknowingly, making apps inad-
vertently complex. Besides enabling modular development, a key
benefit of model-view separation is reactivity: the view is supposed
to refresh whenever the bound model is updated. Using MVC pat-
terns can dramatically reduce the developer’s coding effort, e.g., by
using reactive templates provided by the Angular [2], the code size
for the Google Feedback application came down to 1.5KLoC from
17KLoC.

Not surprisingly, most modern web programming frameworks
spawned over the last decade, e.g., Ruby on Rails, Django, Sym-
phony, ASP.NET, Backbone.js, enforce some form of MVC-based
design. However, our survey shows that these frameworks lack
suitable programming abstractions which enable MVC-based de-
sign end-to-end. For example, although RoR contains ActiveRe-
cords which allows the developer to avoid dealing with low-level
server-database interactions, RoR does not facilitate data synchro-
nization between models on the client-side and the ActiveRecords
in the backend. Thus, programmers are forced to duplicate data or
code between client and server. Similarly, popular frameworks like
Angular [2], Backbone [3] and React [6] allow convenient model-
view bindings on the client-side but do not assist with data synchro-
nization between client and server. In absence of strict end-to-end
enforcement of MVC, the developer wastes time writing low-level,
erroneous boilerplate code for one or more application layers, lead-
ing inevitably to complex, bloated and unmaintainable apps.

In this paper, we present a new domain-specific language WEB-
NAT to enable effective MVC-based design of web apps. Design-
ing a WEBNAT app involves three stages: (a) declaring the data
models as typed variables (b) defining the views as HTML/CSS
templates [4] with placeholders for dynamic data expressions and
(c) defining the controllers containing the presentation as well as
business logic over models and views. WEBNAT includes multi-
ple abstractions to enforce MVC separation while avoiding boiler-
plates:

• First-class views: In WEBNAT, view references can be used



as commonly as variables, e.g., the syntax allows statements
of form #t = m, where #t refers to an HTML table ele-
ment instantiation and m is a variable of type array(int).

• Reactive-by-default. To enable model-view reactivity, con-
ventional languages rely on special datatypes like signal
or stream [25, 15] and corresponding APIs ($E, $B [25]).
Statements of form (a = b + c) over integer variables a,
b and c must then be transformed [16] to corresponding ex-
pressions over signal variables a′, b′ and c′ to enable con-
tinuous evaluation. Instead in WEBNAT, all variables are
reactive-by-default, i.e., expressions over these variables may
be dynamically evaluated by WEBNAT semantics whenever
value of any variable changes. This enables intuitive, reac-
tive programs specifications in WEBNAT.

• Declarative Bindings. WEBNAT allows binding view ele-
ments with data variables (or expressions over them) using
a native declarative binding construct. The developer may
use familiar imperative assignments to specify binding, e.g.,
the statement #t = m associates the data context m with
UI element #t and ensures that whenever m changes, #t
is re-rendered using the new value of m. Again, popular
frameworks, e.g., Angular [2], React [6], depend on special
idioms (e.g., data-directives [2]) to specify model-view bind-
ings; these idioms have a learning curve and vary between
frameworks thus adding to programmer’s burden.

• WEBNAT adopts the principle of one-data: the specification
refers to only a single copy of data, irrespective of whether
the data is duplicated across client/server during execution.
The WEBNAT runtime duplicates and synchronizes persis-
tent data as required: the programmer is thus saved from the
burden of specifying explicit synchronization glues, which
are often erroneous.

• Finally, an implicit type system allows the developer to write
intuitive yet type-correct coercions [31] between models and
views, e.g., in #t = m statement, t and m are of types
view(table) and array(int) respectively.

We implemented a research prototype of the WEBNAT language
and a runtime which compiles WEBNAT programs to JavaScript on
both client and server. We conducted a within-group study to eval-
uate the benefits and understand the barriers to adoption. Most of
the participants respond that the inbuilt abstractions simplify web
programming to a large extent and help them avoid writing glues
between different tiers. Programmers with lesser experience (<5
years) are eager to adopt the platform for regular use. More experi-
enced programmers also appreciate WEBNAT’s’ simplified design
paradigm but are less interested, primarily because they have multi-
ple years of familiarity with their framework and demand the same
low-level control from our framework.

1.1 Background Survey
Quoting from [1]: Almost every Web designer can attest that

much of their work is repetitive. We find ourselves completing the
same tasks, even if slightly modified, over and over for every Web
project.

We conducted an online survey to understand the challenges that
programmers encounter during web development.

Participants. Participants were recruited through internal mail-
ing lists of a university and an IT organization, and various social
networks. The survey was open for two weeks. We received 40 re-
sponses (13 females). All the participants were well-educated with

21%	
  

17%	
  

16%	
  
13%	
  

10%	
  

14%	
  

3%	
  
6%	
  

Problems	
  in	
  web	
  development	
  
UI	
  	
  Design	
  

	
  Database	
  

Client-­‐server	
  logic	
  and	
  
interac=on	
  
Separa=ng	
  layers	
  and	
  wri=ng	
  
glue	
  code	
  
Configura=on	
  of	
  dev.	
  env.	
  

Security	
  

Adap=ng	
  to	
  targeted	
  audience	
  

Others	
  
(a)

0%	
  
10%	
  
20%	
  
30%	
  
40%	
  
50%	
  
60%	
  
70%	
  
80%	
  
90%	
  

100%	
  

UI	
  	
  Design	
   	
  Database	
   Client-­‐server	
  
logic	
  and	
  
interac@on	
  

Separa@ng	
  
layers	
  and	
  
wri@ng	
  glue	
  

code	
  

Configura@on	
  
of	
  dev.	
  env.	
  

Security	
   Adap@ng	
  to	
  
targeted	
  
audience	
  

Others	
  

N
or
m
al
iz
ed

	
  R
es
po

ns
e	
  

Problems	
  

Problems	
  in	
  web	
  development:	
  Grouped	
  by	
  experience	
  

<1	
  

1-­‐5	
  

>5	
  

(b)

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
  

Fr
eq

ue
nc
y	
  

Ra,ng	
  (1	
  =	
  Not	
  interested,	
  7	
  =	
  Highly	
  interested)	
  	
  

Recep,vity	
  ra,ng	
  
	
  High-­‐level	
  language	
  /	
  framework	
  	
  	
  

(c)

Figure 1: Survey Response for (a) problems in web develop-
ment (b) user receptivity (c) challenges in web development for
different groups.

15 having Bachelor’s degree, 9 with Master’s degree, and 8 with
PhD (rest did not answer this question). In terms of web devel-
opment experience, 12 participants reported <1 year (novice), 15
with 1-5 years (semi-professionals) and 13 with >5 years (profes-
sionals).

We asked the participants to select the challenging web devel-
opment tasks from a pre-specified list (based on [33]) including
UI design, cross-browser compatibility, coding client-server and
database interactions, ensuring security, writing server logic and
configuration. We also asked them to name the tasks which in-
volved most coding/debugging effort and how helpful their current
web programming framework was in reducing their effort for each
difficult task.

Fig. 1 (a) shows the responses for different web development
challenges and Fig. 1(b) shows the breakdown of the survey results,
grouped by the participants’ experience. The results show that the
main challenge for developers (21%) is in designing HTML/CSS
UIs and making them look good across browsers. Interaction with
database is the next challenge mentioned by 17% of the partici-



pants. Client-server interaction, which includes coding and de-
bugging client/server-side logic and writing code for serializing/de-
serializing code, was mentioned by 16% participants. 13% partici-
pants reported organizing and separating different layers of the app
as a challenge. 14% of the participants reported ensuring security
of web apps as a challenge.

The survey also questioned participants about their familiarity
with MVC and related web programming concepts. The results
show that 83% developers are familiar with asynchronous event
handlers, 73% with MVC patterns and 93% with object types and
casting in programming languages. In fact, 68% developers think
about MVC while designing and developing the app. While 25%
developers said that their current framework enforces MVC during
app development, 50% reported partial enforcement and 25% said
that MVC is not enforced.

We found that semi-professional programmers (67% and 67%
respectively) and even half of the professionals (46% and 54% re-
spectively) mentioned concerns for handling database and client-
server interaction. This is interesting given that most of the popu-
lar frameworks (e.g., RoR, Hibernate) provide database abstraction
with an object-relational mapping (ORM). Participants mentioned
that they spend majority of debugging effort in debugging SQL
queries and synchronizing browser state with the database. Also,
62% of the professional and 60% semi-professional developers re-
ported that they face problems with keeping different application
layers decoupled and are forced to write a lot of boilerplate code
on a regular basis.

We also asked the participants to rate how open they are to learn a
high-level web development environment that abstracts away low-
level details. Fig. 1(c) shows that in spite of abundance of web
frameworks, participants in our survey were overall receptive to-
wards a high-level environment that would simplify the develop-
ment process.

1.2 Model-View-Controller Paradigm
The MVC paradigm [32] is central to designing data-driven user-

interfaces in a structured manner. For web apps, the models re-
fer to in-memory or persistent data store, views are specified in
HTML/CSS and rendered by a browser and the controller is writ-
ten in one of the web-centric languages, e.g., JS on client and
PHP/Python/Java on server-side. Although the MVC paradigm is
well-known, web developers have started using MVC extensively
only recently. The earliest web applications were server-centric,
where data resided fully on the server and controllers used the data
to generate views and send back to the client. These apps had little
separation of concerns and all the components were intertwined in
the server-logic, e.g., PHP or JSP code. With the advent of Web2.0,
apps became client-heavy and highly interactive. To enable real-
time behaviors, views are no longer rendered at server; now many
apps persist the views at the client and only the models are ex-
changed across client-server. This leads to a natural MVC-based
decomposition of the app. A well-structured app consists of three
distinct components: data model definitions, view templates with
holes for plugging in data, and controllers for (a) rendering views,
(b) transforming data between client, server logic and database, and
(c) routing URL requests to appropriate controllers.

1.3 MVC by Example
Fig. 2(a) shows the HTML and JS code (using the popular JQuery [7]

library) for a hello app which renderes the output based on the
input text reactively. Whenever the user modifies the text in the

1 <script type=’text/javascript’>
2
3 $(document).ready ( function () {
4 var inputbox = ’input[name=inp1]’;
5
6 $(inputbox).change( function () {
7 var v = $(inputbox).val();
8 if (v !== ’’)
9 $(’#outdiv’).html (’Hello ’ + v + ’!’);

10 else $(’#outdiv’).html(’’);
11 });
12 });
13 </script>
14 <body>
15 <input name=’inp1’ type=’text’> </input>
16 <div id=’outdiv’> </div>
17 </body>

(a) In HTML/CSS/JavaScript

always -> {
#outdiv =
(#inp1 != "")? "Hello" + #inp1 + "!" :""

}

(b) In WEBNAT

Figure 2: A hello app.

input box to say, txet, the output Hello txet! is shown below the
box. In terms of the MVC paradigm, the application contains two
visual components (views), the input inp1 and the outdiv, each hav-
ing a data model and a view template, and a controller which copies
the data models from the first view to second. The view template
for inp1 consists of the HTML text input tag and the model is
the text entered. For outdiv, the template consists of the HTML
div element together with a nested text template T = Hello ρ!,
where ρ denotes a placeholder, corresponding to the model of out-
div. Note that ρ is never explicitly declared or assigned to in the
code in Fig. 2(a). Similarly, the text template T is not explicit in
HTML: it is dynamically inserted by the JS code (line 9) after ob-
taining the model value. Finally, the controller code extracts input-
box’s model (line 7) and uses it to create the view for outdiv (line
8-10). This example illustrates how easy it is to write code which
intertwines MVC components using, e.g., JQuery [7].

Although most modern frameworks enforce MVC separation par-
tially, they do not enforce MVC end-to-end. For example, RoR,
Django and Spring, focus on the server-side, while Angular, Back-
bone and Ember enforce MVC on the client side. In particular,
the programmer still has to write glue code for propagating model
changes to views and coordinating front-end UI changes (primarily
in JavaScript) with back-end models. Data is duplicated between
client and server and hence the onus lies with the programmer to
synchronize client-side data with server-side data by writing com-
plex, error-prone, JS glues. Moreover, serializing data and convert-
ing between client-server formats leads to high debugging effort,
eventually overwhelming the web programmer and undermining
the advantages of the adopting the MVC development style.

2. THE WEBNAT LANGUAGE
We have developed the WEBNAT specification language to sim-

plify end-to-end web programming and provide web developers



with an intuitive language syntax, oblivious to client-server-database
topology. Our goal is to reduce their cognitive load allowing them
to focus on the app design and improve productivity.

WEBNAT builds over the JavaScript (JS) based web development
ecosystem by adding multiple programming abstractions which al-
low the developer to convey her design intent succinctly. For exam-
ple, Fig. 2(b) shows how the controller for hello app is specified
in WEBNAT, in a single line. It refers to view elements directly,
e.g., #inp1 and uses them to read and write the bound models indi-
rectly; model-view binding is thus exploited for succinctness. The
specification is reactive by default (using the custom event always):
any change to #inp1’s model triggers this controller, which updates
#outdiv.

To specify the app in WEBNAT, the developer needs to specify
(a) views as HTML/CSS templates [4] (b) the data (model) vari-
ables with appropriate types, and specify which of them are persis-
tent, (c) bind the models with views, and (d) specify the interaction
and transformations between data and views via handlers. Finally,
the developer runs the WEBNAT compiler to create a deployable,
multi-tier web application in JS. We now discuss the main design
characteristics of WEBNAT.

2.1 Key Design Decisions
View References. Any UI widget or a hierarchical collection of

widgets is said to be a WEBNAT view: views are first-class enti-
ties in WEBNAT. Each view (including sub-views and widgets)
is named uniquely; the developer can use these view references in
WEBNAT syntax directly, e.g., when binding models to views or
specifying handlers.

Reactivity, Model-view Bindings. Reactive specifications cap-
ture the core data flows of the system succinctly and thus omit the
need for polling the data sources at regular intervals to monitor
changes. All data variables are assumed to be reactive by default;
consequently, all expressions and assignments dependent on these
variables are also evaluated reactively. Views are defined as tem-
plates with holes containing data-dependent expressions and may
be bound with a data variable or a record field. Handlers contain
statements over data variables and view references. Therefore, all
views and handlers are reactive implicitly, i.e., WEBNAT seman-
tics guarantees that views are re-rendered as soon as the bound data
changes and handler expressions re-evaluated as required. Thus,
writing glue code for observing changes to data or views is avoided.
Binding views to data variables is done via ordinary assignments;
#t = v specifies a one-way binding, i.e., #t is re-rendered with
data context of v whenever v changes. Reactive variables omit the
need of an explicit signal or stream datatype [16, 25, 15] for
specifying data models.

One Data. Duplication of model data across client, server and
database leads to synchronization issues: developer must serialize,
de-serialize data across tiers, ensure client data copy is synchro-
nized with server copy at all times. All of this leads to erroneous,
potentially redundant, glue code. WEBNAT has a simplified data
model: all data is specified using typed variables (of Boolean, In-
teger, String, Array, Map and Record types) and apps work with a
single copy of data. Variables required to be stored in a database
are simply marked persistent during declaration; otherwise they are
assumed to be volatile. The handlers read and write all data vari-
ables directly, as in e.g., Java, without handling persistent variables
separately. Because most web apps need to query persistent data,
WEBNAT includes an inbuilt data query language to enable fil-
tering and manipulation of arbitrary data collections (Arrays and
Maps), directly inside handlers. The one-data principle allows the
developer to design apps in a simplified manner, oblivious to both

database and client-server separation.
Integrate with JavaScript ecosystem. WEBNAT builds over the

JS ecosystem: it borrows JS syntax and adds additional constructs
to specify first-class views, handlers and queries. Data placehold-
ers inside views are specified using Handlebars [4] syntax (dou-
ble curly braces, cf. Fig. 3). WEBNAT interoperates with JS li-
braries both inside browser (Document Object Model) and server-
side (nodejs [11]). This allows us to benefit from the rapidly grow-
ing JS web platform [11], fast event-driven programming model,
rich set of server-side libraries [10], share code between client and
server, as well as reuse conventional DOM manipulation libraries.
WEBNAT also provides a utility library to abstract interaction with
external REST [17] APIs via AJAX [21].

Compiler. Translating the high-level WEBNAT designs to exe-
cutable client-server code is done by the WEBNAT compiler, which
performs systematic multi-phase transformations. Currently, the
compiler generates JS code for both client and server. Client-side
reactivity is implemented using the Backbone library [3] with a
Handlebars compiler [4]. The server-side code uses the nodejs [11]
platform and MongoDB [9] database. Models are transformed to
JS objects; persistent models are converted to collections in Mon-
goDB. Reads or writes to persistent variables are translated to under-
the-hood database calls. WEBNAT handlers are translated to asyn-
chronous JS event-handling callbacks. We chose MongoDB to
store persistent data because translating from typed (array or map)
WEBNAT variables to JSON-like MongoDB collections with dy-
namic schemas is simpler than normalizing them into fixed table-
like schemas of relational databases. Note that although our proto-
type compiler targets specific languages or libraries, WEBNAT pro-
grams can be compiled to other web frameworks also, e.g., based
on Python or PHP. A formal description of various compiler phases
and type checking is beyond the scope of this paper. Our goal in
this work is to motivate the syntax and the design decisions for
WEBNAT and carry out a user study to understand user reactions
and adoption barriers.

2.1.1 WEBNAT by Example
We illustrate the WEBNAT language using the todo list app shown

in Fig. 3: the app allows user to dynamically add and remove work
items. The app consists of a set of view templates, model dec-
larations, binding definitions and handlers for dynamic behavior.
Although rather simple, this app employs many patterns that the
majority of modern web applications may have.

View Templates. The todo app consists of three main UI elements
(view templates): a label #lab1 with text Enter an item:, an input
#textbox to enter a new item and a list container #Tab to display
the pending items. In WEBNAT terminology, #Tab is a repeater
view [30]; such views are created by multiple instantiations (here,
a list) of a particular prototype view. Here, each prototype view
of #Tab (Fig. 3) in turn consists of three sub-views: a checkbox
#checkb, a text label #data, and an image #cross. Note the
placeholder {{this.value}} inside the label #data: this syntax
denotes that the label will dynamically obtain its content text from
the value field of the data bound to the prototype view.

Models. The model for todo app is an array todos with elements
of type Item which is persistent, as specified below. Each type has
a default object instantiation, e.g., {value: ", done: false} for type
Item.

type Item = {value: string, done: boolean};
var todos: array(Item), persistent ;

Bindings. The WEBNAT primitive bind is used to associate the
array todos with the view reference #Tab as follows.



<head>
<title>todo</title>

</head>

<body>
<input id=’textBox’ type=’text’

placeholder=’more..’/>
<ul id=’Tab’>
{{#prototype}}
<li>

<input type=’checkbox’ id=’checkb’/>
<span id=’data’> {{this.value}} </span>
<span id=’cross’> X </span>

</li>
{{/prototype}}
</ul>

</body>

(a) (b) (c)

Figure 3: Todo list example in WEBNAT. (a) View template in text (Handlebars format [4]) (b) template visualization with labeled
view elements, and (c) the generated app.

bind ({’#Tab’: "todos" });

or, as an imperative assignment using the always handler:

always -> { #Tab = todos }

Consequently, each prototype view of #Tab is bound to an el-
ement of todos with type Item (the #data label obtains its value
from value field of Item). Because all data variables are reactive,
any changes to todos, e.g., addition, deletion of elements, result
in reactive updates (add, remove rows) to #Tab. Note that by
declaring todos as persistent, the developer avoids synchronizing
duplicates of todos across client and server. Also, by binding the
repeater #Tab with todos declaratively, the explicit view refresh
on each update is avoided. Using bind is convenient when bind-
ing multiple view names and variables; always instead is preferable
when binding with expressions or queries over variables.

Handlers. Handlers capture interactive behaviors and are speci-
fied in the event -> actions format, similar to event listeners in JS:
when the triggering event occurs, the actions are executed. Event
names are either standard DOM events or thin macros over them.
The actions are either imperative statements over models and views
or may invoke external JS functions. Although handler actions de-
pend on reactive variables, they do not re-evaluate unless the trig-
gering event occurs.

The todo app contains two handlers defined below. The first han-
dler executes when the input #textBox receives enter key event:
the contents of #textBox (if non-empty) are added to the todos
model and #textBox cleared. The second handler specifies that
on clicking the #cross image for any prototype sub-view, say #p
in #Tab, the model (item) bound to the view #p is removed from
todos array (thus removing the sub-view #p reactively). Note that
handlers over repeater elements take in the bound data as parame-
ter, e.g., item for #cross in the second handler, which can be read
and modified as required in the handler.

WEBNAT includes two custom events, init and always: an han-
dler with init event is executed only once when the app loads; al-
ways handlers re-execute whenever the dependent variables change.

keyenter #textBox -> {
if (!empty(#textBox)) {
todos += #textBox;
clear(#textBox);

}
}

click #cross(item) -> {
remove(todos,item);

}

Succinct yet Expressive. The WEBNAT todo app specification is
quite succinct while detailed enough to create the app in Fig. 3(c).
A number of characteristics of WEBNAT handlers enable such intu-
itive specifications. (A) View references, e.g., #textBox, may be
used freely in statements, similar to data variables. View references
may also be overloaded depending on the context, e.g., in the first
handler, #textbox is used both to refer to the UI widget as well as
the model (string entered by user) at different places. (B) We are
able to avoid writing additional glue code to refresh #Tab on to-
dos model updates because (i) #Tab is specified as a repeater view
and (ii) todos is bound to #Tab. (C) WEBNAT also uses implicit
type coercions [31] extensively, e.g., in the first handler, the view
reference #textBox is first coerced into its model value, say s of
type String, which is further coerced to a record value (based
on default field values) before adding to the array. This is roughly
equivalent to the following JQuery-based code.

var s = $(’#textBox’).val(); //JQuery
var v = {value: s, done: false}; todos.push(v);

(D) WEBNAT’s one-data design makes persistent objects, e.g.,
todos, indistinguishable from volatile objects. Both are manipu-
lated via same set of read/write operations; the compiler ensures
that persistent objects are handled under-the-hood correctly. Con-
sider the statement remove(todos,item) in the second handler. Be-
cause todos is persistent, the app runtime keeps two data copies,
one at the client and other in a MongoDB collection at the server
end. The WEBNAT compiler transforms the above high-level state-
ment into client/server operations as follows. The client code is-
sues an Ajax [21] DELETE request to invoke the server-side logic,
which in turn, makes a database query to remove the item value
from the todos collection in database. On successful completion of
this request, item is also removed from the local todos collection.
This results in an reactive update of the #Tab view on client-side



and completes the remove operation.
Similarly, the update todos += #textBox, is implemented

by sending the model string of #textBox with an Ajax PUT re-
quest to the server-side logic, which inserts the corresponding entry
in the todos collection in the database. Further, WEBNAT enables
inbuilt model querying based on MongoDB syntax, e.g., todos{done:
true} will select all items whose done field is true.

In summary, WEBNAT exploits the combination of model-view
binding, one-data modeling and reactivity to devise powerful syn-
tactic abstractions which simplify specification of web apps. Note
that, in absence of these abstractions, the developer must manually
write the error-prone glue code to perform data synchronizations
across multiple tiers and update views reactively.

Asynchronous Calls, APIs, Navigation. WEBNAT includes a
utility library with functions for invoking external services, e.g.,
restGet, restPost, restPut, restDelete allow communication with
external REST [17] services. Errors due to remote asynchronous
calls are handled in the usual JS-style by passing additional onerror
handlers to the calls. The library also contains wrappers functions
for DOM manipulation and type transformations and custom event
emitters. Each web page corresponds to a collection of view tem-
plates; navigation between pages is achieved via routes similar to
Backbone [3]. A module system for encapsulating MVC elements
to enable reuse is under development. Few other extensions, e.g.,
role-based access control of data models are also planned.

Expressiveness of WEBNAT. We have designed a wide variety
of complex apps in WEBNAT, including form-based applications
and personal information management, e.g., mail clients, authen-
tication and inventory management. We have also developed a
map application prototype in WEBNAT, similar to Google Maps.
Wright [35] aggregates the features of common rich internet apps
(RIAs) in a ticket handling app. All these features can be specified
in WEBNAT faithfully. A specification of a large app, a mail client,
in WEBNAT is provided in the Appendix of this paper.
Illustration: A REST-based Music Browser. We describe how
a simple music browser app is specified in WEBNAT: the app first
gets a list of songs from an external REST service (in JSON format)
and then displays the song details in a master-detail format. Fig. 4
shows the views of the app.
type Song = {album: string, song: string, lyrics:

string};
var songs: array(Song);
bind ({’#catalog’: "songs" });

init -> {
#catalog = restGet("http://songdb.com/songs")

}
click #catalog-item (item) -> { #detail = item }

The first handler is invoked on page initialization, when init (a
custom WEBNAT event) is triggered. The call to restGet is made
asynchronously and the returned value (in JSON format) is bound
to the model of the repeater view #catalog. The compiler trans-
lates this handler into a callback invoked after results from the
AJAX request is obtained. In the second handler, #catalog−item
denotes the prototype sub-view of #catalog which is bound to
item model. On clicking any sub-view, the model of #detail view
is set to item, thus refreshing the view with the current song details.
Note that automatic type coercion takes care of transforming the
JSON object from restGet into the typed songs variable bound to
#catalog.
Comparison with Web Frameworks. Upcoming web frameworks
like Angular [2], React [6], Meteor [8] include primitives for sim-
plifying web programming. Angular enables reactive data-bindings
(only on client-side) via a collection of new primitives, e.g., scope,

Figure 4: Mockup of the Music Browser.

ng-controller, ng-bind, which involves learning multi-
ple concepts for specifying binding and reactive controllers. In-
stead, React allows declaring new view components which em-
bed the templates and the models and can be dynamically instan-
tiated. In contrast to WEBNAT, which ensures a clear separation
between model and view references via bind, both Angular and
React lead to quite interwoven HTML/JS code; also, they do not
allow native view references (and therefore model-view type coer-
cions) or enable end-to-end reactivity. The Meteor framework [8]
is closest to WEBNAT: it provides a unified data model and end-
to-end reactivity using a special datatype for reactive variables and
APIs for constructing reactive expressions. The key distinguishing
aspects of WEBNAT are (i) native view references (ii) statically-
typed, natively-reactive data variables, (iii) imperative bindings,
(iv) implicit coercions. Also, the static type system ensures easy
bindings, e.g., between repeater data and array models, via implicit
type coercions. Finally, although all these frameworks are quite
popular among developers, we do not know of any systematic user
study with them.

3. USER STUDY
We conducted a study of the WEBNAT environment to inves-

tigate if programmers find it useful as compared to existing web
frameworks and to discover the hurdles in adoption.

3.1 Participants
Twelve participants (3 females, mean age=28.5, sd=3.435) were

recruited from an IT organization. Participants’ experience with
web programming varied with 4 novice (less than 1 year experi-
ence), 3 semi-professional (1-5 years of experience) and 5 profes-
sional (more than 5 years of experience) programmers. The cri-
terion for participation was that they have developed at least one
end-to-end, multi-tier web app in past. All the participants were
familiar with the MVC design pattern, with eight of them reported
using MVC frameworks regularly. We used a combination of e-
mailing to organization’s internal mailing list, word-of-mouth, and
snowball sampling to recruit our participants.

3.2 Method
A within-subject study was conducted. Participants were asked

to develop a web app, using their preferred framework and us-
ing WEBNAT. The ordering of the condition was counterbalanced
across participants. Participants were asked to think-aloud [24] dur-
ing the whole session to obtain insights into their thought processes,
and their web development process. Participants were allowed to
use any search engine for their preferred framework, and able to



Figure 5: Initial mockups for buy and sell pages in the study
task. Final mockups and WEBNAT code are shown at the end
of the paper.

ask syntax-specific questions to the facilitator for WEBNAT (e.g.,
how do I add an object to an array?, what is the syntax for writing a
query?). All the sessions were voice recorded and later transcribed.

At the beginning of the study, the facilitator provided the func-
tional specification of the app and answered participants’ questions
about the app. For the preferred framework condition, the task was
to develop the app in their framework of choice in 60 minutes. Af-
ter that, participants were asked to fill a questionnaire with ques-
tions rated on a 5-point Likert scale and free-form questions about
the limitations of their current framework and suggestions for im-
provement. Participants who were not able to finish this task in the
specified time were asked then to enumerate all the low-level de-
sign steps they have to perform in their framework to implement
this app and provide an estimate of the total time required.

For the WEBNAT condition, participants were given a 30-minutes
tutorial explaining how to create the todo app in WEBNAT, to make
them familiar with our framework. The tutorial included step-by-
step instructions with screenshots which allowed the participants to
get hands-on programming experience WEBNAT’s syntax for writ-
ing models and handlers and basic Handlebars syntax [4]. After the
participants completed the tutorial, they were asked to create the
task web app using WEBNAT in 60-minutes. This was followed
by the same questionnaire as in the preferred framework condi-
tion. The participants were also provided a quick reference sheet,
designed using Neilsen’s heuristics [29], describing how to spec-
ify model-view binding, repeaters and queries and diagnose errors
quickly. The prototype WEBNAT tool provided support to automat-
ically check the syntactic correctness of the program.

3.2.1 Tasks
The task involved building an online buy-sell app consisting of

three pages: a seller page where users can post items to sell (Fig. 5(left)),
a buy page where users can search for a particular item (Fig. 5(right)),
and a main page for navigating to buyer and seller page (not shown).

As the aim of our study was not to test UI-designing capabilities of
the frameworks, we provided the participants with HTML and CSS
files for the three pages. Participants were asked to implement the
core functionalities, i.e., posting a new item to sell, validating input
fields, and displaying all the items satisfying a basic word-based
search criterion.

For the first task, the developers were given the specification
together with the three HTML/CSS files and asked to implement
the core functionalities of the app using their preferred framework.
Some participants expressed inability to finish this task in 60 min-
utes. We instead asked them to enumerate all the low-level design
steps they must perform in their framework to implement this app
and estimate the total time. Also, they were asked to note down the
key error-prone steps which require a lot of debugging.

For the second task, asked them to specify the app in WEBNAT
using the three HTML/CSS files. We asked the participants to think
aloud [24] to obtain insights into their thought processes and the
problems they encountered.

Limitations. The validity of our study results is dependent on the
set of participants we recruited, all of whom were from an IT orga-
nization. None of the participants were familiar with newer frame-
works, e.g., Backbone, Angular or Meteor. Our study considered
only a single web programming task which involved developing a
simple app, given the time constraints. We did not consider aspects
of building secure apps in this study. Additional studies may be re-
quired to examine the development of richer apps. Prior familiarity
with WEBNAT may also lead to different results.

3.3 Study Results
Using their preferred system. The participants used a wide va-
riety of preferred frameworks to complete their task: PHP, J2EE,
Groovy on Grails, Ruby on Rails, Perl, nodejs for server-side logic
and MySQL, MongoDB, Hibernate for database interaction. On
the client side, besides HTML/CSS and form actions, some used
template libraries, e.g., JSP, GSP and Ajax calls for client-server
interaction. Out of 12 participants, 8 were not able to finish the
task in the given period using their preferred system. The main rea-
sons for not finishing included low-level coding required by their
framework, coding and debugging client-server communication for
Ajax queries, writing correct SQL queries, server and database con-
figuration and setup issues.
Programming with WEBNAT. All 12 participants completed the
WEBNAT tasks. To program the app using WEBNAT environment,
the participants declared variables (models), the model-view bind-
ings and the handlers for each of the three app pages. For the
seller page, most participants identified that models need to be
bound with input text-boxes and their value needed to be stored in a
database. However, some of them initially overlooked the method
to specify a persistent variable in WEBNAT and instead declared a
separate variable representing the database. The mistake was cor-
rected when writing the handlers for the sell button. Some of the
participants also took time to decouple the model and the view in
the search results table on the buy page.

At the end of the survey, all participants agreed that the coding
overhead in WEBNAT was low. All except one participant said that
they would have to write a lot more code in their favorite frame-
work for this app. Many participants enjoyed coding in WEBNAT:
participant P2 commented ".. this was a new paradigm of program-
ming". Similarly P5 said " ... I needed to program in a completely
new programming style". P9 noted "Seems like a good environment
for collaborative development..focus on core functionality, worry
less about low-level details".

Other frameworks. Participant P5 commented "although you can



0%	
  

5%	
  

10%	
  

15%	
  

20%	
  

25%	
  

Vis
ua
lize
	
  Vi
ew
	
  

Le
ss	
  
Co
din
g	
  e
ffo
rt	
  

Au
tom

ate
d	
  U
I	
  G
en
era
>o
n	
  

Ab
str
ac
t	
  lo
w	
  
lev
el	
  
de
tai
ls	
  

No
	
  Co
nfi
gu
ra>
oin
	
  ne
ed
ed
	
  

No
	
  da
tab
ase
	
  

Ty
pe
d	
  l
an
gu
ag
e	
  

Us
e	
  M

VC
	
  

Ea
se	
  
of	
  
Us
e	
  

Fa
ste
r	
  D
ep
loy
me
nt	
  

Sim
pli
fy	
  
de
sig
n	
  

%
	
  F
re
qu

en
cy
	
  

Feature	
  

Features	
  liked	
  by	
  users	
  

34%	
  

11%	
  
22%	
  

11%	
  

11%	
  

11%	
  

Barriers	
  to	
  adop,on	
  
Lack	
  of	
  Familarity	
  

Hide	
  low-­‐level	
  details	
  

No	
  debugging	
  framewrok	
  

No	
  test	
  automa@on	
  

Enforcing	
  	
  MVC	
  

Less	
  features	
  

59%	
  
11%	
  

12%	
  

6%	
  
6%	
  

6%	
  

Desired	
  features	
  
Feature-­‐rich	
  editor	
  

Desktop-­‐based	
  editor	
  

Simula<on/deploy	
  

Op<on	
  to	
  see	
  	
  low-­‐level	
  details	
  

End-­‐to-­‐end	
  running	
  

Familiar,	
  aesthe<c	
  UI	
  

(a) (b) (c)

Figure 6: (a) Features of our tool liked by participants (b) Barriers for professional participants in adopting our tool (c) Proportions
of tool features desired by the study participants.

drag-drop in iOS storyboards also, you cannot write views so eas-
ily..that takes 2-3 steps...if the widget is not inbuilt, you need to do
lot of Objective-C coding.". P10 said "Writing standard form apps
in my framework doesn’t require much coding. However, I spend
lot of time debugging Ajax queries to backend...they are hard to get
right.".

Syntax. Participants were able to appreciate WEBNAT despite
the new WEBNAT syntax and programming style. P5 commented "
... it is hard to learn a language in such a short time...this only
needs practice, the learning curve is OK." . Most participants
agreed that the usefulness of the inbuilt abstractions outweighed
the initial learning curve. P12 commented " ... I didn’t have to
worry about so many low-level details. I liked the idea of modeling
database as variables. .. it does need me to learn the syntax, but
that is just the same as learning any new language."

Learning Curve and Adoption. Six of the participants said that
they will adopt our system for regular use, 5 declined and 1 par-
ticipant answered maybe. Professional developer P4 commented
that "I’m not sure this system can design complex apps. But this
seems good for designing simple mobile apps.". We asked partici-
pants the major reasons behind their decisions of not adopting our
tool. Fig. 6(b) summarizes their responses: the main hurdle was
lack of familiarity with our new environment and the programming
language. Many participants also asked for extensive debugging
and testing automation support, which is absent in the current pro-
totype. Some participants were quite skeptical - P10 said ".. my
framework (Groovy on Grails) has so many features, session cache
management, duplicate form submits, authentication, pagination,
third-party integration .. not clear if this tool has all these fea-
tures.".

We also asked participants about the features they wanted to have
in our tool (Fig. 6(c)). The majority of the participants wanted a
feature-rich editor with more keyboard shortcuts, better context-
sensitive assistance for writing code (reusing and refactoring mod-
el/handler definitions, help menus, drag-drop over tree items). Some
participants wanted more low-level control over the generated code.
P5 commented "For each handler I write, I would like to see the
code for it. Just to make sure the tool is doing right. For complex
apps, I want to see the code and debug myself." Other participants
asked for real-time simulations of the model, desktop-based editor
instead of web-based, and a more professional UI for the tool.

We asked all participants to rate the tool on a scale of 1 to 5. All
the participants rated the tool 3 or more (mean=3.75, sd=0.622) (cf.
Fig. 7). The Pearson correlation coefficient value of -0.749 between
participants’ years of experience and corresponding rating indicates

Years of Avg. Std. Decision
Experience Rating Dev.

< 1 4.25 0.5 Yes
2− 3 4 0 Yes
4− 5 4 0 No
> 5 3.2 0.447 Maybe, No

Figure 7: Participant’s overall rating of our tool (mean and sd)
grouped by their years of experience. Decision = whether they
would like to switch to our tool.

that novice and semi-professional developers gave a higher rating
to our tool compared to professionals. We also asked participants if
they would use our tool instead of their current framework. Fig. 7
shows that novice users may be ready to switch to our tool while
the rest are either hesitant or not ready to switch to the current pro-
totype of our tool.

3.4 Implications
Abstractions for Web. Our study shows that the web development

can be accelerated by incorporating new programming abstractions
based on the MVC paradigm. Most popular frameworks do con-
tain some abstractions, e.g., database ORMs, templates, client-side
reactivity. However, in each framework, developers continue to
struggle with low-level details between one or more layers, e.g.,
client-server data transformation and switching between syntax of
multiple languages. New frameworks for web development should
try to simplify end-to-end development across all tiers.

Low-level control. Although abstractions help developers reduce
their coding effort, professional programmers often want full con-
trol over the generated code for debugging, adding optimizations or
simply browsing. By exposing the low-level code in a user-friendly
format, the development tool can cater to all programmers, from
novice to professionals. Enabling modifications to the generated
code is feasible but requires more investigation.

Adoption barriers to new Web DSLs. We observed that experi-
enced developers are often quite critical of newer frameworks/D-
SLs and hesitant to move away from their favorite framework. This
is because the established frameworks provide the developer with
a wide set of features and default configuration options, enabling
them to build complex, state-of-the-art systems. Developers be-
come oblivious to hardships in their framework, e.g., writing and
fixing low-level, client-server glues, debugging database queries,
as long as it helps them build industrial apps. Therefore, in spite of
finding value in reactive programming, one-data and easy bindings
in WEBNAT, experienced developers are skeptical unless the new
framework also provides them with all the debugging, deployment



and configuration features that they have used in building real apps.
We believe that this is the crucial lesson that we learned during the
course of evaluating this work.

Consequently, to encourage rapid adoption, it is more pragmatic
to incrementally augment existing popular frameworks with new
abstractions, e.g., by creating framework-specific plugins/libaries,
instead of creating a new ecosystem from scratch. Our choice of
building WEBNAT upon the JS ecosystem is a step in that direction
– we are investigating ways to embed custom WEBNAT syntax,
e.g.,imperative bindings and implicit coercions into conventional
JS. This approach may inspire a slow-paced, gradual improvement
of development practices even among hesitant professionals.

4. RELATED WORK
The UWE [23] tool enables systematic MDD of web applications

by separately modeling the content, navigation, business processes
and presentation elements based on UML extensions. Platform-
independent models are transformed systematically to obtain platform-
specific application. WebML [13] provides a platform-independent
conceptual model for data-intensive web applications with exten-
sions for web services, process modeling and context awareness.
WebML has evolved and is standardized into IFML [5] which pro-
vides a visual notation for declaring models, views, data bindings
and flows. Hera [18] also allows specifying abstract presentations
which are combined with different models in a run-time page cre-
ation environment.

In contrast to fully-visual approach of UWE and WebML, WEB-
NAT is a conventional language where models and controllers are
written textually while views may be written using a template lan-
guage or drawn, e.g., using a WYSIWYG editor. Textual specifi-
cations are attractive to most developers because they are familiar
with one or more web programming frameworks; hence they can
adapt to WEBNAT quickly. Also, WEBNAT controllers can inter-
operate with existing JS-based libraries easily. Our main contribu-
tion is a set of abstractions to simplify writing web apps: first-class
views, inbuilt reactivity and simplified model-view binding.

The MARIA [30] framework allows users to specify UIDLs which
are fully platform-independent (abstract) or include partial platform
details (concrete). WEBNAT may be viewed as a concrete language
which builds upon the conventional JavaScript syntax and event
nomenclature and provides new abstractions to overcome common
hurdles during app development. The PUC project [28] used model-
based interface generation to control common appliances by pro-
gramming mobile phones and PDA devices. In contrast, WEBNAT
makes it easy to specify model-view transformations but does not
guess views - the designer must provide them. García et al. [20]
provide a recent survey of various UIDLs.

Several researchers have conducted surveys to understand web
development processes and needs of end-users, semi-professional
and expert developers. Rode et al. [33] investigate the key devel-
opment issues faced by web developers, where cross-browser com-
patibility and security turn out to be central, followed by integration
problems between different tiers. The multiple phases involved in
UI design [26] are studied in [27] by interviewing 11 experts. We
are unaware of any user studies with new JS web frameworks, e.g.,
Backbone, Angular or Meteor.

Reactive functional programming [16] frameworks, e.g., [25, 15],
focus on programming with signals/streams to simplify interactive
programming but do not consider implicit model-view bindings or
enabling MVC-based separation. The seminal Links [14] frame-
work proposed web programming based on a monolithic, func-
tional, statically typed language which is compiled to different lan-
guages for each web tier. However, the principles of client-side

templates and implicit, reactive data binding are not discussed; the
programmer must code explicit view refreshes and track model
changes. A number of libraries and DSLs for easing web pro-
gramming have been proposed recently [22, 34, 19, 15, 12]. Al-
though many of these DSLs, e.g., Mobl [22], Dog [12], endorse
one or more helpful abstractions, e.g., unified client-server state,
inbuilt data queries, they fail to enforce end-to-end MVC design:
the programmer has to be careful about separating models, views
and controllers and write additional glue code between views and
models. Other DSLs, e.g., TouchDevelop [34], Pulpscription [19]
and Elm [15] contain primitives for animation and game devel-
opment which WEBNAT lacks currently. Because WEBNAT has
MVC as its foundation, we believe that it is possible to augment
the language by adopting useful primitives from other DSLs and
providing library support.

5. CONCLUSION
We presented a new programming language WEBNAT based on

the model-view-controller (MVC) paradigm [32] to enable simpli-
fied end-to-end web programming, agnostic of the client-server-
database tiers. The language consists of primitives to specify typed,
reactive models, native view references and declarative model-view
binding across tiers. A within-subject study of a prototype WEB-
NAT implementation shows that web programmers like the sim-
plifications and reduced coding effort provided by this environ-
ment. In contrast to novice web developers, professionals hesitate
to adopt WEBNAT because they are used to low-level control over
code and feature-rich, industrial web frameworks. In future, we
plan to provide additional context-sensitive help, debugging tools
and convenience features to improve the programming experience.
We also plan to improve the compiler to match the quality of hand-
coded apps and support other non-JS web frameworks.

6. REFERENCES
[1] http://www.smashingmagazine.com/2011/06/

22/following-a-web-design-process/.
[2] Angularjs - superheroic javascript mvw framework.

http://www.angularjs.com/.
[3] Backbone.js. http://backbonejs.org/.
[4] Handlebars.js: Minimal templating on steroids.

http://handlebarsjs.com/.
[5] Ifml: The interaction flow modeling language.

http://www.ifml.org/.
[6] A javascript library for building user interfaces.

http://facebook.github.io/react/.
[7] jquery: The write less, do more, javascript library.

http://jquery.com.
[8] Meteor. http://www.meteor.com/.
[9] Mongodb. http://mongodb.org/.

[10] Node packaged modules. https://www.npmjs.org/.
[11] node.js. http://nodejs.org/.
[12] S. Ahmad and S. Kamvar. The dog programming language.

UIST ’13, pages 463–472, 2013.
[13] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai,

and M. Matera. Designing Data-Intensive Web Applications.
Morgan Kaufmann Publishers Inc., 2003.

[14] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web
programming without tiers. FMCO’06.

[15] E. Czaplicki and S. Chong. Asynchronous functional reactive
programming for guis. SIGPLAN Not., 48(6):411–422, June
2013.



[16] C. Elliott and P. Hudak. Functional reactive animation. In
ICFP, 1997.

[17] R. T. Fielding. REST: Architectural Styles and the Design of
Network-based Software Architectures. Doctoral dissertation,
Univ. of California, Irvine, 2000.

[18] F. Frăsincar, G.-J. Houben, and P. Barna. Hypermedia
presentation generation in hera. IS, 35(1), 2010.

[19] M. Funk and M. Rauterberg. Pulp scription: a dsl for mobile
html5 game applications. ICEC’12, 2012.

[20] J. G. García, J. M. González-Calleros, J. Vanderdonckt, and
J. M. Arteaga. A theoretical survey of user interface
description languages: Preliminary results. In
Proc. LA-WEB/CLIHC, 2009.

[21] J. J. Garrett. Ajax: A new approach to web applications.
http://www.adaptivepath.com/ideas/
ajax-new-approach-web-applications/.

[22] Z. Hemel and E. Visser. Declaratively programming the
mobile web with mobl. SIGPLAN Not., 46(10):695–712,
Oct. 2011.

[23] N. Koch, A. Knapp, G. Zhang, and H. Baumeister.
UML-Based Web Engineering - An Approach Based on
Standards. In Web Engineering. 2008.

[24] C. H. Lewis. Using the "thinking aloud" method in cognitive
interface design. rc 9265, ibm, 1982.

[25] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper,
M. Greenberg, A. Bromfield, and S. Krishnamurthi. Flapjax:
A programming language for ajax applications. OOPSLA
’09.

[26] B. A. Myers, S. E. Hudson, and R. F. Pausch. Past, present,
and future of user interface software tools. TOCHI, 7(1),
2000.

[27] M. W. Newman and J. A. Landay. Sitemaps, storyboards,
and specifications: a sketch of web site design practice. DIS,
pages 263–274, 2000.

[28] J. Nichols and B. A. Myers. Creating a lightweight user
interface description language: An overview and analysis of
the personal universal controller project. TOCHI, 16(4),
2009.

[29] J. Nielsen and R. Molich. Heuristic evaluation of user
interfaces. CHI ’90, pages 249–256, 1990.

[30] F. Paternò, C. Santoro, and L. Spano. Maria: A universal,
declarative, multiple abstraction-level language for
service-oriented applications in ubiquitous environments.
TOCHI, 16(4), 2009.

[31] B. C. Pierce. Types and programming languages. MIT Press,
Cambridge, MA, USA, 2002.

[32] T. Reenskaug. Thing-model-view-editor. Tech. report,
Institutt for informatikk, University of Oslo, 1979.

[33] J. Rode, M. B. Rosson, and M. A. P. Qui. End user
development of web applications. In End User Development,
pages 161–182. Springer, 2006.

[34] N. Tillmann, M. Moskal, J. de Halleux, M. Fähndrich, and
S. Burckhardt. Touchdevelop: app development on mobile
devices. In SIGSOFT FSE, 2012.

[35] J. Wright. A Modelling Language for Interactive Web
Applications. PhD thesis, Massey Univ., NZ, 2011.

Buy-Sell specification in WEBNAT

type Item = {name: string, email: string,
item: string, price: int, location: string,
details: string};

Figure 8: Visual mockups (final) for buy and sell pages in the
study task.

//WebNat helper for checking validity of inputs
//Validity is specified on type fields
validCheck ({
’Item.email’: function (email) {..},
...
});

var item: Item;
var inventory: Array(Item), persistent;

For the Sell page:

bind ({
’#name’: ’item.name’,
’#email’: ’item.email’,
... //all other view elements

})
click #sell-button -> {
inventory += item

}

The above handler reads item variable and adds to the inventory
on clicking the Sell button. Note that reading item corresponds to
reading from all the view elements bound to its fields. The validator
for each field of item is fired each time item is read.

For the Buy page:

always -> {
#results =
inventory{item: #item, location: #loc,

price: {$lte: #phi, $gte: #plow} }
}

This handler binds the result of query on inventory to the #results
repeater view. Note how view references are used to refer to cor-
responding models indirectly. Also, the always event ensures that
#results is updated on-the-fly as the user types in a valid input for
one or more query fields.



Appendix: A Mail client in WebNat
The following is a textual description of a simple mail client in

WebNat, followed by the corresponding views, labeled by view ref-
erences.

type Email = {from: ’string’, to: ’string’,
subject: ’string’, date: ’string’, contents:
’string’, box: ’string’};

var allEmails : array(Email), persistent;
var selectedEmail, composeEmail: Email;
var hideShowMsg, hideCompose: bool;
var currTab: string;

//binding views to their default models
bind ({

’#Compose’: {
".to": ’composeEmail.to’,
".subject" : ’composeEmail.subject’,
".contents" : ’composeEmail.contents’

}
});

handlers #Main {
init -> {
currTab = ’inbox’;
allEmails = [

{
from: ’WebNat’,
to: ’me’,
subject: ’Welcome to WebNat!’,
date: ’Jan 1’,
contents: ’hello world!’
box: ’inbox’

}
]

}

click tr (item) -> {
selectedEmail = item;
hideShowMsg = ’’;

}

click .compose -> {
hideCompose = ’’;

}

click li .inbox -> {
currTab = ’inbox’;

}

click li .sent -> {
currTab = ’sent’;

}

always -> {
activeInbox = (currTab == ’inbox’)? ’active’:

’’;
activeSent = (currTab ===’sent’)? ’active’: ’’

;
//filter out inbox emails or sent emails from

allEmails based on the currTab
#Tab = (currTab == ’inbox’)? allEmails{box : ’

inbox’} : ( (currTab == ’sent’) ?
allEmails{box: ’sent’} : [] );

}

}

handlers #ShowMsg {
init -> {
hideShowMsg = ’hide’;

}

click .close -> {
hideShowMsg = ’hide’;

}

click .reply -> {

composeEmail.to = selectedEmail.from;

composeEmail.subject = "Re: " + selectedEmail
.subject;

composeEmail.contents = "\n\n=======\n" +
selectedEmail.contents;

hideShowMsg = ’hide’;
hideCompose = ’’;

}
}

handlers #Compose {
init -> {
hideCompose = ’hide’;

}

click .close -> {
hideCompose = ’hide’;

}

click .send -> {
composeEmail.from = ’me’;
composeEmail.date = new Date();
composeEmail.box = ’sent’;
//replace this by javascript smtp client
console.log (’send mail to ’ + composeEmail.

to + ’, subject: ’+ composeEmail.subject)
;

allEmails += composeEmail;
hideCompose = ’hide’;

}
}




