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Abstract

Model transforms convert a model to another model or text. Transforms play a key role in model-driven engi-
neering; therefore, it is essential for a transform user to understand the transform semantics. However, examining
the transform code to obtain such understanding can be cumbersome and impractical. To address this, we present
an operational abstraction of model transforms. The abstraction captures the essential transformation semantics in
terms of the structure of the output and the influence of input-model elements on output fragments. Thus, the ab-
straction supports the transform user’s perspective, which is focused on inputs and outputs, and is unconcerned with
implementation details. We present an automated approach that uses a combination of selective path enumeration,
forced execution of enumerated paths, and an offline trace-merging analysis to synthesize operational abstractions.
We discuss different applications of the abstraction. We implemented our approach for XSLT-based model transforms
and conducted empirical studies. Our results indicate that selective path enumeration can be highly effective in re-
ducing the scope of path exploration, while ensuring that the abstraction is complete. Our user study illustrates that
the abstraction can improve user efficiency in debugging faulty input models. Our final study shows the feasibility of
using abstractions for two metamodel management tasks.

1 Introduction

Model transforms [1] are a class of programs that convert structured input (formal models) to structured output (other

models or text). Commonly used modeling formalisms include UML, Ecore, and XML. An archetypal model trans-

form is a code generator that automatically generates code (e.g., Java) from a formal model (e.g., a UML class dia-

gram). Transform implementations vary widely: a transform can be implemented in an imperative manner, a declar-

ative way, or a rule-based form. For instance, a transform can be coded in a general-purpose language, such as Java;

alternatively, it can be implemented using templating languages, such as XSLT.

When provided with a transform written by someone else, users often struggle in understanding the transform

semantics, such as how different elements in the input model contribute to the output. To use a third-party transform

effectively and efficiently, it is essential for the user to understand the transformation semantics, in terms of the

expected inputs and generated outputs. Often, users rely on the transform documentation and sample input models

to get such understanding. The more inquisitive user may delve into the transform implementation, when available,

but that can be a cumbersome and time-consuming task—and the typical user may not be well-versed in the myriad

of transform implementation technologies. Thus, tools designed to help the users in understanding the semantics of a

transform at an abstract level can be very useful.

Transform Abstraction

Our goal is to develop an automated technique for creating operational abstractions of model transforms. The abstrac-

tion should capture the essential transformation semantics, while abstracting away the implementation details. The

user’s perspective of a transform is focused on the inputs and outputs of the transform—the implementation details are

irrelevant. Therefore, in essence, we intend the abstraction to support this user perspective.

Figure 1 presents a sample transform, PrintUser, shown in a pseudo-code form. The transform takes as input an

XML file containing user information and prints the information in a plain-text format. Figure 2(a) shows a sample

input model, which contains information about users and their children; Part (b) of the figure shows the output. The

input model contains two <user> elements (line 2 and lines 3–6). The transform user is concerned primarily with

providing valid inputs and obtaining the expected outputs. Thus, the user would be interested in understanding,

for example, how input-model entities influence the generation of output fragments. For instance, the input-model

attribute hasMiddle determines whether the middle name is printed in the output. This is useful information from the
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function main() {
1. foreach user r in userData do
2. print("--- User ---\n")
3. call printName(r)
4. totalChildren = 0
5. if r.children != null then
6. totalChildren = r.children.users.length
7. print("--- Children ---\n")
8. foreach user c in r.children do
9. call printName(c)

10. if c.gender = "M" then
11. print("Boy, ", c.age)
12. else if c.gender = "F" then
13. print("Girl, ", c.age)

endif
14. print("\n")

endfor
15. print("\n")

endif
16. if totalChildren > 0
17. print("User has children\n")

endif
endfor

}
function printName(User user) {

18. print(user.first + " ")
19. if user.hasMiddle = "true" then
20. print(user.middle + " ")

endif
21. print(user.last)

}

Figure 1: Sample model transform PrintUser.

1. <userData genId="1">
2. <user first="Jane" last="Eyre"

genId="1.2"/>
3. <user first="Amit" last="Vyas"

genId="1.4"
4. gender="M" middle="R"/>
5. <children genId="1.4.2"/>
6. </user>
7. </userData>

(a)

1. --- User ---
2. Jane Eyre
3.
4. --- User ---
5. Amit Vyas
6. --- Children ---
7.

(b)

Figure 2: (a) An input model for PrintUser, and (b) the corresponding output.

user’s perspective because it helps the user understand why the middle attribute for the first <user> element in the input

model (line 4) does not contribute to the output.

Our notion of operational abstraction captures such information. It summarizes the transform output and how

input-model entities influence different fragments of the output. From another perspective, the abstraction is a projec-

tion of the transform, created via propagation of inputs to outputs and filtering intermediate and irrelevant information.

We require the abstraction to be complete and sound. Whereas completeness ensures that the abstraction captures all

relevant paths from the transform, soundness guarantees that the abstraction contains no path that does not occur in

the transform.

Our Approach

We present a dynamic-analysis-based technique for constructing operational abstractions of transforms. The overall

idea underlying the abstraction construction is to (1) enumerate the transform paths that are relevant for analysis; (2)

analyze individual paths to compute information, such as how input-model entities are accessed and propagated to the

output; and (3) compose together the path-specific information to synthesize the operational abstraction.

In the first phase, the technique enumerates transform paths. Because we require the abstraction to be complete,

2



all acyclic paths must be explored. However, a naive exhaustive exploration can be prohibitively expensive because of

the combinatorial blowup in the number of paths, which would render our approach impractical. In fact, as our results

indicate (Section 5.2), the problem of exponential number of paths can be quite severe in practice. The combinatorial

explosion occurs in the presence of long chains of conditional statements. Our observation is that all combinations

of paths through such chains need not be explored—the paths can be traversed selectively (or a set of paths can be

explored as group, e.g., as in the notion of “path families” [19]), while ensuring that the synthesized abstraction is com-

plete. We provide a characterization of the cases where selective exploration can be performed without compromising

completeness.

In the second phase, the technique analyzes the enumerated paths. This analysis could be performed statically

or dynamically. We perform a dynamic analysis. Specifically, our technique is based on forced exploration of pro-

gram paths, which is a general dynamic analysis for exploring new program behaviors without generating new test

inputs [17, 24, 27]. Our technique adds probes to the transform to force the execution of specific paths at runtime.

Given the specification of a path to be traversed, in terms of the desired outcomes of branches, the probes drive exe-

cution along the intended branches from conditional statements. During the execution, additional probes collect data

about accesses to input-model entities, evaluation of conditionals, and construction of the output.

Finally, in the third phase, the technique analyzes the generated execution traces—one trace for each explored

path. It analyzes each trace to remove intermediate computation and computation irrelevant to the transform output,

combines the traces, and synthesizes the transform abstraction.

The transform operational abstraction can be useful for many applications. The most obvious application is to

assist users in transform comprehension, but there are other useful applications as well. For instance, the abstraction

can be useful for assessing the coverage of the input metamodel by a transform [25] or the footprint of a transform

over the input metamodel or model [12]. Such information can also be useful for pruning metamodels [21], refining

metamodels, identifying critical regions in metamodels, and assisting with automated fault repair. Section 4 discusses

these applications.

Overview of Results

We implemented our technique for XSLT-based transforms that generate text output (e.g., Java code and configuration

files). Using the implementation and a set of real model transforms, we conducted empirical studies to evaluate

different aspects of the technique. In the first study, we evaluated the effectiveness of selective path enumeration in

reducing the scope of path exploration. Our approach could reduce the number of paths dramatically; for some of the

subjects, the reduction was several orders of magnitude.

Our second study is a user study in which we investigated the usefulness of the operational abstraction in improving

user productivity in debugging faulty models. This study illustrates that the operational abstraction can assist users in

repairing a faulty model more efficiently and with greater confidence, then when performing the same task without the

assistance of the abstraction.

In the final study, we evaluated the feasibility of using the operation for two metamodel management and evolution

tasks: measuring metamodel coverage, and refining input metamodels by annotating them with transform-specific

information. The results show that, for the subjects considered, metamodel coverage could be computed accurately

and useful information could be added to enrich the metamodels.
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Contributions

Our technique computes sound and complete abstractions of model transforms. Moreover, it does this efficiently by

performing selective path exploration. The inferred transform abstractions that can serve as valuable aid to transform

users in performing tasks such as constructing a model, debugging a faulty model, or enriching a metamodel.

The contributions of our work are

• The definition of an operational abstraction of model transforms that captures essential transform semantics

from the user perspective

• The description of a technique that performs selective path enumeration, dynamic path exploration, and trace

synthesis to construct abstractions

• The discussion of different applications of transform operational abstractions

• The implementation of the technique for XSLT-based model-to-text transforms

• The presentation of empirical results, which illustrate the effectiveness of selective path enumeration and the

usefulness of the abstraction for two applications.

2 Transform Abstraction

Intuitively, the operational abstraction illustrates the transform output, and captures all influences of input-model

entities on the output. An input-model entity may contribute to an output fragment by being propagated to the output,

or it may control the generation of an output fragment. The abstraction also retains the relevant structure of the

transform, while removing irrelevant parts.

Definition 1 (Transform abstraction) The transform abstraction is composed of one or more output fragments and

is defined by the following grammar
T ::= T OF | OF

OF ::= ψ[OF ]∗ | G[OF ] | OF ∨OF | TF

TF ::= l | ψ | TF l | TF ψ
G ::= ψ ≈ l | ψ ≈ ψ | G ∧G
≈ ::= = | 6= | < | ≤ | > | ≥

where OF is an output fragment, TF is a text fragment, G is a relational expression (or guard), ψ is a metamodel

access path, and l is a string literal.

A metamodel access path is a path in the model starting at the root element and terminating at an element or

attribute. For example, userData.user and userData.user.middle are access paths in the input model of PrintUser.

The vocabulary of a transform is restricted to string literals (that can appear in the output) and input-model entities

(represented as access paths).

Figure 3 presents the operational abstraction of PrintUser. As can be seen, the abstraction contains the literals

(enclosed in quotes) and input-model entities (shown as access paths) that can occur in the output. Moreover, the

abstraction has repeating fragments (shown as ψ[. . .]∗) and conditional fragments (shown in the guarded notation

G[. . .]). Such an abstraction captures the essence of the transformation logic, thereby, making it easy for the transform

user to understand the logic. For example, the user can see that the input-model attribute user.middle occurs in the

output if the attribute user.hasMiddle is set to true (line 2). Similarly, the abstraction shows that the transform prints

information about zero or more children elements (lines 6–12).
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1. ψ1[
2. "--- User ---\n"
3. user.first” ”G1[ user.middle” ” ] user.last"\n"
4. G2[
5. "--- Children ---\n"
6. ψ2[
7. user.children.user.first
8. G3[ user.children.user.middle ]
9. user.children.user.last"\n"

10. G4[ "Boy "user.children.user.age ] ∨
11. ¬G4 ∧G5[ "Girl "user.children.users.age ]"\n"
12. ]∗

13. G6[ "User has children\n" ]
14. ]
15. ]∗

ψ1 : userData
G1 : userData.user.hasMiddle = true
G2 : userData.user.children 6= null
ψ2 : userData.user.children
G3 : userData.user.children.user.hasMiddle = "true"
G4 : userData.user.children.user.gender = "M"
G5 : userData.user.children.user.gender = "F"
G6 : userData.user.children.user.length > 0

Figure 3: The operational abstraction for PrintUser. (For brevity, the access-path prefix userData is excluded in the abstrac-
tion.)

Moreover, note that the internal implementation details of the transform are abstracted away. For instance, the

transform code tracks the number of children of a user in the internal variable totalChildren, and uses the variable

to create a conditional output fragment (line 17 in Figure 1). This implementation detail is irrelevant from the user’s

perspective. Instead, the pertinent information for the user is that the conditional fragment “User has children” is

generated based on the number of <children> elements in the input. This is precisely represented in line 13 of the

abstraction.

The abstraction captures the transform structure. In that sense, it is a projection of the transform, created after

propagation of data from the input to the input. As mentioned earlier, we intend the transform to be sound and

complete. Our abstraction-synthesis technique, which we present next, creates such abstractions.

3 Synthesizing the Abstraction

Our approach constructs the abstraction by (1) enumerating the transform paths to be analyzed, (2) analyzing the

paths dynamically to generate path-specific execution traces, and (3) composing together the traces, along with some

simplification.

To facilitate the subsequent discussion, we introduce definitions. An input statement is a statement that reads an

input-model entity e. An output statement is a statement that writes an entity of the output; the write can occur to

a persistent output file or an in-memory output buffer. A statement can be both an input statement and an output

statement. A data dependence is a triple (sd, su, v) where sd is a statement that defines variable v, su uses v, and there

exists a path from sd to su along which v is not redefined. A statement s is control dependent on branch (sp, L) if there

exists two (or more) branches out of sp such that following the branch labeled ‘L’ causes s to be reached definitely,

whereas following another branch, s may not be reached.

3.1 Path Enumeration

To generate a complete abstraction, all acyclic paths through the transform must be explored. Because this can be

prohibitively expensive, we developed a selective path-enumeration technique that also guarantees that the abstraction
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entry main

1: foreach user r

2: print(“User”)

3: call printName

7: print(“Children”)

8: foreach user c

9: call printName

10: if c.gender = ‘M’

11: print(“Boy”, c.age)

13: print(“Girl”, c.age)

15: print “\n”

exit

T

F

T

T

F

F

T F

entry printName

18: print(first, “ “)

19: if hasMiddle = true

20: print (middle, “ ”)

21: print last

exit

T
F

4: totalChildren = 0

6: totalChildren =
r.children.users.length

12: else if c.gender = ‘F’

14: print(“\n”)

16: if totalChildren > 0

17: print “... children”

T

F

F
T

5: if r.children != null

H19

H5H16

H10

Peer-level hammocks

{H19, H5, H16}

{H19, H10}

{H8}

Dependent hammocks

{H5, H16}

Independent hammocks

H19, H8, H10

H8

Figure 4: Control-flow graphs for PrintUser. Five hammocks, labeled with the hammock entry nodes, in the the CFGs are
highlighted to illustrate hammock classification. The shaded nodes represent the output statements.

is complete. Our technique is based on the observation that the full combination of paths induced by some sequence

of conditional statements is unnecessary.

We formally characterize selective path exploration based on dependence chains that start at an input-model entity

and terminate at an output statement.

Definition 2 (Dependence chain) A dependence chain is a sequence of statements 〈s1, s2, . . . , sk〉, (k > 1), such

that s1 is an input statement; sk is an output statement; for 1 ≤ i ≤ k − 2, si+1 is data dependent on si; and either

sk is data dependent on sk−1 or sk is control dependent on sk−1.

For example, in PrintUser, 〈8, 16, 17〉 is a dependence chain: statement 8 is an input statement, statement 17

is an output statement, statement 16 is data dependent on statement 8, and statement 17 is control dependent on

statement 16.

The combinatorial blowup in the number of paths occurs in the presence of sequences of conditional statements.

We define such sequences in terms of hammock graphs and peer-level hammocks.
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Definition 3 (Hammock graph) A hammock graph H is a sub-graph of a control-flow graph G with a unique entry

node e ∈ H and a unique exit node x /∈ H such that (1) all edges from (G−H) to H go to e, and (2) all edges from

H to (G−H) go to x [8].

To illustrate, Figure 4 displays the control-flow graphs for the functions in PrintUser. A control-flow graph

(CFG) for a function contains nodes that represent statements and edges that represent the flow of control between

statements. In the figure, five hammock graphs (H5,H8,H10,H16,H19) are highlighted; the subscript of a hammock

represents the hammock entry node. For example, for H19, conditional node 19 is the entry node and node 21 is the

exit node.1

Definition 4 (Peer-level hammocks) Let {H1,H2, . . . ,Hk}, (k > 1), be a set of hammocks with entry nodes

e1, e2, . . . , ek. The hammocks in the set are peer-level hammocks if and only if the ei, (1 ≤ i ≤ k), have the same

control dependence.

In Figure 4,H5 andH16 are peer-level hammocks because their entry nodes (nodes 5 and 16) have the same control

dependence: (1, T ). Peer-level hammocks can occur in different functions. To identify such peers, interprocedural

control dependences must be computed. One of the sources of interprocedural control dependence is call relations,

which cause a statement in a called function to be control dependent on statements in the calling functions [22]. In

PrintUser, statement 19 is control dependent on (1, T ), through call site 3, and on (8, T ) through call site 9. Because

statement 19 (the entry node of hammock H19) has the same control dependence as the entry nodes of H5 and H16,

it is a peer of those hammocks. Similarly, H19 and H10 are peer-level hammocks because of the common control

dependence (8, T ).

The presence of peer-level hammocks causes the exponential number of paths to be analyzed. But, not all peer-

level hammocks have to be analyzed completely: some hammocks can be omitted because they do not influence the

output; also, some hammocks can be traversed independently of their peers, thereby, avoiding the exponential blowup

in the analyzed paths.

Definition 5 (Irrelevant hammock) An hammock H is an irrelevant hammock if and only if H contains no output

statement and H has no incoming or outgoing dependence chain.

Definition 6 (Independent hammock) A hammockH is an independent hammock if and only ifH contains an output

statement and H has no incoming or outgoing dependence chain.

An irrelevant hammock has no influence on the output, either directly or indirectly. Therefore, paths through such a

hammock need not be explored. An independent hammock influences output directly because it contains output state-

ments, so paths in the hammock have to be explored. However, because such a hammock has no incoming/outgoing

dependences, it need not be explored in combination with its peers—it can be explored separately from its peers. In

Figure 4, H8, H10, and H19 are independent hammocks, which can be explored independently from their peers. There

are no irrelevant hammocks in Figure 4.

Definition 7 (Dependent hammock) A hammock H is a dependent hammock if and only if H has an incoming or

outgoing dependence chain.

1In the presence of exception-handling constructs, a hammock can span multiple procedures—i.e., the hammock entry and exit
nodes can occur in different procedures—which can complicate analysis. Our approach currently does not handle such cases. None
of the subjects in our empirical studies contained such hammocks.
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In Figure 4, H5 and H16 are dependent hammocks because there is a data dependence, via variable totalChildren,

between them. Dependent hammocks can require the traversal of combinations of paths. However, the exploration of

all paths—in this case, 16 paths—may not be optimal. Because H5 contains independent hammocks H8, H10, H19,

which would be explored separately, they are irrelevant for the combined traversal of H5 andH16. Instead of 16 paths,

only four paths (two each in H5 and H16) need to be explored. Thus, independent hammocks also have the property

that they are irrelevant with respect to their containing hammocks.

For PrintUser, exhaustive enumeration would result in 33 paths, whereas selective enumeration results in 14

paths only: four paths through H19 via the two calls to printName, two paths in H8, three paths in H10, four paths in

the combined exploration of H5 and H16, and one path along branch (1, F ).

The path-enumeration algorithm consists of three steps.

Step 1 In this step, the algorithm performs two tasks. First, it identifies all hammocks in the transform, by analyzing

each function. Second, it computes the setD of dependence chains. For each output statement s, it computes backward

transitive data dependences to identify the chain 〈s1, s2, . . . , s〉. If s1 is an input statement, it adds the chain to D.

Then, it identifies the control dependence of s, say sp, and computes backward transitive data dependences for sp:

〈s1, s2, . . . , sp〉. If s1 is an input statement, it adds the chain to D.

Step 2 In the second step, the algorithm classifies hammocks as irrelevant or independent. If a hammock H contains

no output statement and no statement in H appears in any dependence chain in D, H is classified as an irrelevant

hammock. If H contains an output statement and no statement in H appears in any dependence chain in D, H is

classified as an independent hammock. The remaining hammocks are dependent hammocks whose peer sequences

need to be computed.

Step 3 In the final step, the algorithm iteratively identifies peer-level hammocks and selectively expands the paths.

First, it computes intraprocedural paths for each method. Then, it expands the intraprocedural paths by iteratively

inlining the paths in the called methods (ignoring calls to external, or library, methods) until all calls have been

expanded. The algorithm handles recursion to ensure that an interprocedural cycle induced by recursive calls is

traversed only once.

A path is represented as a sequence of branches, hammocks, and calls. Thus, the initial path in function main()

is π1 = ((1, T ), 3,H5,H16). In the second iteration, the algorithm expands call node 3, which results in π2 =

((1, T ),H19,H5,H16). Because there are no call nodes in the path, the algorithm has identified H19, H5, and H16 as

peer-level hammocks.

The algorithm expands each of these hammocks to discover additional paths, call sites, and hammocks. H19 is

an independent hammock; therefore, it is expanded separately, resulting in the computation of two paths through that

hammock. Because H5 and H16 are dependent, they must be expanded together. The expansion of H16 results in two

paths. The expansion of H5 results in paths π3 = ((5, T ),H8) and π4 = ((5, F )). Because H8 is an independent

hammock, it is irrelevant with respect to H5 (the containing hammock) and can be expanded separately. Thus, the

expansion of H5 completes with the identification of π3 and π4; together with its dependent peer, H16, four path

combinations are identified. The expansion of H8 proceeds in a similar manner.
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entry foo

2

3 4

F

TF

5a: call foo 6a: call bar

7

8

9

T

exit (1,F) H2 8
(1,T)

10

11a: call foo

F

12

T

exit

(10,F) 11Cfoo
(10,T)

(1,F)  H2 8
(2,F) 5Cfoo

(2,T) 6Cbar

(1,F) (2,F) 5Cfoo 8

(1,F) (2,T) 6Cbar 8

(1,F) H2 8

(1,T)

(10,F) 11Cfoo

(10,T)

(1,F) (2,F) (1,T)  8

(1,F) (2,T) (10,F) 11Cfoo 8

(1,F) (2,T) (10,T) 8

5b: ret foo 6b: ret bar

entry bar

11b: ret foo

(1,F) (2,F) (1,T) 8

(1,F) (2,T) (10,F) (1,T)  8

(1,F) (2,T) (10,T) 8

(1,F) H2 8

(1,T)

ππππ1:

ππππ2:

ππππ3:

ππππ4:

ππππ5:

ππππ6:

ππππ7:

ππππ8:

ππππ9:

ППППinit
(bar):

ППППinit
(foo):

Figure 5: Illustration of path enumeration in the presence of recursion.

Path Enumeration in the Presence of Recurison

In the presence of recursion, path expansion is controlled to ensure that cyclic subpaths do not occur in the enumerated

paths. Figure 5 presents an example to illustrate the analysis of recursion. It shows an interprocedural control-flow

graph, in which a call site is represented using a call node and a return node. At each call site, a call edge connects the

call node to the entry node of the CFG of the called function; a return edge connects the exit node of the CFG of the

called function to the return node. For example, call site 6 in function foo(), which calls bar(), is represented with call

node 6a and return node 6b; these nodes are connected to the entry node and the exit node, respectively, of the CFG of

bar(). The example contains two instances of recursion: a direct recursion at call site 5, and an indirect recursion via

call sites 6 and 11.

Πinit(foo) and Πinit(bar) contain the intraprocedural paths, with hammock nodes unexpanded, for the two meth-

ods. The right side of the figure illustrates the path expansion for path ((1, F ),H2, 8), which occurs in three iterations.

In the first iteration, hammock node H2 is expanded to two paths: ((2, F ), 5Cfoo) and ((2, T ), 6Cbar ). In the second

iteration, path π2 : ((1, F ), (2, F ), 5Cfoo , 8) is processed, where 5Cfoo can potentially be expanded to the two paths in

Πinit(foo). The first of the two paths would result in a cycle caused by branch (1, F ); therefore, that path is ignored,

and π2 is expanded to π4. Similarly, call node 6Cbar in π3 is expanded to paths π5 and π6 in the second iteration.

In the final iteration, call node 11Cfoo in π5 is considered for expansion, and the first candidate, ((1, F ),H2, 8), is

discarded. After this iteration, no call sites occur in any of the paths; therefore, the path expansion terminates with the

final set of path {π7, π8, π9}.

3.2 Path Exploration

The second phase consists of a dynamic analysis, which explores transform paths by forcing execution to proceed

along a desired path and collects runtime information. We call the technique forced path exploration (FPE). FPE

works by modifying the outcome of a conditional statement, at runtime, to guide the execution along a specific branch

from the conditional.

To traverse a particular path, the transform is instrumented and executed on an empty input model. The path to

be explored is represented as a sequence π = (n1, n2, . . . , nk), where the ni represent either branches or hammocks.

The execution proceeds normally until it reaches n1. After that, execution proceeds either normally or in a forced
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1. <DataTaint select="first">
2 <taint parentNode="user" currentNode="user.first"/>
3. </DataTaint>
4. <DataTaint literal=""/>
5 <ControlTaint stmt="19" branch="T"
6. op="==" rValue="true">
7. <left select="hasMiddle"><taint parentNode="user"
8. currentNode="NULL" /></left>
9. <DataTaint select="middle">

10. <taint parentNode="user" currentNode="user.middle"/>
11. </DataTaint>
12. <DataTaint literal=""/>
13. </ControlTaint>
14 <DataTaint select="last">
15. <taint parentNode="user" currentNode="user.last"/>
16. </DataTaint>

Figure 6: Sample execution trace generated by dynamic taint analysis along the transform subpath (18, 19, 20, 21).

manner depending on the type of ni. If ni = (sp, L) is a branch, the instrumentation probes discard the outcome

of sp and force the traversal along the branch labeled L. If ni = H is a hammock, the instrumentation probes let

execution proceed normally through H: i.e., the normal outcome of the entry node of H determines the traversed

branch. Because that H is an irrelevant hammock, no specific path needs to be taken through it. In this manner, a

forced execution consists of interleaved normal and coerced branch outcomes.

In addition to the probes for altering branch outcomes, the technique adds probes for collecting runtime informa-

tion. The probes capture all accesses of input-model entities and generation of output, and flow across data and control

dependences, in the manner of dynamic taint analysis [5]. This analysis is presented in our previous work [6, 15].

Briefly, the probes generate trace information at each assignment, conditional, and output statement. A key feature of

the dynamic analysis is that it distinguishes different types of taint marks: data taints, control taints, and loop taints.

A data taint is propagated at assignments and statements that directly, or indirectly, construct an output fragment. A

control taint is propagated at conditional statements to the output fragments constructed in the scope of the conditional

statements. A loop taint is propagated, in a similar manner, at looping constructs.

Figure 6 shows the trace generated for path (18, 19, 20, 21) in function printName() when printName() is

invoked from call site 3 in main() (Figure 1). In the trace, a <DataTaint> element captures information about the

input-model entities that are propagated to output statements via assignments. Thus, lines 1–3 of the trace record

the output of userData.user.first in line 18 of printName(); similarly, lines 12–14 of the trace record the printing

of userData.user.last in line 21. A <ControlTaint> element captures information about the predicate in a conditional

statement: the left-hand and right-hand expressions (which could represent an input-model entity or a string literal),

and the comparison operator. Lines 4–11 capture information about statements 19–20 in printName(). Note that

the nested <DataTaint> element (trace lines 8–10) illustrates that userData.user.last is guarded by the condition in

statement 19.

During forced exploration, the transform executes on an empty input model. Therefore, it attempts to access non-

existing input-model elements, which can cause the runtime environment to raise null-pointer exceptions. To handle

such cases, appropriate instrumentation that intercept (e.g., via aspect weaving) references to input-model elements

and construct empty objects on-the-fly could be done. Our current implementation (Section 5.1), which analyzes

XSLT-based transforms, delegates this requirement to the underlying XSLT framework, which automatically returns

empty objects for non-existing input-model elements.
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1. if (u.hasMiddle != null)

2. print “M: “

3. foo = u.middle

3. else

4.    foo = “”

5. print foo

ControlTaint

branch = T

sel = hasMiddle

Variable 

name = foo

DataTaint

sel = middle

DataTaint

var = foo

1

2 3

4

DataTaint

lit = “M :”

5

ControlTaint

branch = T

sel = hasMiddle

DataTaint

sel = middle

1

2
4

DataTaint

lit = “M :”

1

ControlTaint

branch = T

sel = hasMiddle

Figure 7: Illustration of variable propagation.

3.3 Abstraction Synthesis

The final phase of our approach combines the individual execution traces to synthesize the operational abstraction.

The algorithm first merges the individual execution traces, and then converts the merged trace to the abstraction.

Step 1: Trace Merging To merge the individual traces, Step 1 preprocesses the traces to make them suitable for

merging. First, this step removes from the trace each control-taint subtree that does not correspond to a coerced

branch outcome. Recall that FPE involves interleaved normal and coerced branch evaluations. Normal execution

occurs through a hammock H whose exploration is not pertinent for the particular path. Thus, information captured

in the trace within the scope of conditionals that evaluated normally is irrelevant and, consequently, removed.

Second, this step resolves trace entries where variables occur because the vocabulary of the abstraction is restricted

to contain access paths and literals only. Intuitively, in this step, the access path ψ at an assignment v = ψ is propagated

forward to the uses of v. To illustrate, consider the code fragment and the trace representations shown in Figure 7.

The trace on the left is the one generated after the execution of the true branch of the if condition in line 1. Node 3

is a <variable> node, which represents the variable assignment in line 3. Node 4 is a <DataTaint> node representing

the access path u.middle. Node 5 is a <DataTaint> node for the output in line 5. The algorithm replaces node 5 with

the path (1, 4): the modified trace represents the case that u.middle is printed at line 5 under the condition (1, T ). In

general, the path that replaces a variable-use node nvu includes the <DataTaint> node ndt (node 4 in Figure 7) and all

control-taint ancestors of ndt until the least common ancestor of ndt and nvu . The algorithm performs the propagation

transitively.

After the traces have been preprocessed, merging is performed as a simple tree-merge operation, as illustrated in

Figure 8. The tree on the left shows the trace fragment generated for the path traversed along branches (1, T ), (5, T ),

(8, T ), and (10, T ). Similarly, the tree in the center is the trace fragment for the path traversed along (1, T ), (5, T ),

(8, T ), (10, F ), and (12, T ). The tree on the right results from merging these two trees. The merged trace captures the

executions of both the paths.

Step 2: Abstraction Construction The algorithm for creating the operational abstraction operates on the merged

trace. The algorithm traverses the merged trace in a breadth-first manner and processes each node based on its type

(using the following rules) to generate parts of the abstraction.
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Figure 8: Illustration of trace merging: the traces on the left and in the center are merged to yield the trace on the right.

1. For a data taint, an access path (ψ) or a literal (l) is created in the abstraction

2. For a control taint, a guard (G[. . .]) is created from the relational expression captured in the taint information

3. For a loop taint, a repeating fragment (ψ[. . .]∗) is created

4. For a path of consecutive control taints, a conjunction of guards (G1 ∧G2) is created

5. For two sibling control taints for the same statement, but different branches, alternative output fragments (OF ∨
OF ) are created

Additionally, to create the access paths, the algorithm propagates the select values from loop taint nodes to all

descendant nodes.

To illustrate, consider the merged tree shown on the right in Figure 8. The algorithm traverses the tree starting at

node 1, where it creates a repeating fragment ψ1[. . .]∗ in the output, where ψ1 = user. Next, at node 2, it creates the

guard G1 : user.children 6= null. To create the complete access path, the algorithm propagates the select value from

node 1 (a loop node) to node 2. Next, at node 3, a nested repeating fragment ψ2[. . .]∗ is created. At this point, the

abstraction is

ψ1[G1[ψ2[. . .]∗]]∗

On encountering the sibling control taint nodes 4 and 5, the algorithm creates two alternative guarded fragments:

G2[. . .]∨G3[. . .], where G2 : user.children.user.gender = "M" and G3 : user.children.user.gender 6= "M". At node 6,

G2[. . .] is expanded to G2["Boy,"] and, at node 7, the fragment is recomputed as G2["Boy," user.children.user.age].

At node 8, the conjunction ofG3 and a new guardG4 is created. After all the nodes have been processed, the computed

abstraction is

ψ1[G1[ψ2[G2["Boy," ψ3] ∨ (G3 ∧G4)["Girl," ψ4]]∗]]∗

where

ψ1 : user
ψ2 : user.children
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G1 : user.children 6= null

G2 : user.children.user.gender = "M"

G3 : user.children.user.gender 6= "M"

G4 : user.children.user.gender = "F"

ψ3 = ψ4 = user.children.user.age

The complete abstraction of PrintUser is shown in Figure 3.

3.4 Discussion

Next, we discuss a few aspects of our technique and the trade-offs with potential (alternative) static-analysis-based

techniques.

A pertinent question about the abstraction is related to the case where a transform internal variable—that has no

dependence on input-model entities (i.e., the value of the variable is computed internally and cannot be manipulated

via the input)—can influence the transform output. Our definition of the abstraction restricts the abstraction vocabulary

to access paths and literals. Although internal variables do not occur in the abstraction, their influence on the output is

captured. Consider the following code fragment and abstraction
int i = 0 G1[1" "user.name]
while( i < 10) { G1: 0 < 10

i++;
print i + " ";
print user[i].name;

}

The abstraction provides the user with information that an integer can be printed preceding user.name, and that the

repeating fragment occurs 10 times.

Our approach is dynamic-analysis-based; one could consider a static-analysis techniques for abstraction synthesis

that are based on control-flow analysis, data-flow analysis and program-projection techniques. Our choice of dynamic

analysis is based on the pragmatic consideration of wide applicability. Given the myriad of transformation imple-

mentation of technologies, a separate static-analysis infrastructure would have to be developed for each technology.

Most of the popular implementation technologies (e.g., XSLT, JET,2 Velocity,3 WebObjects4, Kermata,5and Acceleo6)

support transform execution within a Java Virtual Machine, via translation to Java. Static analysis of the generated

Java code is not feasible because references to input-model elements are obfuscated in the bytecode by calls to API

methods. Dynamic analysis requires Java instrumentation only (e.g., via aspect weaving and bytecode rewriting),

which involves much less effort and is easily portable across technologies, than developing static-analysis tools.

Our choice of forced execution is based on the simplicity of the technique in that it avoids the (expensive) genera-

tion of inputs to cover specific paths. Although forced execution introduces unsoundness in dynamic analysis, it does

not cause unsoundness in the abstraction in the sense that the abstraction contains no path that is not already present

in the original transform.

4 Applications of the Abstraction

The abstraction, synthesized by our technique, can be useful for different applications; we briefly discuss some of

these.
2http://www.eclipse.org/modeling/m2t/?project=jet
3http://velocity.apache.org
4http://www.apple.com/ca/WebObjects
5http://www.kermeta.org
6http://www.acceleo.org/pages/home/en
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4.1 Transformation Comprehension

By capturing the structure of the output and the influence of the input on the output, the abstraction inherently supports

the transform user’s perspective, which is focused on inputs and outputs. The user can browse the abstraction to

perform efficiently tasks that require comprehension. For instance, the user can construct appropriate input models

by consulting the abstraction. The PrintUser abstraction shows that the presence of attribute middle is not sufficient

for it to be propagated to the output—attribute hasMiddle must also be present, specifically with value true. Such

information can guide the user in creating proper input models.

Another task involves debugging a faulty input model for which the transform does not generate the expected

output. The abstraction can assist the user in efficiently debugging a faulty model. To investigate this hypothesis, we

conducted a user study, which is described in Section 5.3.

4.2 Metamodel Coverage and Transform Footprints

Metamodel coverage [25] identifies parts of the input metamodel that are touched, or accessed, by a transform. The

coverage measure is useful for identifying the scope of a transform. It lets users assess the relevance of a transform for

their metamodels, and whether the transform serves their transformation needs. Because the operational abstraction

captures all input-model entities that affect the output, it can be used to compute the metamodel coverage in a straight-

forward manner. (In the case where an input-model entity is accessed, but does not influence the output in any way,

the abstraction would not capture the entity, which would cause the coverage to be under-approximated.)

Coverage can also be computed for an input-model instance instead of the input metamodel. Jeanneret, Glinz,

and Baudry [12] present techniques for computing the metamodel and model footprint of a model operation. Our

operational abstraction can be used to estimate the footprint of a model instance as well.

4.3 Metamodel Refinement

The operational abstraction can be used to perform transform-specific metamodel refinement. Refinement enriches a

metamodel with transform-specific information that is missing in the metamodel. The metamodel can be augmented

in three ways, two of which enrich attributes and one enriches elements.

First, domain information about attributes can be added to the metamodel. The guards in the abstraction capture

comparisons of input-model attributes with literals. By analyzing such guards, we can identify relevant values from

the domains of the attributes and relevant sub-domains. To illustrate, consider the PrintUser abstraction shown in

Figure 3. We can infer from the guards G3 and G4 in the abstraction that "M" and "F" are two relevant values in the

(infinite) domain of userDara.user.children.user.gender. This information can be added to the metamodel to enrich it.

Second, attributes can be annotated to indicate whether they are “optional” or “mandatory.” For instance, line 3

of the PrintUser abstraction (Figure 3) shows that user.first and user.last are unguarded, whereas user.middle is

guarded. Therefore, in the metamodel, user.middle can be marked as optional, and user.first and user.last can be

annotated as mandatory.

Third, elements can be annotated with cardinality information. In the case of PrintUser, the input metamodel

can be augmented to show that userData.user and userData.user.children.user can occur zero or more times in any

instance of the metamodel.
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Figure 9: Illustration of fault repair. The execution trace on the left is generated for the input model shown in Figure 2(a). The
trace on the right is the merged trace (shown partially) constructed by Step 1 of abstraction synthesis (Section 3.3).

4.4 Critical Metamodel Regions

Previous research has presented the notions of critical and forgiving input regions in the context of applications that

process complex inputs [4]. A forgiving input region is one where small changes induce correspondingly small changes

in the behavior and output of the application. A critical input region is one where small changes can cause the

application behavior and output to change dramatically. Although these concepts have not been applied in the domain

of model transforms, they intuitively make sense for model transforms and can be very useful for tasks, such as

managing and evolving metamodels.

The transform abstraction captures the influence of input-model entities on the output. Therefore, it can be lever-

aged to identify critical and forgiving metamodel regions, based on quantification of influence. The quantification

could be computed from the extent of the output influenced by an input. More interestingly, the nature of influence

would be important to consider: an input-model entity could affect only a small part of the output, but one that is

critical for the output to conform to a metamodel; conversely, an input could affect large parts of the output that

have no relevance for metamodel conformance. There are other interesting research aspects of the problem as well.

For instance, critical regions for a metamodel could be computed from a set of transforms (that use the same input

metamodel) or for chained transformations (where the output of one transform is the input to another transform).

4.5 Automated Fault Repair

The operational abstraction can be leveraged to improve the automated fault-repair technique that we developed in

previous work [15]. That technique computes repair actions to fix a faulty input model by analyzing the execution

trace generated during the execution of a transform on the faulty model. The operational abstraction can enable the

technique to compute more accurate repair actions.

A recommendation is a set of repair actions and a repair action is an atomic change that can be made to a faulty

input model. There are three types of repair actions: (1) add an attribute, with an arbitrary value, to an element

(specified as an access path), (2) add an element to another element, and (3) set the value of an attribute.
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To illustrate fault repair, suppose that the input model in Figure 2 contained a fault: missing attribute hasMiddle

(with value true) for the second <user> element. This fault causes attribute middle to not be printed. Starting from this

symptom of the fault, the user attempts to diagnose the fault by examining the input model in an incremental manner,

guided by the hierarchy of taint marks enclosing the incorrect output fragment [6]. In this process, the user identifies

the fault index, which is the innermost enclosing taint mark associated with the faulty input-model element/attribute.

In this example, the incorrect output fragment is a missing string, which is enclosed by the control taint propagated

at statement 19 of PrintUser. The trace for the faulty input model is shown on the left in Figure 9; the highlighted

control-taint node is the fault index.

The fault-repair technique [15] computes repair actions by identifying correct output fragments that are “similar”

to the incorrect fragment. In our example, the technique would attempt to find another user element for which some

output is generated under the conditional in line 19 of PrintUser. Algorithmically, the technique walks up in the

trace tree—starting at the fault index—to the root node. This path is called the fault path; highlighted in the trace

in Figure 9. Next, the technique walks down from the root node to find another path that is at least as deep as the

fault path and that ends at a data taint node. (We refer the reader to Reference [15] for a precise description of the

trace-traversal algorithm.) In this case, there is no such path in the execution trace because none of the <user> elements

in the input model contains both attributes hasMiddle (with value true) and middle. Thus, the technique would compute

no repair actions.

The effectiveness of the repair technique, thus, depends on the richness of the faulty input model: that is, whether

the model contains enough patterns of correct output fragments, on the basis of which repair actions can be computed.

In this example, it does not contain such fragments. The technique could be made more effective if it were to analyze

other “exemplar” input models as well (when available), in addition to the faulty input model. Our abstraction can,

in fact, serve this purpose because it captures all output fragments that can potentially be generated. Specifically, the

repair technique can analyze the merged execution trace that is generated prior to abstraction construction (see the

description of Step 1 in Section 3.3). The trace of the right in Figure 9 shows (partially) the merged trace. Guided

by the fault path, the repair algorithm would walk the highlighted path (1, 2, 4, 5), and compute repair actions based

on the trace information associated with nodes 4 and 5. (Repair actions are computed starting at nodes that are at the

same depth in the trace tree as the fault index [15].) By analyzing node 4, the technique computes two repair actions

ADD hasMiddle TO 1.4

SET 1.4/hasMiddle TO true

The analysis of node 5 yields no repair action because user element 1.4 already contains attribute middle. However,

if this attribute were missing, the technique would compute two more repair actions

ADD middle TO 1.4

SET 1.4/middle TO *

5 Empirical Evaluation

We implemented our approach for XSLT-based model transforms and conducted empirical studies to evaluate different

aspects of the abstractions and the technique for constructing them. In the first study, we evaluated the effectiveness of

selective path enumeration. Our second study is a user study, in which we investigated the usefulness of abstractions in

improving user efficiency in debugging faulty input models. The third study focuses on two applications of abstractions

for metamodel management and evolution: metamodel coverage and metamodel refinement. In the final study, we
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Table 1: Subjects used in the empirical studies.
Translet

XSLT Constructs used in the Subjects Bytecode
Subject Templates Loop Condition Data Variables Select Instructions
ClsGen1 4 8 14 147 27 156 3722
ClsGen2 19 16 94 519 103 541 13270
IntGen1 2 2 5 16 9 19 938
IntGen2 6 3 40 101 15 107 3264
PluginGen 7 9 48 107 52 122 5888
Total 38 38 201 890 206 945 27082

Table 2: Effectiveness of Selective Path Exploration
Paths with Paths with

Subject All Paths HIrr Ignored Hind Optimized Both
ClsGen1 198 110 25 23
ClsGen2 1.4 x 1029 5.073 x 1013 269 155
IntGen1 16 16 8 8
IntGen2 62,734 26890 62 53
PluginGen 482,879,880 19,549,215 64 50

evaluated the effectiveness of the abstraction in improving automated fault repair. After describing the experimental

setup, we present the results of the studies.

5.1 Experimental Setup

We leveraged and extended the infrastructure that we had developed in our previous work [6, 15]. The implementation

converts an XSLT program to a Java translet using XSLTC (http://xml.apache.org/xalan-j/xsltc); all the analyses

operate on the Java translet. We implemented the path-enumeration algorithm using the WALA analysis infrastructure

(http://wala.sourceforge.net). The instrumentation component rewrites the translet bytecode, using the Bytecode

Engineering Library (http://jakarta.apache.org/bcel) to add probes for forced path exploration. The execution trace

collection is implemented using a combination of bytecode rewriting and aspect weaving.

We used five XSLT transforms, listed in Table 1, as our experimental subjects. The transforms are real programs

that have been developed in projects at IBM Research. Each transform takes as input a domain-specific Ecore EMF

model (http://www.eclipse.org/modeling/emf), and generates different types of text output: ClsGen1 and ClsGen2 gener-

ate Java classes; IntGen1 and IntGen2 generate Java interfaces; and PluginGen generates an XML configuration file. To

indicate the complexity of the subjects, Columns 2–7 list different XSLT features used in the subjects. The last column

shows the number of bytecode instructions in the Java translet for each subject.

5.2 Selective Path Exploration

In the first study, we evaluated the usefulness of selective path enumeration in reducing the scope of dynamic ex-

ploration. We investigated two research questions. (1) How effective is selective path enumeration in reducing the

number of explored paths over full path enumeration? (2) What are the contributions of the irrelevant-hammock and

independent-hammock optimizations to the reduction?

To collect the path counts, we enumerated paths, using the different techniques, starting from the main methods.

First, we computed the paths using full enumeration. Then, we applied optimizations for irrelevant and independent

hammocks separately, to measure their individual contributions to the reduction. Finally, we applied both optimizations

together to compute the paths for selective exploration.

Table 2 presents the data about the path reduction. Column 2 of the table lists the full paths. It shows that, for the

two largest subjects (ClsGen2 and PluginGen), full path exploration has to contend with exponential blowup. By ignoring
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<month start="3" days="31">

<name>May 2001</name>

</month>

Calendar

Generator

Calendar

Generator

Figure 10: Sample input and output of the calendar generator transform used as the subject in the user study.

irrelevant hammocks, the number of paths decreases considerably—several orders of magnitude for ClsGen2—as shown

in Column 3. However, the reduced number of paths are still prohibitively large.

The strategy of exploring independent hammocks separately results in a dramatic reduction in the path counts,

to make path exploration practical. For ClsGen2, the path count is reduced by a factor of 1027 from 1.4 × 1029 to

269. Similarly, a remarkable reduction occurs for PluginGen. The last column shows that the two optimizations, when

applied together, achieve better results than either optimization applied alone for four of the five subjects.

The data illustrate that selective path enumeration is indeed essential for path exploration, and that our charac-

terization of irrelevant and independent hammocks can achieve a remarkable reduction in the number of paths to be

analyzed. We note that the domain of our subjects—XSLT transforms—also plays a role the radical path reduction.

Unlike general programming languages, a variable, once assigned, cannot be reassigned by some function within

XSLT. This makes peer-level hammocks predominantly independent. This may not be the case for other transform

implementation technologies. However, other studies [19] have reported significant path reduction (in the context of

symbolic execution) in Java programs based on a similar characterization as ours.

5.3 User Study

In the user study, we investigated the following hypothesis

A user can perform the task of identifying and fixing faults in a failure-inducing input model more effi-

ciently when guided by the transform abstraction than without the abstraction.

Study Design

Subject Program. We used an XSLT transform called Calendar Generator,7 as the subject. (Appendix A shows the

source code of the transform.) The transform takes as input an XML file specifying a month, and generates as output a

a visual depiction of the calendar rendered in HTML. Figure 10 shows a sample input to, and the corresponding output

of, the transform.

Participant Selection. To select participants with different degrees of expertise, we identified the factors on which

expertise assessment could be based. Familiarity with XSLT, XML, and HTML are the main factors, given the char-

acteristics of the subject program. Based on this criteria, we created three participant categories: expert, typical, and

novice. The expert user is a software engineer with experience in XSLT development. The typical user is a software

engineer with no XSLT-development experience, but who is familiar with XML and HTML. The novice user has

minimal XML/HTML knowledge and no knowledge of XSLT. We formed a control group, which would not use the

operational abstraction to perform the debugging task, and an experimental group, which would use the abstraction.
7http://incrementaldevelopment.com/xsltrick/parvez/\#calendar
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Figure 11: Visual representation of the abstraction of the calendar generator abstraction.

Each group consisted of one expert user, two typical users, and one novice user. The overall software-development

experience of the users ranged from 2–10 years across all categories.

Debugging Task. We created a faulty version of the input model shown in Figure 10

<month week="5" name="May">
<year>2001</year>

</month>

For the correct input model, the transform generates the calendar shown in Figure 10, whereas for the faulty input

model, the transform generates an empty HTML page with no calendar.

We manually created the visual representation of the transform abstraction shown in Figure 11. For this study, we

did not implement automated construction of the visual representation. The presentation of the abstraction via intuitive

visual representation is important and, based on the output of a transform, an appropriate representation can be created

in an automated manner. We leave the development of automated visualization techniques to future work.

The control group was asked to fix the model by examining the transform code, whereas the experimental group

was asked to fix the model by examining the transform’s operational abstraction only (and not the transform code).

Both groups were also given the options of executing the transform after editing the faulty model any number of times,

and examining the HTML source (in addition to the browser-rendered HTML) generated by the transform.

Measures. We used three quantitative measures: time taken to fix the fault (Q1
n), number of transform executions

performed (Q2
n), and whether output HTML source is examined (Q3

n). Our rationale behind using Q2
n and Q3

n is that

they indicate the activities and effort involved in debugging. We also used three qualitative measures: user confidence

in the correctness of the fix (Q1
l ), ease of determining the relevant elements/attributes involved in the fix (Q2

l ), and

ease of selecting the value for an element/attribute (Q3
l ). Q

1
l was measured on the scale {high, medium, low}, whereas

Q2
l and Q3

l were measured on the scale {very easy, easy, somewhat difficult, difficult}.
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Table 3: Results of the user study. CG refers to the control group, whereas EG refers to the experimental group.
Number Output Element/Attribute

Time (min) of Runs Examined Confidence in Fix Identification Value Selection
User CG EG CG EG CG EG CG EG CG EG CG EG
E1 14 6 3 3 Yes Yes Medium High V. Easy V. Easy S. Difficult S. Difficult
T1 8 3 3 3 Yes No Medium Medium Easy V. Easy Easy Easy
T2 7 5 3 3 Yes No Medium High S. Difficult V. Easy Easy Easy
T3 11 6 5 3 Yes No Medium High V. Easy Easy Easy Easy
N1 17 5 4 4 Yes No High High V. Easy V. Easy Difficult Easy

Results and Analysis

Table 3 presents the results of the study. It shows the data for each of the six measures for the control group (CG)

and the experimental group (EG). In all cases, a user in the experimental group took less that time than a user of

corresponding expertise in the control group (Columns 2 and 3). On average, an experimental-group user took ap-

proximately 5 minutes, whereas a control-group user took over 11 minutes, to complete the task. The expert user in

the control group readily delved into the transform code to get a proper understanding of the code, which the other

users did not do. This explains the longer time taken by the expert than the typical group. A noteworthy aspect of

the timing data is that there is much less variance among the experimental-group users than among the control-group

users. This suggests that the abstraction served to bridge the gap between the experts and the novices—and, to some

extent, made “expertise” less of a determinant of efficiency. Reducing the need for expertise is, in fact, one of the

goals of productivity improvement tools, and our study seems to support the premise.

In all but one case, the experimental group did not examine the generated HTML source, whereas the control group

did (Columns 6 and 7). The information in the abstraction essentially eliminated the need for examining the generated

output and, thereby, made a potentially cumbersome task unnecessary.

The experimental group demonstrated higher confidence in the correctness of the fix than the control group

(Columns 8 and 9). In fact, even the novice user in the experimental group showed high confidence, whereas the

expert user in the control group indicated medium confidence. The lack of suitable information contributed to the

weaker confidence of the control group. For instance, the control-group users were unsure whether certain attributes

(e.g., week) had to be removed from the input model or whether the attributes were referenced in the transform.

In terms of the effort involved in identifying relevant elements, attributes, and values, the experimental group

rated the task “easy” or “very easy,” whereas some users in the control rated this task as “difficult” or “somewhat

difficult” (Columns 10–13). By explicitly showing the input-model elements and attributes used by the transform, the

abstraction made this information readily available to the experimental-group users, whereas the control-group users

had to wade through the transform code to dig out the information.

Although limited in scope, this study illustrates the potential value of transform abstractions in improving user

productivity in performing tasks, such as debugging input models. At the conclusion of the study, we showed the

abstraction for the subject to the control-group users; all the users said that, had they used the abstraction, they would

have accomplished the debugging task faster.

5.4 Metamodel Management and Evolution

In this study, we evaluated the feasibility of using operational abstractions for supporting two tasks in metamodel

management and evolution: metamodel coverage (Section 4.2) and metamodel refinement (Section 4.3).

Our subjects operate on a common Ecore metamodel. For each subject, we computed the coverage attained on the

metamodel by analyzing the access paths in the abstractions. Specifically, we measured attribute coverage, element
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Table 4: Metamodel coverage and attribute domain inference.
Element Coverage Attribute Coverage

Fully Partially Attribute
Subject Total Covered Covered Total Covered Domains
ClsGen1 20 1 4 62 15 5 (33%)
ClsGen2 20 1 4 62 24 10 (42%)
IntGen1 20 1 4 62 12 3 (25%)
IntGen2 20 1 4 62 20 7 (35%)
PluginGen 20 1 4 62 16 3 (19%)

coverage, and partial element coverage. A metamodel attribute is covered if its access path occurs in the abstraction. A

metamodel element is covered if all of its sub-elements and attributes occur in the abstraction. An element is partially

covered if some, but not all, of its sub-elements and attributes occur in the abstraction.

For metamodel refinement, we studied how the input metamodel could be enriched by adding domain information

to attributes. We computed the domain information by analyzing guards that compared access paths with literals—i.e.,

guards of the form ψ = l. We counted the number of attributes for which domain information could inferred in this

manner.

Table 4 presents the data. Columns 2–4 show element coverage, columns 5–6 show attribute coverage, and col-

umn 7 shows the number of inferred attribute domains. The coverage data show that our subjects use a very small

part of the input metamodel. Whereas element coverage is the same, attribute coverage varies across the subjects.

Because Ecore is a general-purpose metamodel, sparse usage in specific contexts is to be expected. In fact, others

have discussed this sparse-usage issue for general-purpose models, such as UML [12, 21, 25], which is one of the

motivations behind the development of techniques such as metamodel pruning [21].

Column 7 shows the number of covered attributes for which we could infer domain information. As the data

show, the abstractions could be leveraged to infer domains for a good percentage—ranging from 19% to 42%—of the

covered attributes.

To summarize, this study illustrates the feasibility of leveraging transform operational abstractions for computing

metamodel coverage and attribute domains, which can be useful for evolving, refining, and pruning metamodels.

5.5 Improving Automated Model Repair

The goal of the second study was to investigate how the abstraction (specifically, the merged execution trace) can

improve the pattern-analysis-based model repair [15]. To do this, we compared the recommendations computed by the

technique using (1) the merged execution trace generated during abstraction synthesis, and (2) the trace generated by

the execution of the faulty input model only.

To generate failure-inducing input models, we used the technique of generating inputs by applying mutation oper-

ators to a valid input (e.g., [7]). Specifically, we defined four mutation operators, which delete an element, delete an

attribute, modify the value of an attribute based on a predefined enumeration of values, and set an attribute to empty.

We applied the operators to two valid input models to generate faulty inputs. We used an upper limit of 100 for each

input to bound the number of mutants. From the initial set of mutants, we eliminated mutants that caused no change

in the transform output (i.e., the equivalent mutants). Next, we removed the mutants for which fault localization did

not cause the execution of incorrect paths. We performed this step because computing repair actions for failures where

incorrect (resp., missing) input-model attributes are simply written (resp., missing) in the output does not require

pattern-analysis-based fault repair [15]. From the set of mutants for which the same fault index was identified, we

selected only one mutant. This resulted in a total of 107 faults across the five subjects.
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Table 5: Comparison of recommendations calculated using (1) pattern analysis on the execution trace of the faulty input model
(PA(Efault)) and (2) pattern analysis using the merged execution trace generated by abstraction synthesis (PA(Eabs)).

Faults for which Faults for which
Subject Faults PA(Efault ) = PA(Eabs) PA(Efault ) < PA(Eabs)

ClsGen1 19 3 16 (84%)
ClsGen2 45 6 39 (87%)
IntGen1 9 2 7 (78%)
IntGen2 28 2 26 (93%)
PluginGen 6 0 6 (100%)
Total 107 13 94 (88%)

Figure 12: For the faults for which the abstraction improved pattern-analysis-based repair, the distribution of additional recom-
mendations computed.

To collect the data, we computed, for each fault and each subject, two sets of recommendations: one set computed

by the repair technique using the execution trace for the faulty model (PA(Efault)), and the other set computed by

the repair technique using the merged trace generated by abstraction synthesis (PA(Eabs)). Table 5 presents the data

about the recommendations. It shows the number of faults (Column 2) for each subject, the number of faults for which

PA(Efault) = PA(Eabs) (Column 3), and number of faults for which PA(Efault) < PA(Eabs) (Column 4). As the

data show, the merged trace improved pattern analysis for a large percentage of the faults. The improvement varies

from 78%, for IntGen1, to 100% for PluginGen. On average, for 88% of the faults, the merged trace improved pattern

analysis.

To get insight into the magnitude of improvement, we examined the number of additional recommendations com-

puted by PA(Eabs). Figure 12 presents this data as a segmented bar chart. Each bar represents 100% of the faults for

which PA(Efault) < PA(Eabs) (Column 4 of Table 5). The segments in a bar illustrate different ranges of additional

recommendations in PA(Eabs). For example, consider the bar for ClsGen2. For 77% of the faults, PA(Eabs) contained

one more recommendation than PA(Efault); for 18% of the faults, PA(Eabs) contained 2–5 more recommendations;

for the remaining 5%, PA(Eabs) contained between 11 and 20 more recommendations. For IntGen2, for 19% of the

faults, the abstraction enabled the computation of between six and 20 additional recommendations.

Overall, the data indicate that the merged trace generated during abstraction synthesis has the potential to improve

pattern-analysis-based fault repair. For our subjects, using the merged trace resulted in the computation of at least

two more recommendations for 20% of the faults; for another 7% of the faults, at least six more recommendations.

To verify that each additional recommendation was a valid alternative repair suggestion, we asked the transform

developers to examine the recommendations. They reported that none of the suggestions were invalid. Because pattern
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analysis computes alternate suggestions for fault repair, by leveraging the merged trace created during abstraction

synthesis, it can offer more repair suggestions.

5.6 Threats to Validity

The most significant threats to the validity of our results are threats to external validity, which arise when the observed

results cannot be generalized to other experimental setups. In our studies, we used five XSLT-based transform and,

therefore, we can draw limited conclusions about how our results might hold for other transforms. Our transforms

vary in complexity and generate different types of outputs (code, properties, and configuration files), which gives

us some confidence that the results might apply to other XSLT transforms. For transforms implemented using other

frameworks or general-purpose programming languages (e.g., Java), patterns of references to input-model entities and

output generation might differ, which would determine the effectiveness of selective exploration. Further experimen-

tation with other types of transforms is required to provide evidence of the usefulness of our approach in more general

settings.

Another threat to validity is the representativeness of the faulty input models. We used mutation analysis to gen-

erate the faulty models, which may not represent the types of faults that occur frequently in practice. However, based

on our experience with developing transforms, we designed the mutation operators to capture commonly occurring

faults. A related threat is that, in our studies, each faulty input contained a single fault.

6 Related Work

Møller, Olesen, and Schwartzbach [16] present a static flow analysis for validating XSL transforms. They use the

analysis to construct an XML graph for an XSL function, which represents the possible output generated by the

function. The graph consists of different types of nodes to represent elements, attributes, and text. The edges represent

possible ways of composing the output XML document. Our notion of abstraction is different from the XML graph.

Although the XML graph captures the output structure, it is not a projection of the transform and it does not represent

guarded fragments. Our abstraction can be applied to any structured output, and is not restricted to XML documents

only. Moreover, our synthesis technique is a combination of static selective path enumeration and dynamic path

exploration.

Existing research has investigated other forms of program summaries, such as semantic signatures [18], output

summaries (e.g., [13]), and textual program summaries (e.g., [11, 23]).

Qi, Nguyen, and Roychoudhury [18] define a semantic signature with respect to an output variable. The signature

consists of the possible expressions for the output variable, along with the path condition under which a particular

output expression is produced. Their approach computes the signature by performing symbolic execution over a

relevant slice [10]. Our operational abstractions differ in that they retain the program structure, illustrate the influences

of inputs on outputs, and are suitable for summarizing model transforms.

Reps, and Liblit [13] present a static-analysis approach for extracting output data formats, such as file formats,

from x86 executables. The approach first constructs a hierarchical finite-state machine, which is a projection of the

program control flow with respect to entry/exit/call nodes and output operations. Then, it performs value-set analysis

and aggregate structure identification iteratively, to compute an over-approximation of the output values and sizes. The

output format is represented as a regular expression. Our approach is dynamic, infers operational abstractions, and

applies to model transforms.
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Researchers have investigated techniques for selective path exploration for improving symbolic execution [19] and

create semantic signatures of programs [18].

Santelices and Harrold [19] present the notion of path families, which consists of a set of paths that can be tra-

versed as a group for symbolic execution—the individual paths in the family need not be explored separately. Our

approach for selective path enumeration is similar, but simpler, in concept in the sense that further path grouping within

dependent hammocks could be attempted. But, for our application, selective exploration based on the hammock char-

acterization is sufficient. We apply this concept to the domain of model transforms, with the goal of computing

abstractions. Whereas our results illustrate that selective enumeration can cause substantial path reduction for XSLT

programs, the results of Santelices and Harrold show a similar trend for general Java programs.

Qi, Nguyen, and Roychoudhury [18] partition program paths to compute the program signature. Two paths are put

in the same partition if they have the same relevant slice [10] with respect to an output variable. Our characterization

is based on dependence chains (or static slices [26]) across peer-level hammocks. Our simpler hammock-based path

enumeration is suitable for the domain of model transforms.

The underlying principle of forced exploration—altering the outcome of a predicate at run-time to force execu-

tion along a particular branch—is a general technique for observing new program behaviors without requiring the

generation of new test inputs [24]. It has been investigated in different contexts, such as malware detection [17, 27],

fault localization [28], and fault detection [14, 24]. Some of these approaches have also investigated techniques for

overcoming the unsoundness inherent in forced path execution. For abstraction synthesis, such techniques are irrele-

vant as our goal is to summarize the output along static transform paths, but via dynamic exploration (for the reasons

mentioned in Section 3.4). Thus, if infeasible static paths exist, our approach explores them.

An alternative approach for exploring transform paths and computing runtime information is to generate input

models to attain adequate transform coverage: that is, coverage of the paths computed by our selective-enumeration

technique. Existing research on model generation (e.g., [2, 20]) or general test-input generation (e.g., [3, 9]) could

be leveraged to this end. However, in spite of the recent development of powerful automated techniques, test-input

generation remains an inherently complex and expensive task. In comparison, forced exploration requires no ex-

pensive analysis (such as, constraint solving), applies to transforms and inputs of any complexity, and can easily be

implemented.

7 Summary and Future Work

In this paper, we presented the notion of operational abstractions for model transforms. The operational abstraction

captures the essential transformation logic, while abstracting away the implementation details, which are irrelevant

from the transform user’s perspective. The abstraction can assist the user in understanding the structure of the output

and the influence of input-model entities on output fragments. We presented an approach that uses selective path

enumeration, dynamic exploration of enumerated paths, and offline analysis and merging of execution traces to syn-

thesize sound and complete abstractions. We discussed different applications of the abstraction, such as computing

metamodel coverage, refining metamodels, and identifying critical metamodel regions. In this way, the abstraction can

guide metamodel management and evolution tasks.

Our empirical results showed that, for the subjects considered, selective path enumeration substantially reduced the

scope of path exploration. Our user study indicated the usefulness of abstractions in assisting users debug faulty models

with greater efficiency and confidence. Finally, we empirically assessed the feasibility of leveraging abstractions for
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measuring metamodel coverage and enriching metamodels with domain information.

Our evaluation was limited to XSLT-based transforms. In future work, we will investigate whether our re-

sults generalize to transforms implemented using other frameworks or implemented in general-purpose programming

languages, such as Java. Our dynamic-analysis-based approach would be easier to extend to accommodate other

transform-implementation technologies than techniques based on static analysis of transforms. Other potential direc-

tions for future research include investigating more applications of operational abstractions. In particular, applying

the notions of critical and forgiving regions [4] to metamodels and model transforms would be interesting, and useful

techniques for guiding metamodel management and evolution could be developed.
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A Calendar Generator Transform
<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="xml" encoding="UTF-8"/>
<xsl:variable name="start" select="/month/@start"/>
<xsl:variable name="count" select="/month/@days"/>
<xsl:variable name="total" select="$start + $count - 1"/>
<xsl:variable name="overflow" select="$total mod 7"/>

<xsl:variable name="nelements">
<xsl:choose>

<xsl:when test="$overflow > 0"><xsl:value-of select="$total + 7 - $overflow"/></xsl:when>
<xsl:otherwise><xsl:value-of select="$total"/></xsl:otherwise>

</xsl:choose>
</xsl:variable>

<xsl:template match="/">
<html>
<head><title><xsl:value-of select="month/name"/></title></head>
<body bgcolor="lightyellow">
<h1 align="center"><xsl:value-of select="month/name"/></h1>
<table summary="calendar" border="1" bgcolor="yellow" align="center">

<tr bgcolor="white">
<th>Sun</th><th>Mon</th><th>Tue</th><th>Wed</th><th>Thu</th><th>Fri</th><th>Sat</th>
</tr>
<xsl:call-template name="month"/>

</table>
</body></html>

</xsl:template>

<!-- Called only once for root -->
<!-- Uses recursion with index + 7 for each week -->
<xsl:template name="month">

<xsl:param name="index" select="1"/>
<xsl:if test="$index &lt; $nelements">

<xsl:call-template name="week">
<xsl:with-param name="index" select="$index"/>

</xsl:call-template>

<xsl:call-template name="month">
<xsl:with-param name="index" select="$index + 7"/>

</xsl:call-template>
</xsl:if>

</xsl:template>

<!-- Called repeatedly by month for each week -->
<xsl:template name="week">

<xsl:param name="index" select="1"/>
<tr>

<xsl:call-template name="days">
<xsl:with-param name="index" select="$index"/>
<xsl:with-param name="counter" select="$index + 6"/>

</xsl:call-template>
</tr>

</xsl:template>

<!-- Called by week -->
<!-- Uses recursion with index + 1 for each day-of-week -->
<xsl:template name="days">

<xsl:param name="index" select="1"/>
<xsl:param name="counter" select="1"/>
<xsl:choose>

<xsl:when test="$index &lt; $start">
<td>-</td>

</xsl:when>
<xsl:when test="$index - $start + 1 > $count">

<td>-</td>
</xsl:when>
<xsl:when test="$index > $start - 1">

<td><xsl:value-of select="$index - $start + 1"/></td>
</xsl:when>

</xsl:choose>
<xsl:if test="$counter > $index">

<xsl:call-template name="days">
<xsl:with-param name="index" select="$index + 1"/>
<xsl:with-param name="counter" select="$counter"/>

</xsl:call-template>
</xsl:if>

</xsl:template>
</xsl:stylesheet>
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